1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qapi/error.h" 28 #include "hw/irq.h" 29 #include "hw/sysbus.h" 30 #include "migration/vmstate.h" 31 #include "hw/pci/pci.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci_host.h" 35 #include "hw/ppc/spapr.h" 36 #include "hw/pci-host/spapr.h" 37 #include "exec/ram_addr.h" 38 #include <libfdt.h> 39 #include "trace.h" 40 #include "qemu/error-report.h" 41 #include "qemu/module.h" 42 #include "qapi/qmp/qerror.h" 43 #include "hw/ppc/fdt.h" 44 #include "hw/pci/pci_bridge.h" 45 #include "hw/pci/pci_bus.h" 46 #include "hw/pci/pci_ids.h" 47 #include "hw/ppc/spapr_drc.h" 48 #include "hw/qdev-properties.h" 49 #include "sysemu/device_tree.h" 50 #include "sysemu/kvm.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/numa.h" 53 #include "hw/ppc/spapr_numa.h" 54 #include "qemu/log.h" 55 56 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 57 #define RTAS_QUERY_FN 0 58 #define RTAS_CHANGE_FN 1 59 #define RTAS_RESET_FN 2 60 #define RTAS_CHANGE_MSI_FN 3 61 #define RTAS_CHANGE_MSIX_FN 4 62 63 /* Interrupt types to return on RTAS_CHANGE_* */ 64 #define RTAS_TYPE_MSI 1 65 #define RTAS_TYPE_MSIX 2 66 67 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid) 68 { 69 SpaprPhbState *sphb; 70 71 QLIST_FOREACH(sphb, &spapr->phbs, list) { 72 if (sphb->buid != buid) { 73 continue; 74 } 75 return sphb; 76 } 77 78 return NULL; 79 } 80 81 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid, 82 uint32_t config_addr) 83 { 84 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid); 85 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 86 int bus_num = (config_addr >> 16) & 0xFF; 87 int devfn = (config_addr >> 8) & 0xFF; 88 89 if (!phb) { 90 return NULL; 91 } 92 93 return pci_find_device(phb->bus, bus_num, devfn); 94 } 95 96 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 97 { 98 /* This handles the encoding of extended config space addresses */ 99 return ((arg >> 20) & 0xf00) | (arg & 0xff); 100 } 101 102 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid, 103 uint32_t addr, uint32_t size, 104 target_ulong rets) 105 { 106 PCIDevice *pci_dev; 107 uint32_t val; 108 109 if ((size != 1) && (size != 2) && (size != 4)) { 110 /* access must be 1, 2 or 4 bytes */ 111 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 112 return; 113 } 114 115 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 116 addr = rtas_pci_cfgaddr(addr); 117 118 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 119 /* Access must be to a valid device, within bounds and 120 * naturally aligned */ 121 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 122 return; 123 } 124 125 val = pci_host_config_read_common(pci_dev, addr, 126 pci_config_size(pci_dev), size); 127 128 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 129 rtas_st(rets, 1, val); 130 } 131 132 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 133 uint32_t token, uint32_t nargs, 134 target_ulong args, 135 uint32_t nret, target_ulong rets) 136 { 137 uint64_t buid; 138 uint32_t size, addr; 139 140 if ((nargs != 4) || (nret != 2)) { 141 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 142 return; 143 } 144 145 buid = rtas_ldq(args, 1); 146 size = rtas_ld(args, 3); 147 addr = rtas_ld(args, 0); 148 149 finish_read_pci_config(spapr, buid, addr, size, rets); 150 } 151 152 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 153 uint32_t token, uint32_t nargs, 154 target_ulong args, 155 uint32_t nret, target_ulong rets) 156 { 157 uint32_t size, addr; 158 159 if ((nargs != 2) || (nret != 2)) { 160 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 161 return; 162 } 163 164 size = rtas_ld(args, 1); 165 addr = rtas_ld(args, 0); 166 167 finish_read_pci_config(spapr, 0, addr, size, rets); 168 } 169 170 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid, 171 uint32_t addr, uint32_t size, 172 uint32_t val, target_ulong rets) 173 { 174 PCIDevice *pci_dev; 175 176 if ((size != 1) && (size != 2) && (size != 4)) { 177 /* access must be 1, 2 or 4 bytes */ 178 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 179 return; 180 } 181 182 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 183 addr = rtas_pci_cfgaddr(addr); 184 185 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 186 /* Access must be to a valid device, within bounds and 187 * naturally aligned */ 188 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 189 return; 190 } 191 192 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 193 val, size); 194 195 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 196 } 197 198 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 199 uint32_t token, uint32_t nargs, 200 target_ulong args, 201 uint32_t nret, target_ulong rets) 202 { 203 uint64_t buid; 204 uint32_t val, size, addr; 205 206 if ((nargs != 5) || (nret != 1)) { 207 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 208 return; 209 } 210 211 buid = rtas_ldq(args, 1); 212 val = rtas_ld(args, 4); 213 size = rtas_ld(args, 3); 214 addr = rtas_ld(args, 0); 215 216 finish_write_pci_config(spapr, buid, addr, size, val, rets); 217 } 218 219 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 220 uint32_t token, uint32_t nargs, 221 target_ulong args, 222 uint32_t nret, target_ulong rets) 223 { 224 uint32_t val, size, addr; 225 226 if ((nargs != 3) || (nret != 1)) { 227 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 228 return; 229 } 230 231 232 val = rtas_ld(args, 2); 233 size = rtas_ld(args, 1); 234 addr = rtas_ld(args, 0); 235 236 finish_write_pci_config(spapr, 0, addr, size, val, rets); 237 } 238 239 /* 240 * Set MSI/MSIX message data. 241 * This is required for msi_notify()/msix_notify() which 242 * will write at the addresses via spapr_msi_write(). 243 * 244 * If hwaddr == 0, all entries will have .data == first_irq i.e. 245 * table will be reset. 246 */ 247 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 248 unsigned first_irq, unsigned req_num) 249 { 250 unsigned i; 251 MSIMessage msg = { .address = addr, .data = first_irq }; 252 253 if (!msix) { 254 msi_set_message(pdev, msg); 255 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 256 return; 257 } 258 259 for (i = 0; i < req_num; ++i) { 260 msix_set_message(pdev, i, msg); 261 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 262 if (addr) { 263 ++msg.data; 264 } 265 } 266 } 267 268 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr, 269 uint32_t token, uint32_t nargs, 270 target_ulong args, uint32_t nret, 271 target_ulong rets) 272 { 273 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 274 uint32_t config_addr = rtas_ld(args, 0); 275 uint64_t buid = rtas_ldq(args, 1); 276 unsigned int func = rtas_ld(args, 3); 277 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 278 unsigned int seq_num = rtas_ld(args, 5); 279 unsigned int ret_intr_type; 280 unsigned int irq, max_irqs = 0; 281 SpaprPhbState *phb = NULL; 282 PCIDevice *pdev = NULL; 283 SpaprPciMsi *msi; 284 int *config_addr_key; 285 Error *err = NULL; 286 int i; 287 288 /* Fins SpaprPhbState */ 289 phb = spapr_pci_find_phb(spapr, buid); 290 if (phb) { 291 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 292 } 293 if (!phb || !pdev) { 294 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 295 return; 296 } 297 298 switch (func) { 299 case RTAS_CHANGE_FN: 300 if (msi_present(pdev)) { 301 ret_intr_type = RTAS_TYPE_MSI; 302 } else if (msix_present(pdev)) { 303 ret_intr_type = RTAS_TYPE_MSIX; 304 } else { 305 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 306 return; 307 } 308 break; 309 case RTAS_CHANGE_MSI_FN: 310 if (msi_present(pdev)) { 311 ret_intr_type = RTAS_TYPE_MSI; 312 } else { 313 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 314 return; 315 } 316 break; 317 case RTAS_CHANGE_MSIX_FN: 318 if (msix_present(pdev)) { 319 ret_intr_type = RTAS_TYPE_MSIX; 320 } else { 321 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 322 return; 323 } 324 break; 325 default: 326 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 327 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 328 return; 329 } 330 331 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr); 332 333 /* Releasing MSIs */ 334 if (!req_num) { 335 if (!msi) { 336 trace_spapr_pci_msi("Releasing wrong config", config_addr); 337 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 338 return; 339 } 340 341 if (msi_present(pdev)) { 342 spapr_msi_setmsg(pdev, 0, false, 0, 0); 343 } 344 if (msix_present(pdev)) { 345 spapr_msi_setmsg(pdev, 0, true, 0, 0); 346 } 347 g_hash_table_remove(phb->msi, &config_addr); 348 349 trace_spapr_pci_msi("Released MSIs", config_addr); 350 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 351 rtas_st(rets, 1, 0); 352 return; 353 } 354 355 /* Enabling MSI */ 356 357 /* Check if the device supports as many IRQs as requested */ 358 if (ret_intr_type == RTAS_TYPE_MSI) { 359 max_irqs = msi_nr_vectors_allocated(pdev); 360 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 361 max_irqs = pdev->msix_entries_nr; 362 } 363 if (!max_irqs) { 364 error_report("Requested interrupt type %d is not enabled for device %x", 365 ret_intr_type, config_addr); 366 rtas_st(rets, 0, -1); /* Hardware error */ 367 return; 368 } 369 /* Correct the number if the guest asked for too many */ 370 if (req_num > max_irqs) { 371 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 372 req_num = max_irqs; 373 irq = 0; /* to avoid misleading trace */ 374 goto out; 375 } 376 377 /* Allocate MSIs */ 378 if (smc->legacy_irq_allocation) { 379 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI, 380 &err); 381 } else { 382 irq = spapr_irq_msi_alloc(spapr, req_num, 383 ret_intr_type == RTAS_TYPE_MSI, &err); 384 } 385 if (err) { 386 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 387 config_addr); 388 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 389 return; 390 } 391 392 for (i = 0; i < req_num; i++) { 393 spapr_irq_claim(spapr, irq + i, false, &err); 394 if (err) { 395 if (i) { 396 spapr_irq_free(spapr, irq, i); 397 } 398 if (!smc->legacy_irq_allocation) { 399 spapr_irq_msi_free(spapr, irq, req_num); 400 } 401 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 402 config_addr); 403 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 404 return; 405 } 406 } 407 408 /* Release previous MSIs */ 409 if (msi) { 410 g_hash_table_remove(phb->msi, &config_addr); 411 } 412 413 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 414 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 415 irq, req_num); 416 417 /* Add MSI device to cache */ 418 msi = g_new(SpaprPciMsi, 1); 419 msi->first_irq = irq; 420 msi->num = req_num; 421 config_addr_key = g_new(int, 1); 422 *config_addr_key = config_addr; 423 g_hash_table_insert(phb->msi, config_addr_key, msi); 424 425 out: 426 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 427 rtas_st(rets, 1, req_num); 428 rtas_st(rets, 2, ++seq_num); 429 if (nret > 3) { 430 rtas_st(rets, 3, ret_intr_type); 431 } 432 433 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 434 } 435 436 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 437 SpaprMachineState *spapr, 438 uint32_t token, 439 uint32_t nargs, 440 target_ulong args, 441 uint32_t nret, 442 target_ulong rets) 443 { 444 uint32_t config_addr = rtas_ld(args, 0); 445 uint64_t buid = rtas_ldq(args, 1); 446 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 447 SpaprPhbState *phb = NULL; 448 PCIDevice *pdev = NULL; 449 SpaprPciMsi *msi; 450 451 /* Find SpaprPhbState */ 452 phb = spapr_pci_find_phb(spapr, buid); 453 if (phb) { 454 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 455 } 456 if (!phb || !pdev) { 457 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 458 return; 459 } 460 461 /* Find device descriptor and start IRQ */ 462 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr); 463 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 464 trace_spapr_pci_msi("Failed to return vector", config_addr); 465 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 466 return; 467 } 468 intr_src_num = msi->first_irq + ioa_intr_num; 469 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 470 intr_src_num); 471 472 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 473 rtas_st(rets, 1, intr_src_num); 474 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 475 } 476 477 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 478 SpaprMachineState *spapr, 479 uint32_t token, uint32_t nargs, 480 target_ulong args, uint32_t nret, 481 target_ulong rets) 482 { 483 SpaprPhbState *sphb; 484 uint32_t addr, option; 485 uint64_t buid; 486 int ret; 487 488 if ((nargs != 4) || (nret != 1)) { 489 goto param_error_exit; 490 } 491 492 buid = rtas_ldq(args, 1); 493 addr = rtas_ld(args, 0); 494 option = rtas_ld(args, 3); 495 496 sphb = spapr_pci_find_phb(spapr, buid); 497 if (!sphb) { 498 goto param_error_exit; 499 } 500 501 if (!spapr_phb_eeh_available(sphb)) { 502 goto param_error_exit; 503 } 504 505 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 506 rtas_st(rets, 0, ret); 507 return; 508 509 param_error_exit: 510 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 511 } 512 513 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 514 SpaprMachineState *spapr, 515 uint32_t token, uint32_t nargs, 516 target_ulong args, uint32_t nret, 517 target_ulong rets) 518 { 519 SpaprPhbState *sphb; 520 PCIDevice *pdev; 521 uint32_t addr, option; 522 uint64_t buid; 523 524 if ((nargs != 4) || (nret != 2)) { 525 goto param_error_exit; 526 } 527 528 buid = rtas_ldq(args, 1); 529 sphb = spapr_pci_find_phb(spapr, buid); 530 if (!sphb) { 531 goto param_error_exit; 532 } 533 534 if (!spapr_phb_eeh_available(sphb)) { 535 goto param_error_exit; 536 } 537 538 /* 539 * We always have PE address of form "00BB0001". "BB" 540 * represents the bus number of PE's primary bus. 541 */ 542 option = rtas_ld(args, 3); 543 switch (option) { 544 case RTAS_GET_PE_ADDR: 545 addr = rtas_ld(args, 0); 546 pdev = spapr_pci_find_dev(spapr, buid, addr); 547 if (!pdev) { 548 goto param_error_exit; 549 } 550 551 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1); 552 break; 553 case RTAS_GET_PE_MODE: 554 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 555 break; 556 default: 557 goto param_error_exit; 558 } 559 560 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 561 return; 562 563 param_error_exit: 564 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 565 } 566 567 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 568 SpaprMachineState *spapr, 569 uint32_t token, uint32_t nargs, 570 target_ulong args, uint32_t nret, 571 target_ulong rets) 572 { 573 SpaprPhbState *sphb; 574 uint64_t buid; 575 int state, ret; 576 577 if ((nargs != 3) || (nret != 4 && nret != 5)) { 578 goto param_error_exit; 579 } 580 581 buid = rtas_ldq(args, 1); 582 sphb = spapr_pci_find_phb(spapr, buid); 583 if (!sphb) { 584 goto param_error_exit; 585 } 586 587 if (!spapr_phb_eeh_available(sphb)) { 588 goto param_error_exit; 589 } 590 591 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 592 rtas_st(rets, 0, ret); 593 if (ret != RTAS_OUT_SUCCESS) { 594 return; 595 } 596 597 rtas_st(rets, 1, state); 598 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 599 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 600 if (nret >= 5) { 601 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 602 } 603 return; 604 605 param_error_exit: 606 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 607 } 608 609 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 610 SpaprMachineState *spapr, 611 uint32_t token, uint32_t nargs, 612 target_ulong args, uint32_t nret, 613 target_ulong rets) 614 { 615 SpaprPhbState *sphb; 616 uint32_t option; 617 uint64_t buid; 618 int ret; 619 620 if ((nargs != 4) || (nret != 1)) { 621 goto param_error_exit; 622 } 623 624 buid = rtas_ldq(args, 1); 625 option = rtas_ld(args, 3); 626 sphb = spapr_pci_find_phb(spapr, buid); 627 if (!sphb) { 628 goto param_error_exit; 629 } 630 631 if (!spapr_phb_eeh_available(sphb)) { 632 goto param_error_exit; 633 } 634 635 ret = spapr_phb_vfio_eeh_reset(sphb, option); 636 rtas_st(rets, 0, ret); 637 return; 638 639 param_error_exit: 640 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 641 } 642 643 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 644 SpaprMachineState *spapr, 645 uint32_t token, uint32_t nargs, 646 target_ulong args, uint32_t nret, 647 target_ulong rets) 648 { 649 SpaprPhbState *sphb; 650 uint64_t buid; 651 int ret; 652 653 if ((nargs != 3) || (nret != 1)) { 654 goto param_error_exit; 655 } 656 657 buid = rtas_ldq(args, 1); 658 sphb = spapr_pci_find_phb(spapr, buid); 659 if (!sphb) { 660 goto param_error_exit; 661 } 662 663 if (!spapr_phb_eeh_available(sphb)) { 664 goto param_error_exit; 665 } 666 667 ret = spapr_phb_vfio_eeh_configure(sphb); 668 rtas_st(rets, 0, ret); 669 return; 670 671 param_error_exit: 672 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 673 } 674 675 /* To support it later */ 676 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 677 SpaprMachineState *spapr, 678 uint32_t token, uint32_t nargs, 679 target_ulong args, uint32_t nret, 680 target_ulong rets) 681 { 682 SpaprPhbState *sphb; 683 int option; 684 uint64_t buid; 685 686 if ((nargs != 8) || (nret != 1)) { 687 goto param_error_exit; 688 } 689 690 buid = rtas_ldq(args, 1); 691 sphb = spapr_pci_find_phb(spapr, buid); 692 if (!sphb) { 693 goto param_error_exit; 694 } 695 696 if (!spapr_phb_eeh_available(sphb)) { 697 goto param_error_exit; 698 } 699 700 option = rtas_ld(args, 7); 701 switch (option) { 702 case RTAS_SLOT_TEMP_ERR_LOG: 703 case RTAS_SLOT_PERM_ERR_LOG: 704 break; 705 default: 706 goto param_error_exit; 707 } 708 709 /* We don't have error log yet */ 710 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 711 return; 712 713 param_error_exit: 714 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 715 } 716 717 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 718 { 719 /* 720 * Here we use the number returned by pci_swizzle_map_irq_fn to find a 721 * corresponding qemu_irq. 722 */ 723 SpaprPhbState *phb = opaque; 724 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 725 726 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 727 qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level); 728 } 729 730 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 731 { 732 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 733 PCIINTxRoute route; 734 735 route.mode = PCI_INTX_ENABLED; 736 route.irq = sphb->lsi_table[pin].irq; 737 738 return route; 739 } 740 741 static uint64_t spapr_msi_read(void *opaque, hwaddr addr, unsigned size) 742 { 743 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__); 744 return 0; 745 } 746 747 /* 748 * MSI/MSIX memory region implementation. 749 * The handler handles both MSI and MSIX. 750 * The vector number is encoded in least bits in data. 751 */ 752 static void spapr_msi_write(void *opaque, hwaddr addr, 753 uint64_t data, unsigned size) 754 { 755 SpaprMachineState *spapr = opaque; 756 uint32_t irq = data; 757 758 trace_spapr_pci_msi_write(addr, data, irq); 759 760 qemu_irq_pulse(spapr_qirq(spapr, irq)); 761 } 762 763 static const MemoryRegionOps spapr_msi_ops = { 764 /* 765 * .read result is undefined by PCI spec. 766 * define .read method to avoid assert failure in memory_region_init_io 767 */ 768 .read = spapr_msi_read, 769 .write = spapr_msi_write, 770 .endianness = DEVICE_LITTLE_ENDIAN 771 }; 772 773 /* 774 * PHB PCI device 775 */ 776 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 777 { 778 SpaprPhbState *phb = opaque; 779 780 return &phb->iommu_as; 781 } 782 783 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 784 { 785 g_autofree char *path = NULL; 786 g_autofree char *host = NULL; 787 g_autofree char *devspec = NULL; 788 char *buf = NULL; 789 790 /* Get the PCI VFIO host id */ 791 host = object_property_get_str(OBJECT(pdev), "host", NULL); 792 if (!host) { 793 return NULL; 794 } 795 796 /* Construct the path of the file that will give us the DT location */ 797 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 798 if (!g_file_get_contents(path, &devspec, NULL, NULL)) { 799 return NULL; 800 } 801 802 /* Construct and read from host device tree the loc-code */ 803 g_free(path); 804 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", devspec); 805 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 806 return NULL; 807 } 808 return buf; 809 } 810 811 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 812 { 813 char *buf; 814 const char *devtype = "qemu"; 815 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 816 817 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 818 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 819 if (buf) { 820 return buf; 821 } 822 devtype = "vfio"; 823 } 824 /* 825 * For emulated devices and VFIO-failure case, make up 826 * the loc-code. 827 */ 828 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 829 devtype, pdev->name, sphb->index, busnr, 830 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 831 return buf; 832 } 833 834 /* Macros to operate with address in OF binding to PCI */ 835 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 836 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 837 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 838 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 839 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 840 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 841 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 842 #define b_fff(x) b_x((x), 8, 3) /* function number */ 843 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 844 845 /* for 'reg' OF properties */ 846 #define RESOURCE_CELLS_SIZE 2 847 #define RESOURCE_CELLS_ADDRESS 3 848 849 typedef struct ResourceFields { 850 uint32_t phys_hi; 851 uint32_t phys_mid; 852 uint32_t phys_lo; 853 uint32_t size_hi; 854 uint32_t size_lo; 855 } QEMU_PACKED ResourceFields; 856 857 typedef struct ResourceProps { 858 ResourceFields reg[8]; 859 uint32_t reg_len; 860 } ResourceProps; 861 862 /* fill in the 'reg' OF properties for 863 * a PCI device. 'reg' describes resource requirements for a 864 * device's IO/MEM regions. 865 * 866 * the property is an array of ('phys-addr', 'size') pairs describing 867 * the addressable regions of the PCI device, where 'phys-addr' is a 868 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 869 * (phys.hi, phys.mid, phys.lo), and 'size' is a 870 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 871 * 872 * phys.hi = 0xYYXXXXZZ, where: 873 * 0xYY = npt000ss 874 * ||| | 875 * ||| +-- space code 876 * ||| | 877 * ||| + 00 if configuration space 878 * ||| + 01 if IO region, 879 * ||| + 10 if 32-bit MEM region 880 * ||| + 11 if 64-bit MEM region 881 * ||| 882 * ||+------ for non-relocatable IO: 1 if aliased 883 * || for relocatable IO: 1 if below 64KB 884 * || for MEM: 1 if below 1MB 885 * |+------- 1 if region is prefetchable 886 * +-------- 1 if region is non-relocatable 887 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 888 * bits respectively 889 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 890 * to the region 891 * 892 * phys.mid and phys.lo correspond respectively to the hi/lo portions 893 * of the actual address of the region. 894 * 895 * note also that addresses defined in this property are, at least 896 * for PAPR guests, relative to the PHBs IO/MEM windows, and 897 * correspond directly to the addresses in the BARs. 898 * 899 * in accordance with PCI Bus Binding to Open Firmware, 900 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 901 * Appendix C. 902 */ 903 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 904 { 905 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 906 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 907 b_ddddd(PCI_SLOT(d->devfn)) | 908 b_fff(PCI_FUNC(d->devfn))); 909 ResourceFields *reg; 910 int i, reg_idx = 0; 911 912 /* config space region */ 913 reg = &rp->reg[reg_idx++]; 914 reg->phys_hi = cpu_to_be32(dev_id); 915 reg->phys_mid = 0; 916 reg->phys_lo = 0; 917 reg->size_hi = 0; 918 reg->size_lo = 0; 919 920 for (i = 0; i < PCI_NUM_REGIONS; i++) { 921 if (!d->io_regions[i].size) { 922 continue; 923 } 924 925 reg = &rp->reg[reg_idx++]; 926 927 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 928 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 929 reg->phys_hi |= cpu_to_be32(b_ss(1)); 930 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 931 reg->phys_hi |= cpu_to_be32(b_ss(3)); 932 } else { 933 reg->phys_hi |= cpu_to_be32(b_ss(2)); 934 } 935 reg->phys_mid = 0; 936 reg->phys_lo = 0; 937 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 938 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 939 } 940 941 rp->reg_len = reg_idx * sizeof(ResourceFields); 942 } 943 944 typedef struct PCIClass PCIClass; 945 typedef struct PCISubClass PCISubClass; 946 typedef struct PCIIFace PCIIFace; 947 948 struct PCIIFace { 949 int iface; 950 const char *name; 951 }; 952 953 struct PCISubClass { 954 int subclass; 955 const char *name; 956 const PCIIFace *iface; 957 }; 958 959 struct PCIClass { 960 const char *name; 961 const PCISubClass *subc; 962 }; 963 964 static const PCISubClass undef_subclass[] = { 965 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, 966 { 0xFF, NULL, NULL }, 967 }; 968 969 static const PCISubClass mass_subclass[] = { 970 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, 971 { PCI_CLASS_STORAGE_IDE, "ide", NULL }, 972 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, 973 { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, 974 { PCI_CLASS_STORAGE_RAID, "raid", NULL }, 975 { PCI_CLASS_STORAGE_ATA, "ata", NULL }, 976 { PCI_CLASS_STORAGE_SATA, "sata", NULL }, 977 { PCI_CLASS_STORAGE_SAS, "sas", NULL }, 978 { 0xFF, NULL, NULL }, 979 }; 980 981 static const PCISubClass net_subclass[] = { 982 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, 983 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, 984 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, 985 { PCI_CLASS_NETWORK_ATM, "atm", NULL }, 986 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, 987 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, 988 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, 989 { 0xFF, NULL, NULL }, 990 }; 991 992 static const PCISubClass displ_subclass[] = { 993 { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, 994 { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, 995 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, 996 { 0xFF, NULL, NULL }, 997 }; 998 999 static const PCISubClass media_subclass[] = { 1000 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, 1001 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, 1002 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, 1003 { 0xFF, NULL, NULL }, 1004 }; 1005 1006 static const PCISubClass mem_subclass[] = { 1007 { PCI_CLASS_MEMORY_RAM, "memory", NULL }, 1008 { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, 1009 { 0xFF, NULL, NULL }, 1010 }; 1011 1012 static const PCISubClass bridg_subclass[] = { 1013 { PCI_CLASS_BRIDGE_HOST, "host", NULL }, 1014 { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, 1015 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, 1016 { PCI_CLASS_BRIDGE_MC, "mca", NULL }, 1017 { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, 1018 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, 1019 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, 1020 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, 1021 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, 1022 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, 1023 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, 1024 { 0xFF, NULL, NULL }, 1025 }; 1026 1027 static const PCISubClass comm_subclass[] = { 1028 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, 1029 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, 1030 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, 1031 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, 1032 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, 1033 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, 1034 { 0xFF, NULL, NULL, }, 1035 }; 1036 1037 static const PCIIFace pic_iface[] = { 1038 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, 1039 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, 1040 { 0xFF, NULL }, 1041 }; 1042 1043 static const PCISubClass sys_subclass[] = { 1044 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, 1045 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, 1046 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, 1047 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, 1048 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, 1049 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, 1050 { 0xFF, NULL, NULL }, 1051 }; 1052 1053 static const PCISubClass inp_subclass[] = { 1054 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, 1055 { PCI_CLASS_INPUT_PEN, "pen", NULL }, 1056 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, 1057 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, 1058 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, 1059 { 0xFF, NULL, NULL }, 1060 }; 1061 1062 static const PCISubClass dock_subclass[] = { 1063 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, 1064 { 0xFF, NULL, NULL }, 1065 }; 1066 1067 static const PCISubClass cpu_subclass[] = { 1068 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, 1069 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, 1070 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, 1071 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, 1072 { 0xFF, NULL, NULL }, 1073 }; 1074 1075 static const PCIIFace usb_iface[] = { 1076 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, 1077 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, 1078 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, 1079 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, 1080 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, 1081 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, 1082 { 0xFF, NULL }, 1083 }; 1084 1085 static const PCISubClass ser_subclass[] = { 1086 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, 1087 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, 1088 { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, 1089 { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, 1090 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, 1091 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, 1092 { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, 1093 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, 1094 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, 1095 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, 1096 { 0xFF, NULL, NULL }, 1097 }; 1098 1099 static const PCISubClass wrl_subclass[] = { 1100 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, 1101 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, 1102 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, 1103 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, 1104 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, 1105 { 0xFF, NULL, NULL }, 1106 }; 1107 1108 static const PCISubClass sat_subclass[] = { 1109 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, 1110 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, 1111 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, 1112 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, 1113 { 0xFF, NULL, NULL }, 1114 }; 1115 1116 static const PCISubClass crypt_subclass[] = { 1117 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, 1118 { PCI_CLASS_CRYPT_ENTERTAINMENT, 1119 "entertainment-encryption", NULL }, 1120 { 0xFF, NULL, NULL }, 1121 }; 1122 1123 static const PCISubClass spc_subclass[] = { 1124 { PCI_CLASS_SP_DPIO, "dpio", NULL }, 1125 { PCI_CLASS_SP_PERF, "counter", NULL }, 1126 { PCI_CLASS_SP_SYNCH, "measurement", NULL }, 1127 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, 1128 { 0xFF, NULL, NULL }, 1129 }; 1130 1131 static const PCIClass pci_classes[] = { 1132 { "legacy-device", undef_subclass }, 1133 { "mass-storage", mass_subclass }, 1134 { "network", net_subclass }, 1135 { "display", displ_subclass, }, 1136 { "multimedia-device", media_subclass }, 1137 { "memory-controller", mem_subclass }, 1138 { "unknown-bridge", bridg_subclass }, 1139 { "communication-controller", comm_subclass}, 1140 { "system-peripheral", sys_subclass }, 1141 { "input-controller", inp_subclass }, 1142 { "docking-station", dock_subclass }, 1143 { "cpu", cpu_subclass }, 1144 { "serial-bus", ser_subclass }, 1145 { "wireless-controller", wrl_subclass }, 1146 { "intelligent-io", NULL }, 1147 { "satellite-device", sat_subclass }, 1148 { "encryption", crypt_subclass }, 1149 { "data-processing-controller", spc_subclass }, 1150 }; 1151 1152 static const char *dt_name_from_class(uint8_t class, uint8_t subclass, 1153 uint8_t iface) 1154 { 1155 const PCIClass *pclass; 1156 const PCISubClass *psubclass; 1157 const PCIIFace *piface; 1158 const char *name; 1159 1160 if (class >= ARRAY_SIZE(pci_classes)) { 1161 return "pci"; 1162 } 1163 1164 pclass = pci_classes + class; 1165 name = pclass->name; 1166 1167 if (pclass->subc == NULL) { 1168 return name; 1169 } 1170 1171 psubclass = pclass->subc; 1172 while ((psubclass->subclass & 0xff) != 0xff) { 1173 if ((psubclass->subclass & 0xff) == subclass) { 1174 name = psubclass->name; 1175 break; 1176 } 1177 psubclass++; 1178 } 1179 1180 piface = psubclass->iface; 1181 if (piface == NULL) { 1182 return name; 1183 } 1184 while ((piface->iface & 0xff) != 0xff) { 1185 if ((piface->iface & 0xff) == iface) { 1186 name = piface->name; 1187 break; 1188 } 1189 piface++; 1190 } 1191 1192 return name; 1193 } 1194 1195 /* 1196 * DRC helper functions 1197 */ 1198 1199 static uint32_t drc_id_from_devfn(SpaprPhbState *phb, 1200 uint8_t chassis, int32_t devfn) 1201 { 1202 return (phb->index << 16) | (chassis << 8) | devfn; 1203 } 1204 1205 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb, 1206 uint8_t chassis, int32_t devfn) 1207 { 1208 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1209 drc_id_from_devfn(phb, chassis, devfn)); 1210 } 1211 1212 static uint8_t chassis_from_bus(PCIBus *bus) 1213 { 1214 if (pci_bus_is_root(bus)) { 1215 return 0; 1216 } else { 1217 PCIDevice *bridge = pci_bridge_get_device(bus); 1218 1219 return object_property_get_uint(OBJECT(bridge), "chassis_nr", 1220 &error_abort); 1221 } 1222 } 1223 1224 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev) 1225 { 1226 uint8_t chassis = chassis_from_bus(pci_get_bus(dev)); 1227 1228 return drc_from_devfn(phb, chassis, dev->devfn); 1229 } 1230 1231 static void add_drcs(SpaprPhbState *phb, PCIBus *bus) 1232 { 1233 Object *owner; 1234 int i; 1235 uint8_t chassis; 1236 1237 if (!phb->dr_enabled) { 1238 return; 1239 } 1240 1241 chassis = chassis_from_bus(bus); 1242 1243 if (pci_bus_is_root(bus)) { 1244 owner = OBJECT(phb); 1245 } else { 1246 owner = OBJECT(pci_bridge_get_device(bus)); 1247 } 1248 1249 for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) { 1250 spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI, 1251 drc_id_from_devfn(phb, chassis, i)); 1252 } 1253 } 1254 1255 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus) 1256 { 1257 int i; 1258 uint8_t chassis; 1259 1260 if (!phb->dr_enabled) { 1261 return; 1262 } 1263 1264 chassis = chassis_from_bus(bus); 1265 1266 for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) { 1267 SpaprDrc *drc = drc_from_devfn(phb, chassis, i); 1268 1269 if (drc) { 1270 object_unparent(OBJECT(drc)); 1271 } 1272 } 1273 } 1274 1275 typedef struct PciWalkFdt { 1276 void *fdt; 1277 int offset; 1278 SpaprPhbState *sphb; 1279 int err; 1280 } PciWalkFdt; 1281 1282 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev, 1283 void *fdt, int parent_offset); 1284 1285 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev, 1286 void *opaque) 1287 { 1288 PciWalkFdt *p = opaque; 1289 int err; 1290 1291 if (p->err) { 1292 /* Something's already broken, don't keep going */ 1293 return; 1294 } 1295 1296 err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset); 1297 if (err < 0) { 1298 p->err = err; 1299 } 1300 } 1301 1302 /* Augment PCI device node with bridge specific information */ 1303 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus, 1304 void *fdt, int offset) 1305 { 1306 Object *owner; 1307 PciWalkFdt cbinfo = { 1308 .fdt = fdt, 1309 .offset = offset, 1310 .sphb = sphb, 1311 .err = 0, 1312 }; 1313 int ret; 1314 1315 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1316 RESOURCE_CELLS_ADDRESS)); 1317 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1318 RESOURCE_CELLS_SIZE)); 1319 1320 assert(bus); 1321 pci_for_each_device_under_bus_reverse(bus, spapr_dt_pci_device_cb, &cbinfo); 1322 if (cbinfo.err) { 1323 return cbinfo.err; 1324 } 1325 1326 if (pci_bus_is_root(bus)) { 1327 owner = OBJECT(sphb); 1328 } else { 1329 owner = OBJECT(pci_bridge_get_device(bus)); 1330 } 1331 1332 ret = spapr_dt_drc(fdt, offset, owner, 1333 SPAPR_DR_CONNECTOR_TYPE_PCI); 1334 if (ret) { 1335 return ret; 1336 } 1337 1338 return offset; 1339 } 1340 1341 char *spapr_pci_fw_dev_name(PCIDevice *dev) 1342 { 1343 const gchar *basename; 1344 int slot = PCI_SLOT(dev->devfn); 1345 int func = PCI_FUNC(dev->devfn); 1346 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1347 1348 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, 1349 ccode & 0xff); 1350 1351 if (func != 0) { 1352 return g_strdup_printf("%s@%x,%x", basename, slot, func); 1353 } else { 1354 return g_strdup_printf("%s@%x", basename, slot); 1355 } 1356 } 1357 1358 /* create OF node for pci device and required OF DT properties */ 1359 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev, 1360 void *fdt, int parent_offset) 1361 { 1362 int offset; 1363 g_autofree gchar *nodename = spapr_pci_fw_dev_name(dev); 1364 ResourceProps rp; 1365 SpaprDrc *drc = drc_from_dev(sphb, dev); 1366 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2); 1367 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2); 1368 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1); 1369 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1370 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1); 1371 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2); 1372 uint32_t subsystem_vendor_id = 1373 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2); 1374 uint32_t cache_line_size = 1375 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1); 1376 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1377 gchar *loc_code; 1378 1379 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename)); 1380 1381 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 1382 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id)); 1383 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id)); 1384 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id)); 1385 1386 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); 1387 if (irq_pin) { 1388 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin)); 1389 } 1390 1391 if (subsystem_id) { 1392 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id)); 1393 } 1394 1395 if (subsystem_vendor_id) { 1396 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 1397 subsystem_vendor_id)); 1398 } 1399 1400 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size)); 1401 1402 1403 /* the following fdt cells are masked off the pci status register */ 1404 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1405 PCI_STATUS_DEVSEL_MASK & pci_status)); 1406 1407 if (pci_status & PCI_STATUS_FAST_BACK) { 1408 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1409 } 1410 if (pci_status & PCI_STATUS_66MHZ) { 1411 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1412 } 1413 if (pci_status & PCI_STATUS_UDF) { 1414 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1415 } 1416 1417 loc_code = spapr_phb_get_loc_code(sphb, dev); 1418 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code)); 1419 g_free(loc_code); 1420 1421 if (drc) { 1422 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", 1423 spapr_drc_index(drc))); 1424 } 1425 1426 if (msi_present(dev)) { 1427 uint32_t max_msi = msi_nr_vectors_allocated(dev); 1428 if (max_msi) { 1429 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1430 } 1431 } 1432 if (msix_present(dev)) { 1433 uint32_t max_msix = dev->msix_entries_nr; 1434 if (max_msix) { 1435 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1436 } 1437 } 1438 1439 populate_resource_props(dev, &rp); 1440 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1441 1442 if (sphb->pcie_ecs && pci_is_express(dev)) { 1443 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); 1444 } 1445 1446 if (!IS_PCI_BRIDGE(dev)) { 1447 /* Properties only for non-bridges */ 1448 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1); 1449 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1); 1450 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant)); 1451 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency)); 1452 return offset; 1453 } else { 1454 PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev)); 1455 1456 return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset); 1457 } 1458 } 1459 1460 /* Callback to be called during DRC release. */ 1461 void spapr_phb_remove_pci_device_cb(DeviceState *dev) 1462 { 1463 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 1464 1465 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 1466 object_unparent(OBJECT(dev)); 1467 } 1468 1469 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 1470 void *fdt, int *fdt_start_offset, Error **errp) 1471 { 1472 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev); 1473 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler); 1474 PCIDevice *pdev = PCI_DEVICE(drc->dev); 1475 1476 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0); 1477 return 0; 1478 } 1479 1480 static void spapr_pci_bridge_plug(SpaprPhbState *phb, 1481 PCIBridge *bridge) 1482 { 1483 PCIBus *bus = pci_bridge_get_sec_bus(bridge); 1484 1485 add_drcs(phb, bus); 1486 } 1487 1488 /* Returns non-zero if the value of "chassis_nr" is already in use */ 1489 static int check_chassis_nr(Object *obj, void *opaque) 1490 { 1491 int new_chassis_nr = 1492 object_property_get_uint(opaque, "chassis_nr", &error_abort); 1493 int chassis_nr = 1494 object_property_get_uint(obj, "chassis_nr", NULL); 1495 1496 if (!object_dynamic_cast(obj, TYPE_PCI_BRIDGE)) { 1497 return 0; 1498 } 1499 1500 /* Skip unsupported bridge types */ 1501 if (!chassis_nr) { 1502 return 0; 1503 } 1504 1505 /* Skip self */ 1506 if (obj == opaque) { 1507 return 0; 1508 } 1509 1510 return chassis_nr == new_chassis_nr; 1511 } 1512 1513 static bool bridge_has_valid_chassis_nr(Object *bridge, Error **errp) 1514 { 1515 int chassis_nr = 1516 object_property_get_uint(bridge, "chassis_nr", NULL); 1517 1518 /* 1519 * slotid_cap_init() already ensures that "chassis_nr" isn't null for 1520 * standard PCI bridges, so this really tells if "chassis_nr" is present 1521 * or not. 1522 */ 1523 if (!chassis_nr) { 1524 error_setg(errp, "PCI Bridge lacks a \"chassis_nr\" property"); 1525 error_append_hint(errp, "Try -device pci-bridge instead.\n"); 1526 return false; 1527 } 1528 1529 /* We want unique values for "chassis_nr" */ 1530 if (object_child_foreach_recursive(object_get_root(), check_chassis_nr, 1531 bridge)) { 1532 error_setg(errp, "Bridge chassis %d already in use", chassis_nr); 1533 return false; 1534 } 1535 1536 return true; 1537 } 1538 1539 static void spapr_pci_pre_plug(HotplugHandler *plug_handler, 1540 DeviceState *plugged_dev, Error **errp) 1541 { 1542 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1543 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1544 SpaprDrc *drc = drc_from_dev(phb, pdev); 1545 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1546 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1547 1548 if (!phb->dr_enabled) { 1549 /* if this is a hotplug operation initiated by the user 1550 * we need to let them know it's not enabled 1551 */ 1552 if (plugged_dev->hotplugged) { 1553 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1554 object_get_typename(OBJECT(phb))); 1555 return; 1556 } 1557 } 1558 1559 if (IS_PCI_BRIDGE(plugged_dev)) { 1560 if (!bridge_has_valid_chassis_nr(OBJECT(plugged_dev), errp)) { 1561 return; 1562 } 1563 } 1564 1565 /* Following the QEMU convention used for PCIe multifunction 1566 * hotplug, we do not allow functions to be hotplugged to a 1567 * slot that already has function 0 present 1568 */ 1569 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1570 PCI_FUNC(pdev->devfn) != 0) { 1571 error_setg(errp, "PCI: slot %d function 0 already occupied by %s," 1572 " additional functions can no longer be exposed to guest.", 1573 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1574 } 1575 1576 if (drc && drc->dev) { 1577 error_setg(errp, "PCI: slot %d already occupied by %s", slotnr, 1578 pci_get_function_0(PCI_DEVICE(drc->dev))->name); 1579 return; 1580 } 1581 } 1582 1583 static void spapr_pci_plug(HotplugHandler *plug_handler, 1584 DeviceState *plugged_dev, Error **errp) 1585 { 1586 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1587 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1588 SpaprDrc *drc = drc_from_dev(phb, pdev); 1589 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1590 1591 /* 1592 * If DR is disabled we don't need to do anything in the case of 1593 * hotplug or coldplug callbacks. 1594 */ 1595 if (!phb->dr_enabled) { 1596 return; 1597 } 1598 1599 g_assert(drc); 1600 1601 if (IS_PCI_BRIDGE(plugged_dev)) { 1602 spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev)); 1603 } 1604 1605 /* spapr_pci_pre_plug() already checked the DRC is attachable */ 1606 spapr_drc_attach(drc, DEVICE(pdev)); 1607 1608 /* If this is function 0, signal hotplug for all the device functions. 1609 * Otherwise defer sending the hotplug event. 1610 */ 1611 if (!spapr_drc_hotplugged(plugged_dev)) { 1612 spapr_drc_reset(drc); 1613 } else if (PCI_FUNC(pdev->devfn) == 0) { 1614 int i; 1615 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev)); 1616 1617 for (i = 0; i < 8; i++) { 1618 SpaprDrc *func_drc; 1619 SpaprDrcClass *func_drck; 1620 SpaprDREntitySense state; 1621 1622 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1623 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1624 state = func_drck->dr_entity_sense(func_drc); 1625 1626 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1627 spapr_hotplug_req_add_by_index(func_drc); 1628 } 1629 } 1630 } 1631 } 1632 1633 static void spapr_pci_bridge_unplug(SpaprPhbState *phb, 1634 PCIBridge *bridge) 1635 { 1636 PCIBus *bus = pci_bridge_get_sec_bus(bridge); 1637 1638 remove_drcs(phb, bus); 1639 } 1640 1641 static void spapr_pci_unplug(HotplugHandler *plug_handler, 1642 DeviceState *plugged_dev, Error **errp) 1643 { 1644 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1645 1646 /* some version guests do not wait for completion of a device 1647 * cleanup (generally done asynchronously by the kernel) before 1648 * signaling to QEMU that the device is safe, but instead sleep 1649 * for some 'safe' period of time. unfortunately on a busy host 1650 * this sleep isn't guaranteed to be long enough, resulting in 1651 * bad things like IRQ lines being left asserted during final 1652 * device removal. to deal with this we call reset just prior 1653 * to finalizing the device, which will put the device back into 1654 * an 'idle' state, as the device cleanup code expects. 1655 */ 1656 pci_device_reset(PCI_DEVICE(plugged_dev)); 1657 1658 if (IS_PCI_BRIDGE(plugged_dev)) { 1659 spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev)); 1660 return; 1661 } 1662 1663 qdev_unrealize(plugged_dev); 1664 } 1665 1666 static void spapr_pci_unplug_request(HotplugHandler *plug_handler, 1667 DeviceState *plugged_dev, Error **errp) 1668 { 1669 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1670 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1671 SpaprDrc *drc = drc_from_dev(phb, pdev); 1672 1673 if (!phb->dr_enabled) { 1674 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1675 object_get_typename(OBJECT(phb))); 1676 return; 1677 } 1678 1679 g_assert(drc); 1680 g_assert(drc->dev == plugged_dev); 1681 1682 if (!spapr_drc_unplug_requested(drc)) { 1683 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1684 SpaprDrc *func_drc; 1685 SpaprDrcClass *func_drck; 1686 SpaprDREntitySense state; 1687 int i; 1688 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev)); 1689 1690 if (IS_PCI_BRIDGE(plugged_dev)) { 1691 error_setg(errp, "PCI: Hot unplug of PCI bridges not supported"); 1692 return; 1693 } 1694 if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) { 1695 error_setg(errp, "PCI: Cannot unplug NVLink2 devices"); 1696 return; 1697 } 1698 1699 /* ensure any other present functions are pending unplug */ 1700 if (PCI_FUNC(pdev->devfn) == 0) { 1701 for (i = 1; i < 8; i++) { 1702 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1703 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1704 state = func_drck->dr_entity_sense(func_drc); 1705 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1706 && !spapr_drc_unplug_requested(func_drc)) { 1707 /* 1708 * Attempting to remove function 0 of a multifunction 1709 * device will will cascade into removing all child 1710 * functions, even if their unplug weren't requested 1711 * beforehand. 1712 */ 1713 spapr_drc_unplug_request(func_drc); 1714 } 1715 } 1716 } 1717 1718 spapr_drc_unplug_request(drc); 1719 1720 /* if this isn't func 0, defer unplug event. otherwise signal removal 1721 * for all present functions 1722 */ 1723 if (PCI_FUNC(pdev->devfn) == 0) { 1724 for (i = 7; i >= 0; i--) { 1725 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1726 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1727 state = func_drck->dr_entity_sense(func_drc); 1728 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1729 spapr_hotplug_req_remove_by_index(func_drc); 1730 } 1731 } 1732 } 1733 } else { 1734 error_setg(errp, 1735 "PCI device unplug already in progress for device %s", 1736 drc->dev->id); 1737 } 1738 } 1739 1740 static void spapr_phb_finalizefn(Object *obj) 1741 { 1742 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj); 1743 1744 g_free(sphb->dtbusname); 1745 sphb->dtbusname = NULL; 1746 } 1747 1748 static void spapr_phb_unrealize(DeviceState *dev) 1749 { 1750 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1751 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1752 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1753 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb); 1754 SpaprTceTable *tcet; 1755 int i; 1756 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1757 1758 if (sphb->msi) { 1759 g_hash_table_unref(sphb->msi); 1760 sphb->msi = NULL; 1761 } 1762 1763 /* 1764 * Remove IO/MMIO subregions and aliases, rest should get cleaned 1765 * via PHB's unrealize->object_finalize 1766 */ 1767 for (i = windows_supported - 1; i >= 0; i--) { 1768 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1769 if (tcet) { 1770 memory_region_del_subregion(&sphb->iommu_root, 1771 spapr_tce_get_iommu(tcet)); 1772 } 1773 } 1774 1775 remove_drcs(sphb, phb->bus); 1776 1777 for (i = PCI_NUM_PINS - 1; i >= 0; i--) { 1778 if (sphb->lsi_table[i].irq) { 1779 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1); 1780 sphb->lsi_table[i].irq = 0; 1781 } 1782 } 1783 1784 QLIST_REMOVE(sphb, list); 1785 1786 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow); 1787 1788 /* 1789 * An attached PCI device may have memory listeners, eg. VFIO PCI. We have 1790 * unmapped all sections. Remove the listeners now, before destroying the 1791 * address space. 1792 */ 1793 address_space_remove_listeners(&sphb->iommu_as); 1794 address_space_destroy(&sphb->iommu_as); 1795 1796 qbus_set_hotplug_handler(BUS(phb->bus), NULL); 1797 pci_unregister_root_bus(phb->bus); 1798 1799 memory_region_del_subregion(get_system_memory(), &sphb->iowindow); 1800 if (sphb->mem64_win_pciaddr != (hwaddr)-1) { 1801 memory_region_del_subregion(get_system_memory(), &sphb->mem64window); 1802 } 1803 memory_region_del_subregion(get_system_memory(), &sphb->mem32window); 1804 } 1805 1806 static void spapr_phb_destroy_msi(gpointer opaque) 1807 { 1808 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1809 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1810 SpaprPciMsi *msi = opaque; 1811 1812 if (!smc->legacy_irq_allocation) { 1813 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 1814 } 1815 spapr_irq_free(spapr, msi->first_irq, msi->num); 1816 g_free(msi); 1817 } 1818 1819 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1820 { 1821 ERRP_GUARD(); 1822 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 1823 * tries to add a sPAPR PHB to a non-pseries machine. 1824 */ 1825 SpaprMachineState *spapr = 1826 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(), 1827 TYPE_SPAPR_MACHINE); 1828 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL; 1829 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1830 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(sbd); 1831 PCIHostState *phb = PCI_HOST_BRIDGE(sbd); 1832 MachineState *ms = MACHINE(spapr); 1833 char *namebuf; 1834 int i; 1835 PCIBus *bus; 1836 uint64_t msi_window_size = 4096; 1837 SpaprTceTable *tcet; 1838 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1839 1840 if (!spapr) { 1841 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine"); 1842 return; 1843 } 1844 1845 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */ 1846 1847 if (sphb->mem64_win_size != 0) { 1848 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1849 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1850 " (max 2 GiB)", sphb->mem_win_size); 1851 return; 1852 } 1853 1854 /* 64-bit window defaults to identity mapping */ 1855 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1856 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1857 /* 1858 * For compatibility with old configuration, if no 64-bit MMIO 1859 * window is specified, but the ordinary (32-bit) memory 1860 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1861 * window, with a 64-bit MMIO window following on immediately 1862 * afterwards 1863 */ 1864 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1865 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1866 sphb->mem64_win_pciaddr = 1867 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1868 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1869 } 1870 1871 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1872 SpaprPhbState *s; 1873 1874 error_setg(errp, "PCI host bridges must have unique indexes"); 1875 error_append_hint(errp, "The following indexes are already in use:"); 1876 QLIST_FOREACH(s, &spapr->phbs, list) { 1877 error_append_hint(errp, " %d", s->index); 1878 } 1879 error_append_hint(errp, "\nTry another value for the index property\n"); 1880 return; 1881 } 1882 1883 if (sphb->numa_node != -1 && 1884 (sphb->numa_node >= MAX_NODES || 1885 !ms->numa_state->nodes[sphb->numa_node].present)) { 1886 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1887 return; 1888 } 1889 1890 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1891 1892 /* Initialize memory regions */ 1893 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname); 1894 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1895 g_free(namebuf); 1896 1897 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname); 1898 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1899 namebuf, &sphb->memspace, 1900 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1901 g_free(namebuf); 1902 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1903 &sphb->mem32window); 1904 1905 if (sphb->mem64_win_size != 0) { 1906 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname); 1907 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1908 namebuf, &sphb->memspace, 1909 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1910 g_free(namebuf); 1911 1912 memory_region_add_subregion(get_system_memory(), 1913 sphb->mem64_win_addr, 1914 &sphb->mem64window); 1915 } 1916 1917 /* Initialize IO regions */ 1918 namebuf = g_strdup_printf("%s.io", sphb->dtbusname); 1919 memory_region_init(&sphb->iospace, OBJECT(sphb), 1920 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1921 g_free(namebuf); 1922 1923 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname); 1924 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1925 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1926 g_free(namebuf); 1927 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1928 &sphb->iowindow); 1929 1930 bus = pci_register_root_bus(dev, NULL, 1931 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb, 1932 &sphb->memspace, &sphb->iospace, 1933 PCI_DEVFN(0, 0), PCI_NUM_PINS, 1934 TYPE_PCI_BUS); 1935 1936 /* 1937 * Despite resembling a vanilla PCI bus in most ways, the PAPR 1938 * para-virtualized PCI bus *does* permit PCI-E extended config 1939 * space access 1940 */ 1941 if (sphb->pcie_ecs) { 1942 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 1943 } 1944 phb->bus = bus; 1945 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb)); 1946 1947 /* 1948 * Initialize PHB address space. 1949 * By default there will be at least one subregion for default 1950 * 32bit DMA window. 1951 * Later the guest might want to create another DMA window 1952 * which will become another memory subregion. 1953 */ 1954 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname); 1955 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1956 namebuf, UINT64_MAX); 1957 g_free(namebuf); 1958 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1959 sphb->dtbusname); 1960 1961 /* 1962 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1963 * we need to allocate some memory to catch those writes coming 1964 * from msi_notify()/msix_notify(). 1965 * As MSIMessage:addr is going to be the same and MSIMessage:data 1966 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1967 * be used. 1968 * 1969 * For KVM we want to ensure that this memory is a full page so that 1970 * our memory slot is of page size granularity. 1971 */ 1972 if (kvm_enabled()) { 1973 msi_window_size = qemu_real_host_page_size(); 1974 } 1975 1976 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, 1977 "msi", msi_window_size); 1978 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1979 &sphb->msiwindow); 1980 1981 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1982 1983 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1984 1985 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1986 1987 /* Initialize the LSI table */ 1988 for (i = 0; i < PCI_NUM_PINS; i++) { 1989 int irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i; 1990 1991 if (smc->legacy_irq_allocation) { 1992 irq = spapr_irq_findone(spapr, errp); 1993 if (irq < 0) { 1994 error_prepend(errp, "can't allocate LSIs: "); 1995 /* 1996 * Older machines will never support PHB hotplug, ie, this is an 1997 * init only path and QEMU will terminate. No need to rollback. 1998 */ 1999 return; 2000 } 2001 } 2002 2003 if (spapr_irq_claim(spapr, irq, true, errp) < 0) { 2004 error_prepend(errp, "can't allocate LSIs: "); 2005 goto unrealize; 2006 } 2007 2008 sphb->lsi_table[i].irq = irq; 2009 } 2010 2011 /* allocate connectors for child PCI devices */ 2012 add_drcs(sphb, phb->bus); 2013 2014 /* DMA setup */ 2015 for (i = 0; i < windows_supported; ++i) { 2016 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 2017 if (!tcet) { 2018 error_setg(errp, "Creating window#%d failed for %s", 2019 i, sphb->dtbusname); 2020 goto unrealize; 2021 } 2022 memory_region_add_subregion(&sphb->iommu_root, 0, 2023 spapr_tce_get_iommu(tcet)); 2024 } 2025 2026 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, 2027 spapr_phb_destroy_msi); 2028 return; 2029 2030 unrealize: 2031 spapr_phb_unrealize(dev); 2032 } 2033 2034 static int spapr_phb_children_reset(Object *child, void *opaque) 2035 { 2036 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 2037 2038 if (dev) { 2039 device_cold_reset(dev); 2040 } 2041 2042 return 0; 2043 } 2044 2045 void spapr_phb_dma_reset(SpaprPhbState *sphb) 2046 { 2047 int i; 2048 SpaprTceTable *tcet; 2049 2050 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 2051 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 2052 2053 if (tcet && tcet->nb_table) { 2054 spapr_tce_table_disable(tcet); 2055 } 2056 } 2057 2058 /* Register default 32bit DMA window */ 2059 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 2060 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 2061 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 2062 tcet->def_win = true; 2063 } 2064 2065 static void spapr_phb_reset(DeviceState *qdev) 2066 { 2067 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 2068 2069 spapr_phb_dma_reset(sphb); 2070 2071 /* Reset the IOMMU state */ 2072 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 2073 2074 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 2075 spapr_phb_vfio_reset(qdev); 2076 } 2077 2078 g_hash_table_remove_all(sphb->msi); 2079 } 2080 2081 static Property spapr_phb_properties[] = { 2082 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1), 2083 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size, 2084 SPAPR_PCI_MEM32_WIN_SIZE), 2085 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size, 2086 SPAPR_PCI_MEM64_WIN_SIZE), 2087 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size, 2088 SPAPR_PCI_IO_WIN_SIZE), 2089 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled, 2090 true), 2091 /* Default DMA window is 0..1GB */ 2092 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0), 2093 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000), 2094 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr, 2095 0x800000000000000ULL), 2096 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true), 2097 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask, 2098 (1ULL << 12) | (1ULL << 16) 2099 | (1ULL << 21) | (1ULL << 24)), 2100 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1), 2101 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState, 2102 pre_2_8_migration, false), 2103 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState, 2104 pcie_ecs, true), 2105 DEFINE_PROP_BOOL("pre-5.1-associativity", SpaprPhbState, 2106 pre_5_1_assoc, false), 2107 DEFINE_PROP_END_OF_LIST(), 2108 }; 2109 2110 static const VMStateDescription vmstate_spapr_pci_lsi = { 2111 .name = "spapr_pci/lsi", 2112 .version_id = 1, 2113 .minimum_version_id = 1, 2114 .fields = (VMStateField[]) { 2115 VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL), 2116 2117 VMSTATE_END_OF_LIST() 2118 }, 2119 }; 2120 2121 static const VMStateDescription vmstate_spapr_pci_msi = { 2122 .name = "spapr_pci/msi", 2123 .version_id = 1, 2124 .minimum_version_id = 1, 2125 .fields = (VMStateField []) { 2126 VMSTATE_UINT32(key, SpaprPciMsiMig), 2127 VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig), 2128 VMSTATE_UINT32(value.num, SpaprPciMsiMig), 2129 VMSTATE_END_OF_LIST() 2130 }, 2131 }; 2132 2133 static int spapr_pci_pre_save(void *opaque) 2134 { 2135 SpaprPhbState *sphb = opaque; 2136 GHashTableIter iter; 2137 gpointer key, value; 2138 int i; 2139 2140 if (sphb->pre_2_8_migration) { 2141 sphb->mig_liobn = sphb->dma_liobn[0]; 2142 sphb->mig_mem_win_addr = sphb->mem_win_addr; 2143 sphb->mig_mem_win_size = sphb->mem_win_size; 2144 sphb->mig_io_win_addr = sphb->io_win_addr; 2145 sphb->mig_io_win_size = sphb->io_win_size; 2146 2147 if ((sphb->mem64_win_size != 0) 2148 && (sphb->mem64_win_addr 2149 == (sphb->mem_win_addr + sphb->mem_win_size))) { 2150 sphb->mig_mem_win_size += sphb->mem64_win_size; 2151 } 2152 } 2153 2154 g_free(sphb->msi_devs); 2155 sphb->msi_devs = NULL; 2156 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 2157 if (!sphb->msi_devs_num) { 2158 return 0; 2159 } 2160 sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num); 2161 2162 g_hash_table_iter_init(&iter, sphb->msi); 2163 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 2164 sphb->msi_devs[i].key = *(uint32_t *) key; 2165 sphb->msi_devs[i].value = *(SpaprPciMsi *) value; 2166 } 2167 2168 return 0; 2169 } 2170 2171 static int spapr_pci_post_save(void *opaque) 2172 { 2173 SpaprPhbState *sphb = opaque; 2174 2175 g_free(sphb->msi_devs); 2176 sphb->msi_devs = NULL; 2177 sphb->msi_devs_num = 0; 2178 return 0; 2179 } 2180 2181 static int spapr_pci_post_load(void *opaque, int version_id) 2182 { 2183 SpaprPhbState *sphb = opaque; 2184 gpointer key, value; 2185 int i; 2186 2187 for (i = 0; i < sphb->msi_devs_num; ++i) { 2188 key = g_memdup(&sphb->msi_devs[i].key, 2189 sizeof(sphb->msi_devs[i].key)); 2190 value = g_memdup(&sphb->msi_devs[i].value, 2191 sizeof(sphb->msi_devs[i].value)); 2192 g_hash_table_insert(sphb->msi, key, value); 2193 } 2194 g_free(sphb->msi_devs); 2195 sphb->msi_devs = NULL; 2196 sphb->msi_devs_num = 0; 2197 2198 return 0; 2199 } 2200 2201 static bool pre_2_8_migration(void *opaque, int version_id) 2202 { 2203 SpaprPhbState *sphb = opaque; 2204 2205 return sphb->pre_2_8_migration; 2206 } 2207 2208 static const VMStateDescription vmstate_spapr_pci = { 2209 .name = "spapr_pci", 2210 .version_id = 2, 2211 .minimum_version_id = 2, 2212 .pre_save = spapr_pci_pre_save, 2213 .post_save = spapr_pci_post_save, 2214 .post_load = spapr_pci_post_load, 2215 .fields = (VMStateField[]) { 2216 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL), 2217 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration), 2218 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration), 2219 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration), 2220 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration), 2221 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration), 2222 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0, 2223 vmstate_spapr_pci_lsi, SpaprPciLsi), 2224 VMSTATE_INT32(msi_devs_num, SpaprPhbState), 2225 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0, 2226 vmstate_spapr_pci_msi, SpaprPciMsiMig), 2227 VMSTATE_END_OF_LIST() 2228 }, 2229 }; 2230 2231 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 2232 PCIBus *rootbus) 2233 { 2234 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 2235 2236 return sphb->dtbusname; 2237 } 2238 2239 static void spapr_phb_class_init(ObjectClass *klass, void *data) 2240 { 2241 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 2242 DeviceClass *dc = DEVICE_CLASS(klass); 2243 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 2244 2245 hc->root_bus_path = spapr_phb_root_bus_path; 2246 dc->realize = spapr_phb_realize; 2247 dc->unrealize = spapr_phb_unrealize; 2248 device_class_set_props(dc, spapr_phb_properties); 2249 dc->reset = spapr_phb_reset; 2250 dc->vmsd = &vmstate_spapr_pci; 2251 /* Supported by TYPE_SPAPR_MACHINE */ 2252 dc->user_creatable = true; 2253 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 2254 hp->pre_plug = spapr_pci_pre_plug; 2255 hp->plug = spapr_pci_plug; 2256 hp->unplug = spapr_pci_unplug; 2257 hp->unplug_request = spapr_pci_unplug_request; 2258 } 2259 2260 static const TypeInfo spapr_phb_info = { 2261 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 2262 .parent = TYPE_PCI_HOST_BRIDGE, 2263 .instance_size = sizeof(SpaprPhbState), 2264 .instance_finalize = spapr_phb_finalizefn, 2265 .class_init = spapr_phb_class_init, 2266 .interfaces = (InterfaceInfo[]) { 2267 { TYPE_HOTPLUG_HANDLER }, 2268 { } 2269 } 2270 }; 2271 2272 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 2273 void *opaque) 2274 { 2275 unsigned int *bus_no = opaque; 2276 PCIBus *sec_bus = NULL; 2277 2278 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2279 PCI_HEADER_TYPE_BRIDGE)) { 2280 return; 2281 } 2282 2283 (*bus_no)++; 2284 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1); 2285 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 2286 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2287 2288 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2289 if (!sec_bus) { 2290 return; 2291 } 2292 2293 pci_for_each_device_under_bus(sec_bus, spapr_phb_pci_enumerate_bridge, 2294 bus_no); 2295 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2296 } 2297 2298 static void spapr_phb_pci_enumerate(SpaprPhbState *phb) 2299 { 2300 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2301 unsigned int bus_no = 0; 2302 2303 pci_for_each_device_under_bus(bus, spapr_phb_pci_enumerate_bridge, 2304 &bus_no); 2305 2306 } 2307 2308 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb, 2309 uint32_t intc_phandle, void *fdt, int *node_offset) 2310 { 2311 int bus_off, i, j, ret; 2312 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 2313 struct { 2314 uint32_t hi; 2315 uint64_t child; 2316 uint64_t parent; 2317 uint64_t size; 2318 } QEMU_PACKED ranges[] = { 2319 { 2320 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 2321 cpu_to_be64(phb->io_win_addr), 2322 cpu_to_be64(memory_region_size(&phb->iospace)), 2323 }, 2324 { 2325 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 2326 cpu_to_be64(phb->mem_win_addr), 2327 cpu_to_be64(phb->mem_win_size), 2328 }, 2329 { 2330 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 2331 cpu_to_be64(phb->mem64_win_addr), 2332 cpu_to_be64(phb->mem64_win_size), 2333 }, 2334 }; 2335 const unsigned sizeof_ranges = 2336 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 2337 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 2338 uint32_t interrupt_map_mask[] = { 2339 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 2340 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 2341 uint32_t ddw_applicable[] = { 2342 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 2343 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 2344 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 2345 }; 2346 uint32_t ddw_extensions[] = { 2347 cpu_to_be32(2), 2348 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW), 2349 cpu_to_be32(1), /* 1: ibm,query-pe-dma-window 6 outputs, PAPR 2.8 */ 2350 }; 2351 SpaprTceTable *tcet; 2352 SpaprDrc *drc; 2353 2354 /* Start populating the FDT */ 2355 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname)); 2356 if (node_offset) { 2357 *node_offset = bus_off; 2358 } 2359 2360 /* Write PHB properties */ 2361 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 2362 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 2363 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 2364 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 2365 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 2366 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 2367 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 2368 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 2369 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", 2370 spapr_irq_nr_msis(spapr))); 2371 2372 /* Dynamic DMA window */ 2373 if (phb->ddw_enabled) { 2374 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 2375 sizeof(ddw_applicable))); 2376 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 2377 &ddw_extensions, sizeof(ddw_extensions))); 2378 } 2379 2380 /* Advertise NUMA via ibm,associativity */ 2381 if (phb->numa_node != -1) { 2382 spapr_numa_write_associativity_dt(spapr, fdt, bus_off, phb->numa_node); 2383 } 2384 2385 /* Build the interrupt-map, this must matches what is done 2386 * in pci_swizzle_map_irq_fn 2387 */ 2388 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 2389 &interrupt_map_mask, sizeof(interrupt_map_mask))); 2390 for (i = 0; i < PCI_SLOT_MAX; i++) { 2391 for (j = 0; j < PCI_NUM_PINS; j++) { 2392 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 2393 int lsi_num = pci_swizzle(i, j); 2394 2395 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 2396 irqmap[1] = 0; 2397 irqmap[2] = 0; 2398 irqmap[3] = cpu_to_be32(j+1); 2399 irqmap[4] = cpu_to_be32(intc_phandle); 2400 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true); 2401 } 2402 } 2403 /* Write interrupt map */ 2404 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 2405 sizeof(interrupt_map))); 2406 2407 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 2408 if (!tcet) { 2409 return -1; 2410 } 2411 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 2412 tcet->liobn, tcet->bus_offset, 2413 tcet->nb_table << tcet->page_shift); 2414 2415 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index); 2416 if (drc) { 2417 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc)); 2418 2419 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index, 2420 sizeof(drc_index))); 2421 } 2422 2423 /* Walk the bridges and program the bus numbers*/ 2424 spapr_phb_pci_enumerate(phb); 2425 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 2426 2427 /* Walk the bridge and subordinate buses */ 2428 ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off); 2429 if (ret < 0) { 2430 return ret; 2431 } 2432 2433 return 0; 2434 } 2435 2436 void spapr_pci_rtas_init(void) 2437 { 2438 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 2439 rtas_read_pci_config); 2440 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 2441 rtas_write_pci_config); 2442 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 2443 rtas_ibm_read_pci_config); 2444 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 2445 rtas_ibm_write_pci_config); 2446 if (msi_nonbroken) { 2447 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 2448 "ibm,query-interrupt-source-number", 2449 rtas_ibm_query_interrupt_source_number); 2450 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 2451 rtas_ibm_change_msi); 2452 } 2453 2454 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 2455 "ibm,set-eeh-option", 2456 rtas_ibm_set_eeh_option); 2457 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 2458 "ibm,get-config-addr-info2", 2459 rtas_ibm_get_config_addr_info2); 2460 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 2461 "ibm,read-slot-reset-state2", 2462 rtas_ibm_read_slot_reset_state2); 2463 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 2464 "ibm,set-slot-reset", 2465 rtas_ibm_set_slot_reset); 2466 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 2467 "ibm,configure-pe", 2468 rtas_ibm_configure_pe); 2469 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 2470 "ibm,slot-error-detail", 2471 rtas_ibm_slot_error_detail); 2472 } 2473 2474 static void spapr_pci_register_types(void) 2475 { 2476 type_register_static(&spapr_phb_info); 2477 } 2478 2479 type_init(spapr_pci_register_types) 2480 2481 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 2482 { 2483 bool be = *(bool *)opaque; 2484 2485 if (object_dynamic_cast(OBJECT(dev), "VGA") 2486 || object_dynamic_cast(OBJECT(dev), "secondary-vga") 2487 || object_dynamic_cast(OBJECT(dev), "bochs-display") 2488 || object_dynamic_cast(OBJECT(dev), "virtio-vga")) { 2489 object_property_set_bool(OBJECT(dev), "big-endian-framebuffer", be, 2490 &error_abort); 2491 } 2492 return 0; 2493 } 2494 2495 void spapr_pci_switch_vga(SpaprMachineState *spapr, bool big_endian) 2496 { 2497 SpaprPhbState *sphb; 2498 2499 /* 2500 * For backward compatibility with existing guests, we switch 2501 * the endianness of the VGA controller when changing the guest 2502 * interrupt mode 2503 */ 2504 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2505 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2506 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2507 &big_endian); 2508 } 2509 } 2510