xref: /openbmc/qemu/hw/ppc/spapr_pci.c (revision f28d0dfd)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
39 #include <libfdt.h>
40 #include "trace.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
43 #include "hw/ppc/fdt.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/pci/pci_ids.h"
47 #include "hw/ppc/spapr_drc.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/numa.h"
52 
53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
54 #define RTAS_QUERY_FN           0
55 #define RTAS_CHANGE_FN          1
56 #define RTAS_RESET_FN           2
57 #define RTAS_CHANGE_MSI_FN      3
58 #define RTAS_CHANGE_MSIX_FN     4
59 
60 /* Interrupt types to return on RTAS_CHANGE_* */
61 #define RTAS_TYPE_MSI           1
62 #define RTAS_TYPE_MSIX          2
63 
64 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
65 {
66     sPAPRPHBState *sphb;
67 
68     QLIST_FOREACH(sphb, &spapr->phbs, list) {
69         if (sphb->buid != buid) {
70             continue;
71         }
72         return sphb;
73     }
74 
75     return NULL;
76 }
77 
78 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
79                               uint32_t config_addr)
80 {
81     sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
82     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
83     int bus_num = (config_addr >> 16) & 0xFF;
84     int devfn = (config_addr >> 8) & 0xFF;
85 
86     if (!phb) {
87         return NULL;
88     }
89 
90     return pci_find_device(phb->bus, bus_num, devfn);
91 }
92 
93 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
94 {
95     /* This handles the encoding of extended config space addresses */
96     return ((arg >> 20) & 0xf00) | (arg & 0xff);
97 }
98 
99 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
100                                    uint32_t addr, uint32_t size,
101                                    target_ulong rets)
102 {
103     PCIDevice *pci_dev;
104     uint32_t val;
105 
106     if ((size != 1) && (size != 2) && (size != 4)) {
107         /* access must be 1, 2 or 4 bytes */
108         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
109         return;
110     }
111 
112     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
113     addr = rtas_pci_cfgaddr(addr);
114 
115     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
116         /* Access must be to a valid device, within bounds and
117          * naturally aligned */
118         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
119         return;
120     }
121 
122     val = pci_host_config_read_common(pci_dev, addr,
123                                       pci_config_size(pci_dev), size);
124 
125     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
126     rtas_st(rets, 1, val);
127 }
128 
129 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
130                                      uint32_t token, uint32_t nargs,
131                                      target_ulong args,
132                                      uint32_t nret, target_ulong rets)
133 {
134     uint64_t buid;
135     uint32_t size, addr;
136 
137     if ((nargs != 4) || (nret != 2)) {
138         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
139         return;
140     }
141 
142     buid = rtas_ldq(args, 1);
143     size = rtas_ld(args, 3);
144     addr = rtas_ld(args, 0);
145 
146     finish_read_pci_config(spapr, buid, addr, size, rets);
147 }
148 
149 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
150                                  uint32_t token, uint32_t nargs,
151                                  target_ulong args,
152                                  uint32_t nret, target_ulong rets)
153 {
154     uint32_t size, addr;
155 
156     if ((nargs != 2) || (nret != 2)) {
157         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
158         return;
159     }
160 
161     size = rtas_ld(args, 1);
162     addr = rtas_ld(args, 0);
163 
164     finish_read_pci_config(spapr, 0, addr, size, rets);
165 }
166 
167 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
168                                     uint32_t addr, uint32_t size,
169                                     uint32_t val, target_ulong rets)
170 {
171     PCIDevice *pci_dev;
172 
173     if ((size != 1) && (size != 2) && (size != 4)) {
174         /* access must be 1, 2 or 4 bytes */
175         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
176         return;
177     }
178 
179     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
180     addr = rtas_pci_cfgaddr(addr);
181 
182     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
183         /* Access must be to a valid device, within bounds and
184          * naturally aligned */
185         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
186         return;
187     }
188 
189     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
190                                  val, size);
191 
192     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
193 }
194 
195 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
196                                       uint32_t token, uint32_t nargs,
197                                       target_ulong args,
198                                       uint32_t nret, target_ulong rets)
199 {
200     uint64_t buid;
201     uint32_t val, size, addr;
202 
203     if ((nargs != 5) || (nret != 1)) {
204         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
205         return;
206     }
207 
208     buid = rtas_ldq(args, 1);
209     val = rtas_ld(args, 4);
210     size = rtas_ld(args, 3);
211     addr = rtas_ld(args, 0);
212 
213     finish_write_pci_config(spapr, buid, addr, size, val, rets);
214 }
215 
216 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
217                                   uint32_t token, uint32_t nargs,
218                                   target_ulong args,
219                                   uint32_t nret, target_ulong rets)
220 {
221     uint32_t val, size, addr;
222 
223     if ((nargs != 3) || (nret != 1)) {
224         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
225         return;
226     }
227 
228 
229     val = rtas_ld(args, 2);
230     size = rtas_ld(args, 1);
231     addr = rtas_ld(args, 0);
232 
233     finish_write_pci_config(spapr, 0, addr, size, val, rets);
234 }
235 
236 /*
237  * Set MSI/MSIX message data.
238  * This is required for msi_notify()/msix_notify() which
239  * will write at the addresses via spapr_msi_write().
240  *
241  * If hwaddr == 0, all entries will have .data == first_irq i.e.
242  * table will be reset.
243  */
244 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
245                              unsigned first_irq, unsigned req_num)
246 {
247     unsigned i;
248     MSIMessage msg = { .address = addr, .data = first_irq };
249 
250     if (!msix) {
251         msi_set_message(pdev, msg);
252         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
253         return;
254     }
255 
256     for (i = 0; i < req_num; ++i) {
257         msix_set_message(pdev, i, msg);
258         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
259         if (addr) {
260             ++msg.data;
261         }
262     }
263 }
264 
265 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
266                                 uint32_t token, uint32_t nargs,
267                                 target_ulong args, uint32_t nret,
268                                 target_ulong rets)
269 {
270     uint32_t config_addr = rtas_ld(args, 0);
271     uint64_t buid = rtas_ldq(args, 1);
272     unsigned int func = rtas_ld(args, 3);
273     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
274     unsigned int seq_num = rtas_ld(args, 5);
275     unsigned int ret_intr_type;
276     unsigned int irq, max_irqs = 0;
277     sPAPRPHBState *phb = NULL;
278     PCIDevice *pdev = NULL;
279     spapr_pci_msi *msi;
280     int *config_addr_key;
281     Error *err = NULL;
282     int i;
283 
284     /* Fins sPAPRPHBState */
285     phb = spapr_pci_find_phb(spapr, buid);
286     if (phb) {
287         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
288     }
289     if (!phb || !pdev) {
290         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
291         return;
292     }
293 
294     switch (func) {
295     case RTAS_CHANGE_FN:
296         if (msi_present(pdev)) {
297             ret_intr_type = RTAS_TYPE_MSI;
298         } else if (msix_present(pdev)) {
299             ret_intr_type = RTAS_TYPE_MSIX;
300         } else {
301             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
302             return;
303         }
304         break;
305     case RTAS_CHANGE_MSI_FN:
306         if (msi_present(pdev)) {
307             ret_intr_type = RTAS_TYPE_MSI;
308         } else {
309             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
310             return;
311         }
312         break;
313     case RTAS_CHANGE_MSIX_FN:
314         if (msix_present(pdev)) {
315             ret_intr_type = RTAS_TYPE_MSIX;
316         } else {
317             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
318             return;
319         }
320         break;
321     default:
322         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
323         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
324         return;
325     }
326 
327     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
328 
329     /* Releasing MSIs */
330     if (!req_num) {
331         if (!msi) {
332             trace_spapr_pci_msi("Releasing wrong config", config_addr);
333             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
334             return;
335         }
336 
337         spapr_irq_free(spapr, msi->first_irq, msi->num);
338         if (msi_present(pdev)) {
339             spapr_msi_setmsg(pdev, 0, false, 0, 0);
340         }
341         if (msix_present(pdev)) {
342             spapr_msi_setmsg(pdev, 0, true, 0, 0);
343         }
344         g_hash_table_remove(phb->msi, &config_addr);
345 
346         trace_spapr_pci_msi("Released MSIs", config_addr);
347         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
348         rtas_st(rets, 1, 0);
349         return;
350     }
351 
352     /* Enabling MSI */
353 
354     /* Check if the device supports as many IRQs as requested */
355     if (ret_intr_type == RTAS_TYPE_MSI) {
356         max_irqs = msi_nr_vectors_allocated(pdev);
357     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
358         max_irqs = pdev->msix_entries_nr;
359     }
360     if (!max_irqs) {
361         error_report("Requested interrupt type %d is not enabled for device %x",
362                      ret_intr_type, config_addr);
363         rtas_st(rets, 0, -1); /* Hardware error */
364         return;
365     }
366     /* Correct the number if the guest asked for too many */
367     if (req_num > max_irqs) {
368         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
369         req_num = max_irqs;
370         irq = 0; /* to avoid misleading trace */
371         goto out;
372     }
373 
374     /* Allocate MSIs */
375     irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI, &err);
376     if (err) {
377         error_reportf_err(err, "Can't allocate MSIs for device %x: ",
378                           config_addr);
379         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
380         return;
381     }
382 
383     for (i = 0; i < req_num; i++) {
384         spapr_irq_claim(spapr, irq + i, false, &err);
385         if (err) {
386             error_reportf_err(err, "Can't allocate MSIs for device %x: ",
387                               config_addr);
388             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
389             return;
390         }
391     }
392 
393     /* Release previous MSIs */
394     if (msi) {
395         spapr_irq_free(spapr, msi->first_irq, msi->num);
396         g_hash_table_remove(phb->msi, &config_addr);
397     }
398 
399     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
400     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
401                      irq, req_num);
402 
403     /* Add MSI device to cache */
404     msi = g_new(spapr_pci_msi, 1);
405     msi->first_irq = irq;
406     msi->num = req_num;
407     config_addr_key = g_new(int, 1);
408     *config_addr_key = config_addr;
409     g_hash_table_insert(phb->msi, config_addr_key, msi);
410 
411 out:
412     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
413     rtas_st(rets, 1, req_num);
414     rtas_st(rets, 2, ++seq_num);
415     if (nret > 3) {
416         rtas_st(rets, 3, ret_intr_type);
417     }
418 
419     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
420 }
421 
422 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
423                                                    sPAPRMachineState *spapr,
424                                                    uint32_t token,
425                                                    uint32_t nargs,
426                                                    target_ulong args,
427                                                    uint32_t nret,
428                                                    target_ulong rets)
429 {
430     uint32_t config_addr = rtas_ld(args, 0);
431     uint64_t buid = rtas_ldq(args, 1);
432     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
433     sPAPRPHBState *phb = NULL;
434     PCIDevice *pdev = NULL;
435     spapr_pci_msi *msi;
436 
437     /* Find sPAPRPHBState */
438     phb = spapr_pci_find_phb(spapr, buid);
439     if (phb) {
440         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
441     }
442     if (!phb || !pdev) {
443         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
444         return;
445     }
446 
447     /* Find device descriptor and start IRQ */
448     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
449     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
450         trace_spapr_pci_msi("Failed to return vector", config_addr);
451         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
452         return;
453     }
454     intr_src_num = msi->first_irq + ioa_intr_num;
455     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
456                                                            intr_src_num);
457 
458     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
459     rtas_st(rets, 1, intr_src_num);
460     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
461 }
462 
463 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
464                                     sPAPRMachineState *spapr,
465                                     uint32_t token, uint32_t nargs,
466                                     target_ulong args, uint32_t nret,
467                                     target_ulong rets)
468 {
469     sPAPRPHBState *sphb;
470     uint32_t addr, option;
471     uint64_t buid;
472     int ret;
473 
474     if ((nargs != 4) || (nret != 1)) {
475         goto param_error_exit;
476     }
477 
478     buid = rtas_ldq(args, 1);
479     addr = rtas_ld(args, 0);
480     option = rtas_ld(args, 3);
481 
482     sphb = spapr_pci_find_phb(spapr, buid);
483     if (!sphb) {
484         goto param_error_exit;
485     }
486 
487     if (!spapr_phb_eeh_available(sphb)) {
488         goto param_error_exit;
489     }
490 
491     ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
492     rtas_st(rets, 0, ret);
493     return;
494 
495 param_error_exit:
496     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
497 }
498 
499 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
500                                            sPAPRMachineState *spapr,
501                                            uint32_t token, uint32_t nargs,
502                                            target_ulong args, uint32_t nret,
503                                            target_ulong rets)
504 {
505     sPAPRPHBState *sphb;
506     PCIDevice *pdev;
507     uint32_t addr, option;
508     uint64_t buid;
509 
510     if ((nargs != 4) || (nret != 2)) {
511         goto param_error_exit;
512     }
513 
514     buid = rtas_ldq(args, 1);
515     sphb = spapr_pci_find_phb(spapr, buid);
516     if (!sphb) {
517         goto param_error_exit;
518     }
519 
520     if (!spapr_phb_eeh_available(sphb)) {
521         goto param_error_exit;
522     }
523 
524     /*
525      * We always have PE address of form "00BB0001". "BB"
526      * represents the bus number of PE's primary bus.
527      */
528     option = rtas_ld(args, 3);
529     switch (option) {
530     case RTAS_GET_PE_ADDR:
531         addr = rtas_ld(args, 0);
532         pdev = spapr_pci_find_dev(spapr, buid, addr);
533         if (!pdev) {
534             goto param_error_exit;
535         }
536 
537         rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
538         break;
539     case RTAS_GET_PE_MODE:
540         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
541         break;
542     default:
543         goto param_error_exit;
544     }
545 
546     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
547     return;
548 
549 param_error_exit:
550     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
551 }
552 
553 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
554                                             sPAPRMachineState *spapr,
555                                             uint32_t token, uint32_t nargs,
556                                             target_ulong args, uint32_t nret,
557                                             target_ulong rets)
558 {
559     sPAPRPHBState *sphb;
560     uint64_t buid;
561     int state, ret;
562 
563     if ((nargs != 3) || (nret != 4 && nret != 5)) {
564         goto param_error_exit;
565     }
566 
567     buid = rtas_ldq(args, 1);
568     sphb = spapr_pci_find_phb(spapr, buid);
569     if (!sphb) {
570         goto param_error_exit;
571     }
572 
573     if (!spapr_phb_eeh_available(sphb)) {
574         goto param_error_exit;
575     }
576 
577     ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
578     rtas_st(rets, 0, ret);
579     if (ret != RTAS_OUT_SUCCESS) {
580         return;
581     }
582 
583     rtas_st(rets, 1, state);
584     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
585     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
586     if (nret >= 5) {
587         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
588     }
589     return;
590 
591 param_error_exit:
592     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
593 }
594 
595 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
596                                     sPAPRMachineState *spapr,
597                                     uint32_t token, uint32_t nargs,
598                                     target_ulong args, uint32_t nret,
599                                     target_ulong rets)
600 {
601     sPAPRPHBState *sphb;
602     uint32_t option;
603     uint64_t buid;
604     int ret;
605 
606     if ((nargs != 4) || (nret != 1)) {
607         goto param_error_exit;
608     }
609 
610     buid = rtas_ldq(args, 1);
611     option = rtas_ld(args, 3);
612     sphb = spapr_pci_find_phb(spapr, buid);
613     if (!sphb) {
614         goto param_error_exit;
615     }
616 
617     if (!spapr_phb_eeh_available(sphb)) {
618         goto param_error_exit;
619     }
620 
621     ret = spapr_phb_vfio_eeh_reset(sphb, option);
622     rtas_st(rets, 0, ret);
623     return;
624 
625 param_error_exit:
626     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
627 }
628 
629 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
630                                   sPAPRMachineState *spapr,
631                                   uint32_t token, uint32_t nargs,
632                                   target_ulong args, uint32_t nret,
633                                   target_ulong rets)
634 {
635     sPAPRPHBState *sphb;
636     uint64_t buid;
637     int ret;
638 
639     if ((nargs != 3) || (nret != 1)) {
640         goto param_error_exit;
641     }
642 
643     buid = rtas_ldq(args, 1);
644     sphb = spapr_pci_find_phb(spapr, buid);
645     if (!sphb) {
646         goto param_error_exit;
647     }
648 
649     if (!spapr_phb_eeh_available(sphb)) {
650         goto param_error_exit;
651     }
652 
653     ret = spapr_phb_vfio_eeh_configure(sphb);
654     rtas_st(rets, 0, ret);
655     return;
656 
657 param_error_exit:
658     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
659 }
660 
661 /* To support it later */
662 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
663                                        sPAPRMachineState *spapr,
664                                        uint32_t token, uint32_t nargs,
665                                        target_ulong args, uint32_t nret,
666                                        target_ulong rets)
667 {
668     sPAPRPHBState *sphb;
669     int option;
670     uint64_t buid;
671 
672     if ((nargs != 8) || (nret != 1)) {
673         goto param_error_exit;
674     }
675 
676     buid = rtas_ldq(args, 1);
677     sphb = spapr_pci_find_phb(spapr, buid);
678     if (!sphb) {
679         goto param_error_exit;
680     }
681 
682     if (!spapr_phb_eeh_available(sphb)) {
683         goto param_error_exit;
684     }
685 
686     option = rtas_ld(args, 7);
687     switch (option) {
688     case RTAS_SLOT_TEMP_ERR_LOG:
689     case RTAS_SLOT_PERM_ERR_LOG:
690         break;
691     default:
692         goto param_error_exit;
693     }
694 
695     /* We don't have error log yet */
696     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
697     return;
698 
699 param_error_exit:
700     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
701 }
702 
703 static int pci_spapr_swizzle(int slot, int pin)
704 {
705     return (slot + pin) % PCI_NUM_PINS;
706 }
707 
708 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
709 {
710     /*
711      * Here we need to convert pci_dev + irq_num to some unique value
712      * which is less than number of IRQs on the specific bus (4).  We
713      * use standard PCI swizzling, that is (slot number + pin number)
714      * % 4.
715      */
716     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
717 }
718 
719 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
720 {
721     /*
722      * Here we use the number returned by pci_spapr_map_irq to find a
723      * corresponding qemu_irq.
724      */
725     sPAPRPHBState *phb = opaque;
726 
727     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
728     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
729 }
730 
731 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
732 {
733     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
734     PCIINTxRoute route;
735 
736     route.mode = PCI_INTX_ENABLED;
737     route.irq = sphb->lsi_table[pin].irq;
738 
739     return route;
740 }
741 
742 /*
743  * MSI/MSIX memory region implementation.
744  * The handler handles both MSI and MSIX.
745  * The vector number is encoded in least bits in data.
746  */
747 static void spapr_msi_write(void *opaque, hwaddr addr,
748                             uint64_t data, unsigned size)
749 {
750     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
751     uint32_t irq = data;
752 
753     trace_spapr_pci_msi_write(addr, data, irq);
754 
755     qemu_irq_pulse(spapr_qirq(spapr, irq));
756 }
757 
758 static const MemoryRegionOps spapr_msi_ops = {
759     /* There is no .read as the read result is undefined by PCI spec */
760     .read = NULL,
761     .write = spapr_msi_write,
762     .endianness = DEVICE_LITTLE_ENDIAN
763 };
764 
765 /*
766  * PHB PCI device
767  */
768 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
769 {
770     sPAPRPHBState *phb = opaque;
771 
772     return &phb->iommu_as;
773 }
774 
775 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
776 {
777     char *path = NULL, *buf = NULL, *host = NULL;
778 
779     /* Get the PCI VFIO host id */
780     host = object_property_get_str(OBJECT(pdev), "host", NULL);
781     if (!host) {
782         goto err_out;
783     }
784 
785     /* Construct the path of the file that will give us the DT location */
786     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
787     g_free(host);
788     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
789         goto err_out;
790     }
791     g_free(path);
792 
793     /* Construct and read from host device tree the loc-code */
794     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
795     g_free(buf);
796     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
797         goto err_out;
798     }
799     return buf;
800 
801 err_out:
802     g_free(path);
803     return NULL;
804 }
805 
806 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
807 {
808     char *buf;
809     const char *devtype = "qemu";
810     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
811 
812     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
813         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
814         if (buf) {
815             return buf;
816         }
817         devtype = "vfio";
818     }
819     /*
820      * For emulated devices and VFIO-failure case, make up
821      * the loc-code.
822      */
823     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
824                           devtype, pdev->name, sphb->index, busnr,
825                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
826     return buf;
827 }
828 
829 /* Macros to operate with address in OF binding to PCI */
830 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
831 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
832 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
833 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
834 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
835 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
836 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
837 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
838 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
839 
840 /* for 'reg'/'assigned-addresses' OF properties */
841 #define RESOURCE_CELLS_SIZE 2
842 #define RESOURCE_CELLS_ADDRESS 3
843 
844 typedef struct ResourceFields {
845     uint32_t phys_hi;
846     uint32_t phys_mid;
847     uint32_t phys_lo;
848     uint32_t size_hi;
849     uint32_t size_lo;
850 } QEMU_PACKED ResourceFields;
851 
852 typedef struct ResourceProps {
853     ResourceFields reg[8];
854     ResourceFields assigned[7];
855     uint32_t reg_len;
856     uint32_t assigned_len;
857 } ResourceProps;
858 
859 /* fill in the 'reg'/'assigned-resources' OF properties for
860  * a PCI device. 'reg' describes resource requirements for a
861  * device's IO/MEM regions, 'assigned-addresses' describes the
862  * actual resource assignments.
863  *
864  * the properties are arrays of ('phys-addr', 'size') pairs describing
865  * the addressable regions of the PCI device, where 'phys-addr' is a
866  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
867  * (phys.hi, phys.mid, phys.lo), and 'size' is a
868  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
869  *
870  * phys.hi = 0xYYXXXXZZ, where:
871  *   0xYY = npt000ss
872  *          |||   |
873  *          |||   +-- space code
874  *          |||               |
875  *          |||               +  00 if configuration space
876  *          |||               +  01 if IO region,
877  *          |||               +  10 if 32-bit MEM region
878  *          |||               +  11 if 64-bit MEM region
879  *          |||
880  *          ||+------ for non-relocatable IO: 1 if aliased
881  *          ||        for relocatable IO: 1 if below 64KB
882  *          ||        for MEM: 1 if below 1MB
883  *          |+------- 1 if region is prefetchable
884  *          +-------- 1 if region is non-relocatable
885  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
886  *            bits respectively
887  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
888  *          to the region
889  *
890  * phys.mid and phys.lo correspond respectively to the hi/lo portions
891  * of the actual address of the region.
892  *
893  * how the phys-addr/size values are used differ slightly between
894  * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
895  * an additional description for the config space region of the
896  * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
897  * to describe the region as relocatable, with an address-mapping
898  * that corresponds directly to the PHB's address space for the
899  * resource. 'assigned-addresses' always has n=1 set with an absolute
900  * address assigned for the resource. in general, 'assigned-addresses'
901  * won't be populated, since addresses for PCI devices are generally
902  * unmapped initially and left to the guest to assign.
903  *
904  * note also that addresses defined in these properties are, at least
905  * for PAPR guests, relative to the PHBs IO/MEM windows, and
906  * correspond directly to the addresses in the BARs.
907  *
908  * in accordance with PCI Bus Binding to Open Firmware,
909  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
910  * Appendix C.
911  */
912 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
913 {
914     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
915     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
916                        b_ddddd(PCI_SLOT(d->devfn)) |
917                        b_fff(PCI_FUNC(d->devfn)));
918     ResourceFields *reg, *assigned;
919     int i, reg_idx = 0, assigned_idx = 0;
920 
921     /* config space region */
922     reg = &rp->reg[reg_idx++];
923     reg->phys_hi = cpu_to_be32(dev_id);
924     reg->phys_mid = 0;
925     reg->phys_lo = 0;
926     reg->size_hi = 0;
927     reg->size_lo = 0;
928 
929     for (i = 0; i < PCI_NUM_REGIONS; i++) {
930         if (!d->io_regions[i].size) {
931             continue;
932         }
933 
934         reg = &rp->reg[reg_idx++];
935 
936         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
937         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
938             reg->phys_hi |= cpu_to_be32(b_ss(1));
939         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
940             reg->phys_hi |= cpu_to_be32(b_ss(3));
941         } else {
942             reg->phys_hi |= cpu_to_be32(b_ss(2));
943         }
944         reg->phys_mid = 0;
945         reg->phys_lo = 0;
946         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
947         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
948 
949         if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
950             continue;
951         }
952 
953         assigned = &rp->assigned[assigned_idx++];
954         assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
955         assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
956         assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
957         assigned->size_hi = reg->size_hi;
958         assigned->size_lo = reg->size_lo;
959     }
960 
961     rp->reg_len = reg_idx * sizeof(ResourceFields);
962     rp->assigned_len = assigned_idx * sizeof(ResourceFields);
963 }
964 
965 typedef struct PCIClass PCIClass;
966 typedef struct PCISubClass PCISubClass;
967 typedef struct PCIIFace PCIIFace;
968 
969 struct PCIIFace {
970     int iface;
971     const char *name;
972 };
973 
974 struct PCISubClass {
975     int subclass;
976     const char *name;
977     const PCIIFace *iface;
978 };
979 
980 struct PCIClass {
981     const char *name;
982     const PCISubClass *subc;
983 };
984 
985 static const PCISubClass undef_subclass[] = {
986     { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
987     { 0xFF, NULL, NULL },
988 };
989 
990 static const PCISubClass mass_subclass[] = {
991     { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
992     { PCI_CLASS_STORAGE_IDE, "ide", NULL },
993     { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
994     { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
995     { PCI_CLASS_STORAGE_RAID, "raid", NULL },
996     { PCI_CLASS_STORAGE_ATA, "ata", NULL },
997     { PCI_CLASS_STORAGE_SATA, "sata", NULL },
998     { PCI_CLASS_STORAGE_SAS, "sas", NULL },
999     { 0xFF, NULL, NULL },
1000 };
1001 
1002 static const PCISubClass net_subclass[] = {
1003     { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
1004     { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
1005     { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
1006     { PCI_CLASS_NETWORK_ATM, "atm", NULL },
1007     { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
1008     { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
1009     { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
1010     { 0xFF, NULL, NULL },
1011 };
1012 
1013 static const PCISubClass displ_subclass[] = {
1014     { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1015     { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1016     { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1017     { 0xFF, NULL, NULL },
1018 };
1019 
1020 static const PCISubClass media_subclass[] = {
1021     { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1022     { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1023     { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1024     { 0xFF, NULL, NULL },
1025 };
1026 
1027 static const PCISubClass mem_subclass[] = {
1028     { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1029     { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1030     { 0xFF, NULL, NULL },
1031 };
1032 
1033 static const PCISubClass bridg_subclass[] = {
1034     { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1035     { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1036     { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1037     { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1038     { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1039     { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1040     { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1041     { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1042     { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1043     { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1044     { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1045     { 0xFF, NULL, NULL },
1046 };
1047 
1048 static const PCISubClass comm_subclass[] = {
1049     { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1050     { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1051     { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1052     { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1053     { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1054     { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1055     { 0xFF, NULL, NULL, },
1056 };
1057 
1058 static const PCIIFace pic_iface[] = {
1059     { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1060     { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1061     { 0xFF, NULL },
1062 };
1063 
1064 static const PCISubClass sys_subclass[] = {
1065     { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1066     { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1067     { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1068     { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1069     { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1070     { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1071     { 0xFF, NULL, NULL },
1072 };
1073 
1074 static const PCISubClass inp_subclass[] = {
1075     { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1076     { PCI_CLASS_INPUT_PEN, "pen", NULL },
1077     { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1078     { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1079     { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1080     { 0xFF, NULL, NULL },
1081 };
1082 
1083 static const PCISubClass dock_subclass[] = {
1084     { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1085     { 0xFF, NULL, NULL },
1086 };
1087 
1088 static const PCISubClass cpu_subclass[] = {
1089     { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1090     { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1091     { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1092     { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1093     { 0xFF, NULL, NULL },
1094 };
1095 
1096 static const PCIIFace usb_iface[] = {
1097     { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1098     { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1099     { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1100     { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1101     { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1102     { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1103     { 0xFF, NULL },
1104 };
1105 
1106 static const PCISubClass ser_subclass[] = {
1107     { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1108     { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1109     { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1110     { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1111     { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1112     { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1113     { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1114     { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1115     { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1116     { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1117     { 0xFF, NULL, NULL },
1118 };
1119 
1120 static const PCISubClass wrl_subclass[] = {
1121     { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1122     { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1123     { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1124     { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1125     { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1126     { 0xFF, NULL, NULL },
1127 };
1128 
1129 static const PCISubClass sat_subclass[] = {
1130     { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1131     { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1132     { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1133     { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1134     { 0xFF, NULL, NULL },
1135 };
1136 
1137 static const PCISubClass crypt_subclass[] = {
1138     { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1139     { PCI_CLASS_CRYPT_ENTERTAINMENT,
1140       "entertainment-encryption", NULL },
1141     { 0xFF, NULL, NULL },
1142 };
1143 
1144 static const PCISubClass spc_subclass[] = {
1145     { PCI_CLASS_SP_DPIO, "dpio", NULL },
1146     { PCI_CLASS_SP_PERF, "counter", NULL },
1147     { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1148     { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1149     { 0xFF, NULL, NULL },
1150 };
1151 
1152 static const PCIClass pci_classes[] = {
1153     { "legacy-device", undef_subclass },
1154     { "mass-storage",  mass_subclass },
1155     { "network", net_subclass },
1156     { "display", displ_subclass, },
1157     { "multimedia-device", media_subclass },
1158     { "memory-controller", mem_subclass },
1159     { "unknown-bridge", bridg_subclass },
1160     { "communication-controller", comm_subclass},
1161     { "system-peripheral", sys_subclass },
1162     { "input-controller", inp_subclass },
1163     { "docking-station", dock_subclass },
1164     { "cpu", cpu_subclass },
1165     { "serial-bus", ser_subclass },
1166     { "wireless-controller", wrl_subclass },
1167     { "intelligent-io", NULL },
1168     { "satellite-device", sat_subclass },
1169     { "encryption", crypt_subclass },
1170     { "data-processing-controller", spc_subclass },
1171 };
1172 
1173 static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
1174                                         uint8_t iface)
1175 {
1176     const PCIClass *pclass;
1177     const PCISubClass *psubclass;
1178     const PCIIFace *piface;
1179     const char *name;
1180 
1181     if (class >= ARRAY_SIZE(pci_classes)) {
1182         return "pci";
1183     }
1184 
1185     pclass = pci_classes + class;
1186     name = pclass->name;
1187 
1188     if (pclass->subc == NULL) {
1189         return name;
1190     }
1191 
1192     psubclass = pclass->subc;
1193     while ((psubclass->subclass & 0xff) != 0xff) {
1194         if ((psubclass->subclass & 0xff) == subclass) {
1195             name = psubclass->name;
1196             break;
1197         }
1198         psubclass++;
1199     }
1200 
1201     piface = psubclass->iface;
1202     if (piface == NULL) {
1203         return name;
1204     }
1205     while ((piface->iface & 0xff) != 0xff) {
1206         if ((piface->iface & 0xff) == iface) {
1207             name = piface->name;
1208             break;
1209         }
1210         piface++;
1211     }
1212 
1213     return name;
1214 }
1215 
1216 static gchar *pci_get_node_name(PCIDevice *dev)
1217 {
1218     int slot = PCI_SLOT(dev->devfn);
1219     int func = PCI_FUNC(dev->devfn);
1220     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1221     const char *name;
1222 
1223     name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1224                                 ccode & 0xff);
1225 
1226     if (func != 0) {
1227         return g_strdup_printf("%s@%x,%x", name, slot, func);
1228     } else {
1229         return g_strdup_printf("%s@%x", name, slot);
1230     }
1231 }
1232 
1233 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1234                                             PCIDevice *pdev);
1235 
1236 static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
1237                                        sPAPRPHBState *sphb)
1238 {
1239     ResourceProps rp;
1240     bool is_bridge = false;
1241     int pci_status;
1242     char *buf = NULL;
1243     uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1244     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1245     uint32_t max_msi, max_msix;
1246 
1247     if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
1248         PCI_HEADER_TYPE_BRIDGE) {
1249         is_bridge = true;
1250     }
1251 
1252     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1253     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
1254                           pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
1255     _FDT(fdt_setprop_cell(fdt, offset, "device-id",
1256                           pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
1257     _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
1258                           pci_default_read_config(dev, PCI_REVISION_ID, 1)));
1259     _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1260     if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
1261         _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
1262                  pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
1263     }
1264 
1265     if (!is_bridge) {
1266         _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
1267             pci_default_read_config(dev, PCI_MIN_GNT, 1)));
1268         _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
1269             pci_default_read_config(dev, PCI_MAX_LAT, 1)));
1270     }
1271 
1272     if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
1273         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
1274                  pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
1275     }
1276 
1277     if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
1278         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1279                  pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
1280     }
1281 
1282     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
1283         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1284 
1285     /* the following fdt cells are masked off the pci status register */
1286     pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1287     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1288                           PCI_STATUS_DEVSEL_MASK & pci_status));
1289 
1290     if (pci_status & PCI_STATUS_FAST_BACK) {
1291         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1292     }
1293     if (pci_status & PCI_STATUS_66MHZ) {
1294         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1295     }
1296     if (pci_status & PCI_STATUS_UDF) {
1297         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1298     }
1299 
1300     _FDT(fdt_setprop_string(fdt, offset, "name",
1301                             pci_find_device_name((ccode >> 16) & 0xff,
1302                                                  (ccode >> 8) & 0xff,
1303                                                  ccode & 0xff)));
1304 
1305     buf = spapr_phb_get_loc_code(sphb, dev);
1306     _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf));
1307     g_free(buf);
1308 
1309     if (drc_index) {
1310         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1311     }
1312 
1313     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1314                           RESOURCE_CELLS_ADDRESS));
1315     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1316                           RESOURCE_CELLS_SIZE));
1317 
1318     if (msi_present(dev)) {
1319         max_msi = msi_nr_vectors_allocated(dev);
1320         if (max_msi) {
1321             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1322         }
1323     }
1324     if (msix_present(dev)) {
1325         max_msix = dev->msix_entries_nr;
1326         if (max_msix) {
1327             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1328         }
1329     }
1330 
1331     populate_resource_props(dev, &rp);
1332     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1333     _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1334                      (uint8_t *)rp.assigned, rp.assigned_len));
1335 
1336     if (sphb->pcie_ecs && pci_is_express(dev)) {
1337         _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1338     }
1339 }
1340 
1341 /* create OF node for pci device and required OF DT properties */
1342 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1343                                      void *fdt, int node_offset)
1344 {
1345     int offset;
1346     gchar *nodename;
1347 
1348     nodename = pci_get_node_name(dev);
1349     _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename));
1350     g_free(nodename);
1351 
1352     spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1353 
1354     return offset;
1355 }
1356 
1357 /* Callback to be called during DRC release. */
1358 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1359 {
1360     /* some version guests do not wait for completion of a device
1361      * cleanup (generally done asynchronously by the kernel) before
1362      * signaling to QEMU that the device is safe, but instead sleep
1363      * for some 'safe' period of time. unfortunately on a busy host
1364      * this sleep isn't guaranteed to be long enough, resulting in
1365      * bad things like IRQ lines being left asserted during final
1366      * device removal. to deal with this we call reset just prior
1367      * to finalizing the device, which will put the device back into
1368      * an 'idle' state, as the device cleanup code expects.
1369      */
1370     pci_device_reset(PCI_DEVICE(dev));
1371     object_unparent(OBJECT(dev));
1372 }
1373 
1374 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1375                                                     uint32_t busnr,
1376                                                     int32_t devfn)
1377 {
1378     return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1379                            (phb->index << 16) | (busnr << 8) | devfn);
1380 }
1381 
1382 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1383                                                PCIDevice *pdev)
1384 {
1385     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1386     return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1387 }
1388 
1389 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1390                                             PCIDevice *pdev)
1391 {
1392     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1393 
1394     if (!drc) {
1395         return 0;
1396     }
1397 
1398     return spapr_drc_index(drc);
1399 }
1400 
1401 static void spapr_pci_plug(HotplugHandler *plug_handler,
1402                            DeviceState *plugged_dev, Error **errp)
1403 {
1404     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1405     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1406     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1407     Error *local_err = NULL;
1408     PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1409     uint32_t slotnr = PCI_SLOT(pdev->devfn);
1410     void *fdt = NULL;
1411     int fdt_start_offset, fdt_size;
1412 
1413     /* if DR is disabled we don't need to do anything in the case of
1414      * hotplug or coldplug callbacks
1415      */
1416     if (!phb->dr_enabled) {
1417         /* if this is a hotplug operation initiated by the user
1418          * we need to let them know it's not enabled
1419          */
1420         if (plugged_dev->hotplugged) {
1421             error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1422                        object_get_typename(OBJECT(phb)));
1423         }
1424         goto out;
1425     }
1426 
1427     g_assert(drc);
1428 
1429     /* Following the QEMU convention used for PCIe multifunction
1430      * hotplug, we do not allow functions to be hotplugged to a
1431      * slot that already has function 0 present
1432      */
1433     if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1434         PCI_FUNC(pdev->devfn) != 0) {
1435         error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1436                    " additional functions can no longer be exposed to guest.",
1437                    slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1438         goto out;
1439     }
1440 
1441     fdt = create_device_tree(&fdt_size);
1442     fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1443 
1444     spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
1445     if (local_err) {
1446         goto out;
1447     }
1448 
1449     /* If this is function 0, signal hotplug for all the device functions.
1450      * Otherwise defer sending the hotplug event.
1451      */
1452     if (!spapr_drc_hotplugged(plugged_dev)) {
1453         spapr_drc_reset(drc);
1454     } else if (PCI_FUNC(pdev->devfn) == 0) {
1455         int i;
1456 
1457         for (i = 0; i < 8; i++) {
1458             sPAPRDRConnector *func_drc;
1459             sPAPRDRConnectorClass *func_drck;
1460             sPAPRDREntitySense state;
1461 
1462             func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1463                                                   PCI_DEVFN(slotnr, i));
1464             func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1465             state = func_drck->dr_entity_sense(func_drc);
1466 
1467             if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1468                 spapr_hotplug_req_add_by_index(func_drc);
1469             }
1470         }
1471     }
1472 
1473 out:
1474     if (local_err) {
1475         error_propagate(errp, local_err);
1476         g_free(fdt);
1477     }
1478 }
1479 
1480 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1481                                      DeviceState *plugged_dev, Error **errp)
1482 {
1483     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1484     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1485     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1486 
1487     if (!phb->dr_enabled) {
1488         error_setg(errp, QERR_BUS_NO_HOTPLUG,
1489                    object_get_typename(OBJECT(phb)));
1490         return;
1491     }
1492 
1493     g_assert(drc);
1494     g_assert(drc->dev == plugged_dev);
1495 
1496     if (!spapr_drc_unplug_requested(drc)) {
1497         PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1498         uint32_t slotnr = PCI_SLOT(pdev->devfn);
1499         sPAPRDRConnector *func_drc;
1500         sPAPRDRConnectorClass *func_drck;
1501         sPAPRDREntitySense state;
1502         int i;
1503 
1504         /* ensure any other present functions are pending unplug */
1505         if (PCI_FUNC(pdev->devfn) == 0) {
1506             for (i = 1; i < 8; i++) {
1507                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1508                                                       PCI_DEVFN(slotnr, i));
1509                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1510                 state = func_drck->dr_entity_sense(func_drc);
1511                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1512                     && !spapr_drc_unplug_requested(func_drc)) {
1513                     error_setg(errp,
1514                                "PCI: slot %d, function %d still present. "
1515                                "Must unplug all non-0 functions first.",
1516                                slotnr, i);
1517                     return;
1518                 }
1519             }
1520         }
1521 
1522         spapr_drc_detach(drc);
1523 
1524         /* if this isn't func 0, defer unplug event. otherwise signal removal
1525          * for all present functions
1526          */
1527         if (PCI_FUNC(pdev->devfn) == 0) {
1528             for (i = 7; i >= 0; i--) {
1529                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1530                                                       PCI_DEVFN(slotnr, i));
1531                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1532                 state = func_drck->dr_entity_sense(func_drc);
1533                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1534                     spapr_hotplug_req_remove_by_index(func_drc);
1535                 }
1536             }
1537         }
1538     }
1539 }
1540 
1541 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1542 {
1543     /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1544      * tries to add a sPAPR PHB to a non-pseries machine.
1545      */
1546     sPAPRMachineState *spapr =
1547         (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(),
1548                                                   TYPE_SPAPR_MACHINE);
1549     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1550     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1551     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1552     char *namebuf;
1553     int i;
1554     PCIBus *bus;
1555     uint64_t msi_window_size = 4096;
1556     sPAPRTCETable *tcet;
1557     const unsigned windows_supported =
1558         sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1559 
1560     if (!spapr) {
1561         error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1562         return;
1563     }
1564 
1565     if (sphb->index != (uint32_t)-1) {
1566         sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1567         Error *local_err = NULL;
1568 
1569         smc->phb_placement(spapr, sphb->index,
1570                            &sphb->buid, &sphb->io_win_addr,
1571                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
1572                            windows_supported, sphb->dma_liobn, &local_err);
1573         if (local_err) {
1574             error_propagate(errp, local_err);
1575             return;
1576         }
1577     } else {
1578         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
1579         return;
1580     }
1581 
1582     if (sphb->mem64_win_size != 0) {
1583         if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1584             error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1585                        " (max 2 GiB)", sphb->mem_win_size);
1586             return;
1587         }
1588 
1589         /* 64-bit window defaults to identity mapping */
1590         sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1591     } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1592         /*
1593          * For compatibility with old configuration, if no 64-bit MMIO
1594          * window is specified, but the ordinary (32-bit) memory
1595          * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1596          * window, with a 64-bit MMIO window following on immediately
1597          * afterwards
1598          */
1599         sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1600         sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1601         sphb->mem64_win_pciaddr =
1602             SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1603         sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1604     }
1605 
1606     if (spapr_pci_find_phb(spapr, sphb->buid)) {
1607         error_setg(errp, "PCI host bridges must have unique BUIDs");
1608         return;
1609     }
1610 
1611     if (sphb->numa_node != -1 &&
1612         (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1613         error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1614         return;
1615     }
1616 
1617     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1618 
1619     /* Initialize memory regions */
1620     namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1621     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1622     g_free(namebuf);
1623 
1624     namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1625     memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1626                              namebuf, &sphb->memspace,
1627                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1628     g_free(namebuf);
1629     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1630                                 &sphb->mem32window);
1631 
1632     if (sphb->mem64_win_size != 0) {
1633         namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1634         memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1635                                  namebuf, &sphb->memspace,
1636                                  sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1637         g_free(namebuf);
1638 
1639         memory_region_add_subregion(get_system_memory(),
1640                                     sphb->mem64_win_addr,
1641                                     &sphb->mem64window);
1642     }
1643 
1644     /* Initialize IO regions */
1645     namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1646     memory_region_init(&sphb->iospace, OBJECT(sphb),
1647                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
1648     g_free(namebuf);
1649 
1650     namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1651     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1652                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1653     g_free(namebuf);
1654     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1655                                 &sphb->iowindow);
1656 
1657     bus = pci_register_root_bus(dev, NULL,
1658                                 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1659                                 &sphb->memspace, &sphb->iospace,
1660                                 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1661     phb->bus = bus;
1662     qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1663 
1664     /*
1665      * Initialize PHB address space.
1666      * By default there will be at least one subregion for default
1667      * 32bit DMA window.
1668      * Later the guest might want to create another DMA window
1669      * which will become another memory subregion.
1670      */
1671     namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1672     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1673                        namebuf, UINT64_MAX);
1674     g_free(namebuf);
1675     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1676                        sphb->dtbusname);
1677 
1678     /*
1679      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1680      * we need to allocate some memory to catch those writes coming
1681      * from msi_notify()/msix_notify().
1682      * As MSIMessage:addr is going to be the same and MSIMessage:data
1683      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1684      * be used.
1685      *
1686      * For KVM we want to ensure that this memory is a full page so that
1687      * our memory slot is of page size granularity.
1688      */
1689 #ifdef CONFIG_KVM
1690     if (kvm_enabled()) {
1691         msi_window_size = getpagesize();
1692     }
1693 #endif
1694 
1695     memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1696                           "msi", msi_window_size);
1697     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1698                                 &sphb->msiwindow);
1699 
1700     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1701 
1702     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1703 
1704     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1705 
1706     /* Initialize the LSI table */
1707     for (i = 0; i < PCI_NUM_PINS; i++) {
1708         uint32_t irq;
1709         Error *local_err = NULL;
1710 
1711         irq = spapr_irq_findone(spapr, &local_err);
1712         if (local_err) {
1713             error_propagate(errp, local_err);
1714             error_prepend(errp, "can't allocate LSIs: ");
1715             return;
1716         }
1717 
1718         spapr_irq_claim(spapr, irq, true, &local_err);
1719         if (local_err) {
1720             error_propagate(errp, local_err);
1721             error_prepend(errp, "can't allocate LSIs: ");
1722             return;
1723         }
1724 
1725         sphb->lsi_table[i].irq = irq;
1726     }
1727 
1728     /* allocate connectors for child PCI devices */
1729     if (sphb->dr_enabled) {
1730         for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1731             spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1732                                    (sphb->index << 16) | i);
1733         }
1734     }
1735 
1736     /* DMA setup */
1737     for (i = 0; i < windows_supported; ++i) {
1738         tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1739         if (!tcet) {
1740             error_setg(errp, "Creating window#%d failed for %s",
1741                        i, sphb->dtbusname);
1742             return;
1743         }
1744         memory_region_add_subregion(&sphb->iommu_root, 0,
1745                                     spapr_tce_get_iommu(tcet));
1746     }
1747 
1748     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1749 }
1750 
1751 static int spapr_phb_children_reset(Object *child, void *opaque)
1752 {
1753     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1754 
1755     if (dev) {
1756         device_reset(dev);
1757     }
1758 
1759     return 0;
1760 }
1761 
1762 void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1763 {
1764     int i;
1765     sPAPRTCETable *tcet;
1766 
1767     for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1768         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1769 
1770         if (tcet && tcet->nb_table) {
1771             spapr_tce_table_disable(tcet);
1772         }
1773     }
1774 
1775     /* Register default 32bit DMA window */
1776     tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1777     spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1778                            sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1779 }
1780 
1781 static void spapr_phb_reset(DeviceState *qdev)
1782 {
1783     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1784 
1785     spapr_phb_dma_reset(sphb);
1786 
1787     /* Reset the IOMMU state */
1788     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1789 
1790     if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1791         spapr_phb_vfio_reset(qdev);
1792     }
1793 }
1794 
1795 static Property spapr_phb_properties[] = {
1796     DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1797     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1798                        SPAPR_PCI_MEM32_WIN_SIZE),
1799     DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1800                        SPAPR_PCI_MEM64_WIN_SIZE),
1801     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1802                        SPAPR_PCI_IO_WIN_SIZE),
1803     DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1804                      true),
1805     /* Default DMA window is 0..1GB */
1806     DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1807     DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1808     DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1809                        0x800000000000000ULL),
1810     DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1811     DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1812                        (1ULL << 12) | (1ULL << 16)),
1813     DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1814     DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1815                      pre_2_8_migration, false),
1816     DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
1817                      pcie_ecs, true),
1818     DEFINE_PROP_END_OF_LIST(),
1819 };
1820 
1821 static const VMStateDescription vmstate_spapr_pci_lsi = {
1822     .name = "spapr_pci/lsi",
1823     .version_id = 1,
1824     .minimum_version_id = 1,
1825     .fields = (VMStateField[]) {
1826         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1827 
1828         VMSTATE_END_OF_LIST()
1829     },
1830 };
1831 
1832 static const VMStateDescription vmstate_spapr_pci_msi = {
1833     .name = "spapr_pci/msi",
1834     .version_id = 1,
1835     .minimum_version_id = 1,
1836     .fields = (VMStateField []) {
1837         VMSTATE_UINT32(key, spapr_pci_msi_mig),
1838         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1839         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1840         VMSTATE_END_OF_LIST()
1841     },
1842 };
1843 
1844 static int spapr_pci_pre_save(void *opaque)
1845 {
1846     sPAPRPHBState *sphb = opaque;
1847     GHashTableIter iter;
1848     gpointer key, value;
1849     int i;
1850 
1851     if (sphb->pre_2_8_migration) {
1852         sphb->mig_liobn = sphb->dma_liobn[0];
1853         sphb->mig_mem_win_addr = sphb->mem_win_addr;
1854         sphb->mig_mem_win_size = sphb->mem_win_size;
1855         sphb->mig_io_win_addr = sphb->io_win_addr;
1856         sphb->mig_io_win_size = sphb->io_win_size;
1857 
1858         if ((sphb->mem64_win_size != 0)
1859             && (sphb->mem64_win_addr
1860                 == (sphb->mem_win_addr + sphb->mem_win_size))) {
1861             sphb->mig_mem_win_size += sphb->mem64_win_size;
1862         }
1863     }
1864 
1865     g_free(sphb->msi_devs);
1866     sphb->msi_devs = NULL;
1867     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1868     if (!sphb->msi_devs_num) {
1869         return 0;
1870     }
1871     sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1872 
1873     g_hash_table_iter_init(&iter, sphb->msi);
1874     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1875         sphb->msi_devs[i].key = *(uint32_t *) key;
1876         sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1877     }
1878 
1879     return 0;
1880 }
1881 
1882 static int spapr_pci_post_load(void *opaque, int version_id)
1883 {
1884     sPAPRPHBState *sphb = opaque;
1885     gpointer key, value;
1886     int i;
1887 
1888     for (i = 0; i < sphb->msi_devs_num; ++i) {
1889         key = g_memdup(&sphb->msi_devs[i].key,
1890                        sizeof(sphb->msi_devs[i].key));
1891         value = g_memdup(&sphb->msi_devs[i].value,
1892                          sizeof(sphb->msi_devs[i].value));
1893         g_hash_table_insert(sphb->msi, key, value);
1894     }
1895     g_free(sphb->msi_devs);
1896     sphb->msi_devs = NULL;
1897     sphb->msi_devs_num = 0;
1898 
1899     return 0;
1900 }
1901 
1902 static bool pre_2_8_migration(void *opaque, int version_id)
1903 {
1904     sPAPRPHBState *sphb = opaque;
1905 
1906     return sphb->pre_2_8_migration;
1907 }
1908 
1909 static const VMStateDescription vmstate_spapr_pci = {
1910     .name = "spapr_pci",
1911     .version_id = 2,
1912     .minimum_version_id = 2,
1913     .pre_save = spapr_pci_pre_save,
1914     .post_load = spapr_pci_post_load,
1915     .fields = (VMStateField[]) {
1916         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
1917         VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1918         VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1919         VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1920         VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1921         VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1922         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1923                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1924         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1925         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1926                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1927         VMSTATE_END_OF_LIST()
1928     },
1929 };
1930 
1931 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1932                                            PCIBus *rootbus)
1933 {
1934     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1935 
1936     return sphb->dtbusname;
1937 }
1938 
1939 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1940 {
1941     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1942     DeviceClass *dc = DEVICE_CLASS(klass);
1943     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1944 
1945     hc->root_bus_path = spapr_phb_root_bus_path;
1946     dc->realize = spapr_phb_realize;
1947     dc->props = spapr_phb_properties;
1948     dc->reset = spapr_phb_reset;
1949     dc->vmsd = &vmstate_spapr_pci;
1950     /* Supported by TYPE_SPAPR_MACHINE */
1951     dc->user_creatable = true;
1952     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1953     hp->plug = spapr_pci_plug;
1954     hp->unplug_request = spapr_pci_unplug_request;
1955 }
1956 
1957 static const TypeInfo spapr_phb_info = {
1958     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1959     .parent        = TYPE_PCI_HOST_BRIDGE,
1960     .instance_size = sizeof(sPAPRPHBState),
1961     .class_init    = spapr_phb_class_init,
1962     .interfaces    = (InterfaceInfo[]) {
1963         { TYPE_HOTPLUG_HANDLER },
1964         { }
1965     }
1966 };
1967 
1968 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1969 {
1970     DeviceState *dev;
1971 
1972     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1973     qdev_prop_set_uint32(dev, "index", index);
1974     qdev_init_nofail(dev);
1975 
1976     return PCI_HOST_BRIDGE(dev);
1977 }
1978 
1979 typedef struct sPAPRFDT {
1980     void *fdt;
1981     int node_off;
1982     sPAPRPHBState *sphb;
1983 } sPAPRFDT;
1984 
1985 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1986                                           void *opaque)
1987 {
1988     PCIBus *sec_bus;
1989     sPAPRFDT *p = opaque;
1990     int offset;
1991     sPAPRFDT s_fdt;
1992 
1993     offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1994     if (!offset) {
1995         error_report("Failed to create pci child device tree node");
1996         return;
1997     }
1998 
1999     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2000          PCI_HEADER_TYPE_BRIDGE)) {
2001         return;
2002     }
2003 
2004     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2005     if (!sec_bus) {
2006         return;
2007     }
2008 
2009     s_fdt.fdt = p->fdt;
2010     s_fdt.node_off = offset;
2011     s_fdt.sphb = p->sphb;
2012     pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
2013                                 spapr_populate_pci_devices_dt,
2014                                 &s_fdt);
2015 }
2016 
2017 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2018                                            void *opaque)
2019 {
2020     unsigned int *bus_no = opaque;
2021     unsigned int primary = *bus_no;
2022     unsigned int subordinate = 0xff;
2023     PCIBus *sec_bus = NULL;
2024 
2025     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2026          PCI_HEADER_TYPE_BRIDGE)) {
2027         return;
2028     }
2029 
2030     (*bus_no)++;
2031     pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
2032     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2033     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2034 
2035     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2036     if (!sec_bus) {
2037         return;
2038     }
2039 
2040     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
2041     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2042                         spapr_phb_pci_enumerate_bridge, bus_no);
2043     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2044 }
2045 
2046 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
2047 {
2048     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2049     unsigned int bus_no = 0;
2050 
2051     pci_for_each_device(bus, pci_bus_num(bus),
2052                         spapr_phb_pci_enumerate_bridge,
2053                         &bus_no);
2054 
2055 }
2056 
2057 int spapr_populate_pci_dt(sPAPRPHBState *phb,
2058                           uint32_t xics_phandle,
2059                           void *fdt)
2060 {
2061     int bus_off, i, j, ret;
2062     gchar *nodename;
2063     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2064     struct {
2065         uint32_t hi;
2066         uint64_t child;
2067         uint64_t parent;
2068         uint64_t size;
2069     } QEMU_PACKED ranges[] = {
2070         {
2071             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2072             cpu_to_be64(phb->io_win_addr),
2073             cpu_to_be64(memory_region_size(&phb->iospace)),
2074         },
2075         {
2076             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2077             cpu_to_be64(phb->mem_win_addr),
2078             cpu_to_be64(phb->mem_win_size),
2079         },
2080         {
2081             cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2082             cpu_to_be64(phb->mem64_win_addr),
2083             cpu_to_be64(phb->mem64_win_size),
2084         },
2085     };
2086     const unsigned sizeof_ranges =
2087         (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2088     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2089     uint32_t interrupt_map_mask[] = {
2090         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2091     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2092     uint32_t ddw_applicable[] = {
2093         cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2094         cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2095         cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2096     };
2097     uint32_t ddw_extensions[] = {
2098         cpu_to_be32(1),
2099         cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2100     };
2101     uint32_t associativity[] = {cpu_to_be32(0x4),
2102                                 cpu_to_be32(0x0),
2103                                 cpu_to_be32(0x0),
2104                                 cpu_to_be32(0x0),
2105                                 cpu_to_be32(phb->numa_node)};
2106     sPAPRTCETable *tcet;
2107     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2108     sPAPRFDT s_fdt;
2109 
2110     /* Start populating the FDT */
2111     nodename = g_strdup_printf("pci@%" PRIx64, phb->buid);
2112     _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename));
2113     g_free(nodename);
2114 
2115     /* Write PHB properties */
2116     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2117     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2118     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2119     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2120     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2121     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2122     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2123     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2124     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2125     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2126     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
2127 
2128     /* Dynamic DMA window */
2129     if (phb->ddw_enabled) {
2130         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2131                          sizeof(ddw_applicable)));
2132         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2133                          &ddw_extensions, sizeof(ddw_extensions)));
2134     }
2135 
2136     /* Advertise NUMA via ibm,associativity */
2137     if (phb->numa_node != -1) {
2138         _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2139                          sizeof(associativity)));
2140     }
2141 
2142     /* Build the interrupt-map, this must matches what is done
2143      * in pci_spapr_map_irq
2144      */
2145     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2146                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
2147     for (i = 0; i < PCI_SLOT_MAX; i++) {
2148         for (j = 0; j < PCI_NUM_PINS; j++) {
2149             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2150             int lsi_num = pci_spapr_swizzle(i, j);
2151 
2152             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2153             irqmap[1] = 0;
2154             irqmap[2] = 0;
2155             irqmap[3] = cpu_to_be32(j+1);
2156             irqmap[4] = cpu_to_be32(xics_phandle);
2157             spapr_dt_xics_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2158         }
2159     }
2160     /* Write interrupt map */
2161     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2162                      sizeof(interrupt_map)));
2163 
2164     tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2165     if (!tcet) {
2166         return -1;
2167     }
2168     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2169                  tcet->liobn, tcet->bus_offset,
2170                  tcet->nb_table << tcet->page_shift);
2171 
2172     /* Walk the bridges and program the bus numbers*/
2173     spapr_phb_pci_enumerate(phb);
2174     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2175 
2176     /* Populate tree nodes with PCI devices attached */
2177     s_fdt.fdt = fdt;
2178     s_fdt.node_off = bus_off;
2179     s_fdt.sphb = phb;
2180     pci_for_each_device_reverse(bus, pci_bus_num(bus),
2181                                 spapr_populate_pci_devices_dt,
2182                                 &s_fdt);
2183 
2184     ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2185                                 SPAPR_DR_CONNECTOR_TYPE_PCI);
2186     if (ret) {
2187         return ret;
2188     }
2189 
2190     return 0;
2191 }
2192 
2193 void spapr_pci_rtas_init(void)
2194 {
2195     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2196                         rtas_read_pci_config);
2197     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2198                         rtas_write_pci_config);
2199     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2200                         rtas_ibm_read_pci_config);
2201     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2202                         rtas_ibm_write_pci_config);
2203     if (msi_nonbroken) {
2204         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2205                             "ibm,query-interrupt-source-number",
2206                             rtas_ibm_query_interrupt_source_number);
2207         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2208                             rtas_ibm_change_msi);
2209     }
2210 
2211     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2212                         "ibm,set-eeh-option",
2213                         rtas_ibm_set_eeh_option);
2214     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2215                         "ibm,get-config-addr-info2",
2216                         rtas_ibm_get_config_addr_info2);
2217     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2218                         "ibm,read-slot-reset-state2",
2219                         rtas_ibm_read_slot_reset_state2);
2220     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2221                         "ibm,set-slot-reset",
2222                         rtas_ibm_set_slot_reset);
2223     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2224                         "ibm,configure-pe",
2225                         rtas_ibm_configure_pe);
2226     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2227                         "ibm,slot-error-detail",
2228                         rtas_ibm_slot_error_detail);
2229 }
2230 
2231 static void spapr_pci_register_types(void)
2232 {
2233     type_register_static(&spapr_phb_info);
2234 }
2235 
2236 type_init(spapr_pci_register_types)
2237 
2238 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2239 {
2240     bool be = *(bool *)opaque;
2241 
2242     if (object_dynamic_cast(OBJECT(dev), "VGA")
2243         || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2244         object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2245                                  &error_abort);
2246     }
2247     return 0;
2248 }
2249 
2250 void spapr_pci_switch_vga(bool big_endian)
2251 {
2252     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2253     sPAPRPHBState *sphb;
2254 
2255     /*
2256      * For backward compatibility with existing guests, we switch
2257      * the endianness of the VGA controller when changing the guest
2258      * interrupt mode
2259      */
2260     QLIST_FOREACH(sphb, &spapr->phbs, list) {
2261         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2262         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2263                            &big_endian);
2264     }
2265 }
2266