1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qapi/error.h" 28 #include "cpu.h" 29 #include "hw/irq.h" 30 #include "hw/sysbus.h" 31 #include "migration/vmstate.h" 32 #include "hw/pci/pci.h" 33 #include "hw/pci/msi.h" 34 #include "hw/pci/msix.h" 35 #include "hw/pci/pci_host.h" 36 #include "hw/ppc/spapr.h" 37 #include "hw/pci-host/spapr.h" 38 #include "exec/address-spaces.h" 39 #include "exec/ram_addr.h" 40 #include <libfdt.h> 41 #include "trace.h" 42 #include "qemu/error-report.h" 43 #include "qemu/module.h" 44 #include "qapi/qmp/qerror.h" 45 #include "hw/ppc/fdt.h" 46 #include "hw/pci/pci_bridge.h" 47 #include "hw/pci/pci_bus.h" 48 #include "hw/pci/pci_ids.h" 49 #include "hw/ppc/spapr_drc.h" 50 #include "hw/qdev-properties.h" 51 #include "sysemu/device_tree.h" 52 #include "sysemu/kvm.h" 53 #include "sysemu/hostmem.h" 54 #include "sysemu/numa.h" 55 #include "hw/ppc/spapr_numa.h" 56 57 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 58 #define RTAS_QUERY_FN 0 59 #define RTAS_CHANGE_FN 1 60 #define RTAS_RESET_FN 2 61 #define RTAS_CHANGE_MSI_FN 3 62 #define RTAS_CHANGE_MSIX_FN 4 63 64 /* Interrupt types to return on RTAS_CHANGE_* */ 65 #define RTAS_TYPE_MSI 1 66 #define RTAS_TYPE_MSIX 2 67 68 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid) 69 { 70 SpaprPhbState *sphb; 71 72 QLIST_FOREACH(sphb, &spapr->phbs, list) { 73 if (sphb->buid != buid) { 74 continue; 75 } 76 return sphb; 77 } 78 79 return NULL; 80 } 81 82 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid, 83 uint32_t config_addr) 84 { 85 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid); 86 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 87 int bus_num = (config_addr >> 16) & 0xFF; 88 int devfn = (config_addr >> 8) & 0xFF; 89 90 if (!phb) { 91 return NULL; 92 } 93 94 return pci_find_device(phb->bus, bus_num, devfn); 95 } 96 97 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 98 { 99 /* This handles the encoding of extended config space addresses */ 100 return ((arg >> 20) & 0xf00) | (arg & 0xff); 101 } 102 103 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid, 104 uint32_t addr, uint32_t size, 105 target_ulong rets) 106 { 107 PCIDevice *pci_dev; 108 uint32_t val; 109 110 if ((size != 1) && (size != 2) && (size != 4)) { 111 /* access must be 1, 2 or 4 bytes */ 112 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 113 return; 114 } 115 116 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 117 addr = rtas_pci_cfgaddr(addr); 118 119 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 120 /* Access must be to a valid device, within bounds and 121 * naturally aligned */ 122 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 123 return; 124 } 125 126 val = pci_host_config_read_common(pci_dev, addr, 127 pci_config_size(pci_dev), size); 128 129 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 130 rtas_st(rets, 1, val); 131 } 132 133 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 134 uint32_t token, uint32_t nargs, 135 target_ulong args, 136 uint32_t nret, target_ulong rets) 137 { 138 uint64_t buid; 139 uint32_t size, addr; 140 141 if ((nargs != 4) || (nret != 2)) { 142 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 143 return; 144 } 145 146 buid = rtas_ldq(args, 1); 147 size = rtas_ld(args, 3); 148 addr = rtas_ld(args, 0); 149 150 finish_read_pci_config(spapr, buid, addr, size, rets); 151 } 152 153 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 154 uint32_t token, uint32_t nargs, 155 target_ulong args, 156 uint32_t nret, target_ulong rets) 157 { 158 uint32_t size, addr; 159 160 if ((nargs != 2) || (nret != 2)) { 161 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 162 return; 163 } 164 165 size = rtas_ld(args, 1); 166 addr = rtas_ld(args, 0); 167 168 finish_read_pci_config(spapr, 0, addr, size, rets); 169 } 170 171 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid, 172 uint32_t addr, uint32_t size, 173 uint32_t val, target_ulong rets) 174 { 175 PCIDevice *pci_dev; 176 177 if ((size != 1) && (size != 2) && (size != 4)) { 178 /* access must be 1, 2 or 4 bytes */ 179 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 180 return; 181 } 182 183 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 184 addr = rtas_pci_cfgaddr(addr); 185 186 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 187 /* Access must be to a valid device, within bounds and 188 * naturally aligned */ 189 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 190 return; 191 } 192 193 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 194 val, size); 195 196 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 197 } 198 199 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 200 uint32_t token, uint32_t nargs, 201 target_ulong args, 202 uint32_t nret, target_ulong rets) 203 { 204 uint64_t buid; 205 uint32_t val, size, addr; 206 207 if ((nargs != 5) || (nret != 1)) { 208 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 209 return; 210 } 211 212 buid = rtas_ldq(args, 1); 213 val = rtas_ld(args, 4); 214 size = rtas_ld(args, 3); 215 addr = rtas_ld(args, 0); 216 217 finish_write_pci_config(spapr, buid, addr, size, val, rets); 218 } 219 220 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 221 uint32_t token, uint32_t nargs, 222 target_ulong args, 223 uint32_t nret, target_ulong rets) 224 { 225 uint32_t val, size, addr; 226 227 if ((nargs != 3) || (nret != 1)) { 228 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 229 return; 230 } 231 232 233 val = rtas_ld(args, 2); 234 size = rtas_ld(args, 1); 235 addr = rtas_ld(args, 0); 236 237 finish_write_pci_config(spapr, 0, addr, size, val, rets); 238 } 239 240 /* 241 * Set MSI/MSIX message data. 242 * This is required for msi_notify()/msix_notify() which 243 * will write at the addresses via spapr_msi_write(). 244 * 245 * If hwaddr == 0, all entries will have .data == first_irq i.e. 246 * table will be reset. 247 */ 248 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 249 unsigned first_irq, unsigned req_num) 250 { 251 unsigned i; 252 MSIMessage msg = { .address = addr, .data = first_irq }; 253 254 if (!msix) { 255 msi_set_message(pdev, msg); 256 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 257 return; 258 } 259 260 for (i = 0; i < req_num; ++i) { 261 msix_set_message(pdev, i, msg); 262 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 263 if (addr) { 264 ++msg.data; 265 } 266 } 267 } 268 269 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr, 270 uint32_t token, uint32_t nargs, 271 target_ulong args, uint32_t nret, 272 target_ulong rets) 273 { 274 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 275 uint32_t config_addr = rtas_ld(args, 0); 276 uint64_t buid = rtas_ldq(args, 1); 277 unsigned int func = rtas_ld(args, 3); 278 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 279 unsigned int seq_num = rtas_ld(args, 5); 280 unsigned int ret_intr_type; 281 unsigned int irq, max_irqs = 0; 282 SpaprPhbState *phb = NULL; 283 PCIDevice *pdev = NULL; 284 SpaprPciMsi *msi; 285 int *config_addr_key; 286 Error *err = NULL; 287 int i; 288 289 /* Fins SpaprPhbState */ 290 phb = spapr_pci_find_phb(spapr, buid); 291 if (phb) { 292 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 293 } 294 if (!phb || !pdev) { 295 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 296 return; 297 } 298 299 switch (func) { 300 case RTAS_CHANGE_FN: 301 if (msi_present(pdev)) { 302 ret_intr_type = RTAS_TYPE_MSI; 303 } else if (msix_present(pdev)) { 304 ret_intr_type = RTAS_TYPE_MSIX; 305 } else { 306 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 307 return; 308 } 309 break; 310 case RTAS_CHANGE_MSI_FN: 311 if (msi_present(pdev)) { 312 ret_intr_type = RTAS_TYPE_MSI; 313 } else { 314 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 315 return; 316 } 317 break; 318 case RTAS_CHANGE_MSIX_FN: 319 if (msix_present(pdev)) { 320 ret_intr_type = RTAS_TYPE_MSIX; 321 } else { 322 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 323 return; 324 } 325 break; 326 default: 327 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 328 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 329 return; 330 } 331 332 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr); 333 334 /* Releasing MSIs */ 335 if (!req_num) { 336 if (!msi) { 337 trace_spapr_pci_msi("Releasing wrong config", config_addr); 338 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 339 return; 340 } 341 342 if (msi_present(pdev)) { 343 spapr_msi_setmsg(pdev, 0, false, 0, 0); 344 } 345 if (msix_present(pdev)) { 346 spapr_msi_setmsg(pdev, 0, true, 0, 0); 347 } 348 g_hash_table_remove(phb->msi, &config_addr); 349 350 trace_spapr_pci_msi("Released MSIs", config_addr); 351 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 352 rtas_st(rets, 1, 0); 353 return; 354 } 355 356 /* Enabling MSI */ 357 358 /* Check if the device supports as many IRQs as requested */ 359 if (ret_intr_type == RTAS_TYPE_MSI) { 360 max_irqs = msi_nr_vectors_allocated(pdev); 361 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 362 max_irqs = pdev->msix_entries_nr; 363 } 364 if (!max_irqs) { 365 error_report("Requested interrupt type %d is not enabled for device %x", 366 ret_intr_type, config_addr); 367 rtas_st(rets, 0, -1); /* Hardware error */ 368 return; 369 } 370 /* Correct the number if the guest asked for too many */ 371 if (req_num > max_irqs) { 372 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 373 req_num = max_irqs; 374 irq = 0; /* to avoid misleading trace */ 375 goto out; 376 } 377 378 /* Allocate MSIs */ 379 if (smc->legacy_irq_allocation) { 380 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI, 381 &err); 382 } else { 383 irq = spapr_irq_msi_alloc(spapr, req_num, 384 ret_intr_type == RTAS_TYPE_MSI, &err); 385 } 386 if (err) { 387 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 388 config_addr); 389 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 390 return; 391 } 392 393 for (i = 0; i < req_num; i++) { 394 spapr_irq_claim(spapr, irq + i, false, &err); 395 if (err) { 396 if (i) { 397 spapr_irq_free(spapr, irq, i); 398 } 399 if (!smc->legacy_irq_allocation) { 400 spapr_irq_msi_free(spapr, irq, req_num); 401 } 402 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 403 config_addr); 404 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 405 return; 406 } 407 } 408 409 /* Release previous MSIs */ 410 if (msi) { 411 g_hash_table_remove(phb->msi, &config_addr); 412 } 413 414 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 415 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 416 irq, req_num); 417 418 /* Add MSI device to cache */ 419 msi = g_new(SpaprPciMsi, 1); 420 msi->first_irq = irq; 421 msi->num = req_num; 422 config_addr_key = g_new(int, 1); 423 *config_addr_key = config_addr; 424 g_hash_table_insert(phb->msi, config_addr_key, msi); 425 426 out: 427 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 428 rtas_st(rets, 1, req_num); 429 rtas_st(rets, 2, ++seq_num); 430 if (nret > 3) { 431 rtas_st(rets, 3, ret_intr_type); 432 } 433 434 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 435 } 436 437 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 438 SpaprMachineState *spapr, 439 uint32_t token, 440 uint32_t nargs, 441 target_ulong args, 442 uint32_t nret, 443 target_ulong rets) 444 { 445 uint32_t config_addr = rtas_ld(args, 0); 446 uint64_t buid = rtas_ldq(args, 1); 447 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 448 SpaprPhbState *phb = NULL; 449 PCIDevice *pdev = NULL; 450 SpaprPciMsi *msi; 451 452 /* Find SpaprPhbState */ 453 phb = spapr_pci_find_phb(spapr, buid); 454 if (phb) { 455 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 456 } 457 if (!phb || !pdev) { 458 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 459 return; 460 } 461 462 /* Find device descriptor and start IRQ */ 463 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr); 464 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 465 trace_spapr_pci_msi("Failed to return vector", config_addr); 466 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 467 return; 468 } 469 intr_src_num = msi->first_irq + ioa_intr_num; 470 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 471 intr_src_num); 472 473 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 474 rtas_st(rets, 1, intr_src_num); 475 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 476 } 477 478 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 479 SpaprMachineState *spapr, 480 uint32_t token, uint32_t nargs, 481 target_ulong args, uint32_t nret, 482 target_ulong rets) 483 { 484 SpaprPhbState *sphb; 485 uint32_t addr, option; 486 uint64_t buid; 487 int ret; 488 489 if ((nargs != 4) || (nret != 1)) { 490 goto param_error_exit; 491 } 492 493 buid = rtas_ldq(args, 1); 494 addr = rtas_ld(args, 0); 495 option = rtas_ld(args, 3); 496 497 sphb = spapr_pci_find_phb(spapr, buid); 498 if (!sphb) { 499 goto param_error_exit; 500 } 501 502 if (!spapr_phb_eeh_available(sphb)) { 503 goto param_error_exit; 504 } 505 506 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 507 rtas_st(rets, 0, ret); 508 return; 509 510 param_error_exit: 511 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 512 } 513 514 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 515 SpaprMachineState *spapr, 516 uint32_t token, uint32_t nargs, 517 target_ulong args, uint32_t nret, 518 target_ulong rets) 519 { 520 SpaprPhbState *sphb; 521 PCIDevice *pdev; 522 uint32_t addr, option; 523 uint64_t buid; 524 525 if ((nargs != 4) || (nret != 2)) { 526 goto param_error_exit; 527 } 528 529 buid = rtas_ldq(args, 1); 530 sphb = spapr_pci_find_phb(spapr, buid); 531 if (!sphb) { 532 goto param_error_exit; 533 } 534 535 if (!spapr_phb_eeh_available(sphb)) { 536 goto param_error_exit; 537 } 538 539 /* 540 * We always have PE address of form "00BB0001". "BB" 541 * represents the bus number of PE's primary bus. 542 */ 543 option = rtas_ld(args, 3); 544 switch (option) { 545 case RTAS_GET_PE_ADDR: 546 addr = rtas_ld(args, 0); 547 pdev = spapr_pci_find_dev(spapr, buid, addr); 548 if (!pdev) { 549 goto param_error_exit; 550 } 551 552 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1); 553 break; 554 case RTAS_GET_PE_MODE: 555 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 556 break; 557 default: 558 goto param_error_exit; 559 } 560 561 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 562 return; 563 564 param_error_exit: 565 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 566 } 567 568 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 569 SpaprMachineState *spapr, 570 uint32_t token, uint32_t nargs, 571 target_ulong args, uint32_t nret, 572 target_ulong rets) 573 { 574 SpaprPhbState *sphb; 575 uint64_t buid; 576 int state, ret; 577 578 if ((nargs != 3) || (nret != 4 && nret != 5)) { 579 goto param_error_exit; 580 } 581 582 buid = rtas_ldq(args, 1); 583 sphb = spapr_pci_find_phb(spapr, buid); 584 if (!sphb) { 585 goto param_error_exit; 586 } 587 588 if (!spapr_phb_eeh_available(sphb)) { 589 goto param_error_exit; 590 } 591 592 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 593 rtas_st(rets, 0, ret); 594 if (ret != RTAS_OUT_SUCCESS) { 595 return; 596 } 597 598 rtas_st(rets, 1, state); 599 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 600 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 601 if (nret >= 5) { 602 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 603 } 604 return; 605 606 param_error_exit: 607 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 608 } 609 610 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 611 SpaprMachineState *spapr, 612 uint32_t token, uint32_t nargs, 613 target_ulong args, uint32_t nret, 614 target_ulong rets) 615 { 616 SpaprPhbState *sphb; 617 uint32_t option; 618 uint64_t buid; 619 int ret; 620 621 if ((nargs != 4) || (nret != 1)) { 622 goto param_error_exit; 623 } 624 625 buid = rtas_ldq(args, 1); 626 option = rtas_ld(args, 3); 627 sphb = spapr_pci_find_phb(spapr, buid); 628 if (!sphb) { 629 goto param_error_exit; 630 } 631 632 if (!spapr_phb_eeh_available(sphb)) { 633 goto param_error_exit; 634 } 635 636 ret = spapr_phb_vfio_eeh_reset(sphb, option); 637 rtas_st(rets, 0, ret); 638 return; 639 640 param_error_exit: 641 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 642 } 643 644 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 645 SpaprMachineState *spapr, 646 uint32_t token, uint32_t nargs, 647 target_ulong args, uint32_t nret, 648 target_ulong rets) 649 { 650 SpaprPhbState *sphb; 651 uint64_t buid; 652 int ret; 653 654 if ((nargs != 3) || (nret != 1)) { 655 goto param_error_exit; 656 } 657 658 buid = rtas_ldq(args, 1); 659 sphb = spapr_pci_find_phb(spapr, buid); 660 if (!sphb) { 661 goto param_error_exit; 662 } 663 664 if (!spapr_phb_eeh_available(sphb)) { 665 goto param_error_exit; 666 } 667 668 ret = spapr_phb_vfio_eeh_configure(sphb); 669 rtas_st(rets, 0, ret); 670 return; 671 672 param_error_exit: 673 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 674 } 675 676 /* To support it later */ 677 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 678 SpaprMachineState *spapr, 679 uint32_t token, uint32_t nargs, 680 target_ulong args, uint32_t nret, 681 target_ulong rets) 682 { 683 SpaprPhbState *sphb; 684 int option; 685 uint64_t buid; 686 687 if ((nargs != 8) || (nret != 1)) { 688 goto param_error_exit; 689 } 690 691 buid = rtas_ldq(args, 1); 692 sphb = spapr_pci_find_phb(spapr, buid); 693 if (!sphb) { 694 goto param_error_exit; 695 } 696 697 if (!spapr_phb_eeh_available(sphb)) { 698 goto param_error_exit; 699 } 700 701 option = rtas_ld(args, 7); 702 switch (option) { 703 case RTAS_SLOT_TEMP_ERR_LOG: 704 case RTAS_SLOT_PERM_ERR_LOG: 705 break; 706 default: 707 goto param_error_exit; 708 } 709 710 /* We don't have error log yet */ 711 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 712 return; 713 714 param_error_exit: 715 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 716 } 717 718 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 719 { 720 /* 721 * Here we use the number returned by pci_swizzle_map_irq_fn to find a 722 * corresponding qemu_irq. 723 */ 724 SpaprPhbState *phb = opaque; 725 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 726 727 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 728 qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level); 729 } 730 731 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 732 { 733 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 734 PCIINTxRoute route; 735 736 route.mode = PCI_INTX_ENABLED; 737 route.irq = sphb->lsi_table[pin].irq; 738 739 return route; 740 } 741 742 /* 743 * MSI/MSIX memory region implementation. 744 * The handler handles both MSI and MSIX. 745 * The vector number is encoded in least bits in data. 746 */ 747 static void spapr_msi_write(void *opaque, hwaddr addr, 748 uint64_t data, unsigned size) 749 { 750 SpaprMachineState *spapr = opaque; 751 uint32_t irq = data; 752 753 trace_spapr_pci_msi_write(addr, data, irq); 754 755 qemu_irq_pulse(spapr_qirq(spapr, irq)); 756 } 757 758 static const MemoryRegionOps spapr_msi_ops = { 759 /* There is no .read as the read result is undefined by PCI spec */ 760 .read = NULL, 761 .write = spapr_msi_write, 762 .endianness = DEVICE_LITTLE_ENDIAN 763 }; 764 765 /* 766 * PHB PCI device 767 */ 768 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 769 { 770 SpaprPhbState *phb = opaque; 771 772 return &phb->iommu_as; 773 } 774 775 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 776 { 777 char *path = NULL, *buf = NULL, *host = NULL; 778 779 /* Get the PCI VFIO host id */ 780 host = object_property_get_str(OBJECT(pdev), "host", NULL); 781 if (!host) { 782 goto err_out; 783 } 784 785 /* Construct the path of the file that will give us the DT location */ 786 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 787 g_free(host); 788 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 789 goto err_out; 790 } 791 g_free(path); 792 793 /* Construct and read from host device tree the loc-code */ 794 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); 795 g_free(buf); 796 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 797 goto err_out; 798 } 799 return buf; 800 801 err_out: 802 g_free(path); 803 return NULL; 804 } 805 806 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 807 { 808 char *buf; 809 const char *devtype = "qemu"; 810 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 811 812 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 813 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 814 if (buf) { 815 return buf; 816 } 817 devtype = "vfio"; 818 } 819 /* 820 * For emulated devices and VFIO-failure case, make up 821 * the loc-code. 822 */ 823 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 824 devtype, pdev->name, sphb->index, busnr, 825 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 826 return buf; 827 } 828 829 /* Macros to operate with address in OF binding to PCI */ 830 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 831 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 832 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 833 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 834 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 835 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 836 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 837 #define b_fff(x) b_x((x), 8, 3) /* function number */ 838 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 839 840 /* for 'reg' OF properties */ 841 #define RESOURCE_CELLS_SIZE 2 842 #define RESOURCE_CELLS_ADDRESS 3 843 844 typedef struct ResourceFields { 845 uint32_t phys_hi; 846 uint32_t phys_mid; 847 uint32_t phys_lo; 848 uint32_t size_hi; 849 uint32_t size_lo; 850 } QEMU_PACKED ResourceFields; 851 852 typedef struct ResourceProps { 853 ResourceFields reg[8]; 854 uint32_t reg_len; 855 } ResourceProps; 856 857 /* fill in the 'reg' OF properties for 858 * a PCI device. 'reg' describes resource requirements for a 859 * device's IO/MEM regions. 860 * 861 * the property is an array of ('phys-addr', 'size') pairs describing 862 * the addressable regions of the PCI device, where 'phys-addr' is a 863 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 864 * (phys.hi, phys.mid, phys.lo), and 'size' is a 865 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 866 * 867 * phys.hi = 0xYYXXXXZZ, where: 868 * 0xYY = npt000ss 869 * ||| | 870 * ||| +-- space code 871 * ||| | 872 * ||| + 00 if configuration space 873 * ||| + 01 if IO region, 874 * ||| + 10 if 32-bit MEM region 875 * ||| + 11 if 64-bit MEM region 876 * ||| 877 * ||+------ for non-relocatable IO: 1 if aliased 878 * || for relocatable IO: 1 if below 64KB 879 * || for MEM: 1 if below 1MB 880 * |+------- 1 if region is prefetchable 881 * +-------- 1 if region is non-relocatable 882 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 883 * bits respectively 884 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 885 * to the region 886 * 887 * phys.mid and phys.lo correspond respectively to the hi/lo portions 888 * of the actual address of the region. 889 * 890 * note also that addresses defined in this property are, at least 891 * for PAPR guests, relative to the PHBs IO/MEM windows, and 892 * correspond directly to the addresses in the BARs. 893 * 894 * in accordance with PCI Bus Binding to Open Firmware, 895 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 896 * Appendix C. 897 */ 898 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 899 { 900 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 901 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 902 b_ddddd(PCI_SLOT(d->devfn)) | 903 b_fff(PCI_FUNC(d->devfn))); 904 ResourceFields *reg; 905 int i, reg_idx = 0; 906 907 /* config space region */ 908 reg = &rp->reg[reg_idx++]; 909 reg->phys_hi = cpu_to_be32(dev_id); 910 reg->phys_mid = 0; 911 reg->phys_lo = 0; 912 reg->size_hi = 0; 913 reg->size_lo = 0; 914 915 for (i = 0; i < PCI_NUM_REGIONS; i++) { 916 if (!d->io_regions[i].size) { 917 continue; 918 } 919 920 reg = &rp->reg[reg_idx++]; 921 922 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 923 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 924 reg->phys_hi |= cpu_to_be32(b_ss(1)); 925 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 926 reg->phys_hi |= cpu_to_be32(b_ss(3)); 927 } else { 928 reg->phys_hi |= cpu_to_be32(b_ss(2)); 929 } 930 reg->phys_mid = 0; 931 reg->phys_lo = 0; 932 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 933 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 934 } 935 936 rp->reg_len = reg_idx * sizeof(ResourceFields); 937 } 938 939 typedef struct PCIClass PCIClass; 940 typedef struct PCISubClass PCISubClass; 941 typedef struct PCIIFace PCIIFace; 942 943 struct PCIIFace { 944 int iface; 945 const char *name; 946 }; 947 948 struct PCISubClass { 949 int subclass; 950 const char *name; 951 const PCIIFace *iface; 952 }; 953 954 struct PCIClass { 955 const char *name; 956 const PCISubClass *subc; 957 }; 958 959 static const PCISubClass undef_subclass[] = { 960 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, 961 { 0xFF, NULL, NULL }, 962 }; 963 964 static const PCISubClass mass_subclass[] = { 965 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, 966 { PCI_CLASS_STORAGE_IDE, "ide", NULL }, 967 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, 968 { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, 969 { PCI_CLASS_STORAGE_RAID, "raid", NULL }, 970 { PCI_CLASS_STORAGE_ATA, "ata", NULL }, 971 { PCI_CLASS_STORAGE_SATA, "sata", NULL }, 972 { PCI_CLASS_STORAGE_SAS, "sas", NULL }, 973 { 0xFF, NULL, NULL }, 974 }; 975 976 static const PCISubClass net_subclass[] = { 977 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, 978 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, 979 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, 980 { PCI_CLASS_NETWORK_ATM, "atm", NULL }, 981 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, 982 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, 983 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, 984 { 0xFF, NULL, NULL }, 985 }; 986 987 static const PCISubClass displ_subclass[] = { 988 { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, 989 { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, 990 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, 991 { 0xFF, NULL, NULL }, 992 }; 993 994 static const PCISubClass media_subclass[] = { 995 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, 996 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, 997 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, 998 { 0xFF, NULL, NULL }, 999 }; 1000 1001 static const PCISubClass mem_subclass[] = { 1002 { PCI_CLASS_MEMORY_RAM, "memory", NULL }, 1003 { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, 1004 { 0xFF, NULL, NULL }, 1005 }; 1006 1007 static const PCISubClass bridg_subclass[] = { 1008 { PCI_CLASS_BRIDGE_HOST, "host", NULL }, 1009 { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, 1010 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, 1011 { PCI_CLASS_BRIDGE_MC, "mca", NULL }, 1012 { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, 1013 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, 1014 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, 1015 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, 1016 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, 1017 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, 1018 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, 1019 { 0xFF, NULL, NULL }, 1020 }; 1021 1022 static const PCISubClass comm_subclass[] = { 1023 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, 1024 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, 1025 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, 1026 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, 1027 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, 1028 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, 1029 { 0xFF, NULL, NULL, }, 1030 }; 1031 1032 static const PCIIFace pic_iface[] = { 1033 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, 1034 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, 1035 { 0xFF, NULL }, 1036 }; 1037 1038 static const PCISubClass sys_subclass[] = { 1039 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, 1040 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, 1041 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, 1042 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, 1043 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, 1044 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, 1045 { 0xFF, NULL, NULL }, 1046 }; 1047 1048 static const PCISubClass inp_subclass[] = { 1049 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, 1050 { PCI_CLASS_INPUT_PEN, "pen", NULL }, 1051 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, 1052 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, 1053 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, 1054 { 0xFF, NULL, NULL }, 1055 }; 1056 1057 static const PCISubClass dock_subclass[] = { 1058 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, 1059 { 0xFF, NULL, NULL }, 1060 }; 1061 1062 static const PCISubClass cpu_subclass[] = { 1063 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, 1064 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, 1065 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, 1066 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, 1067 { 0xFF, NULL, NULL }, 1068 }; 1069 1070 static const PCIIFace usb_iface[] = { 1071 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, 1072 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, 1073 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, 1074 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, 1075 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, 1076 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, 1077 { 0xFF, NULL }, 1078 }; 1079 1080 static const PCISubClass ser_subclass[] = { 1081 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, 1082 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, 1083 { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, 1084 { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, 1085 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, 1086 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, 1087 { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, 1088 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, 1089 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, 1090 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, 1091 { 0xFF, NULL, NULL }, 1092 }; 1093 1094 static const PCISubClass wrl_subclass[] = { 1095 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, 1096 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, 1097 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, 1098 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, 1099 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, 1100 { 0xFF, NULL, NULL }, 1101 }; 1102 1103 static const PCISubClass sat_subclass[] = { 1104 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, 1105 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, 1106 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, 1107 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, 1108 { 0xFF, NULL, NULL }, 1109 }; 1110 1111 static const PCISubClass crypt_subclass[] = { 1112 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, 1113 { PCI_CLASS_CRYPT_ENTERTAINMENT, 1114 "entertainment-encryption", NULL }, 1115 { 0xFF, NULL, NULL }, 1116 }; 1117 1118 static const PCISubClass spc_subclass[] = { 1119 { PCI_CLASS_SP_DPIO, "dpio", NULL }, 1120 { PCI_CLASS_SP_PERF, "counter", NULL }, 1121 { PCI_CLASS_SP_SYNCH, "measurement", NULL }, 1122 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, 1123 { 0xFF, NULL, NULL }, 1124 }; 1125 1126 static const PCIClass pci_classes[] = { 1127 { "legacy-device", undef_subclass }, 1128 { "mass-storage", mass_subclass }, 1129 { "network", net_subclass }, 1130 { "display", displ_subclass, }, 1131 { "multimedia-device", media_subclass }, 1132 { "memory-controller", mem_subclass }, 1133 { "unknown-bridge", bridg_subclass }, 1134 { "communication-controller", comm_subclass}, 1135 { "system-peripheral", sys_subclass }, 1136 { "input-controller", inp_subclass }, 1137 { "docking-station", dock_subclass }, 1138 { "cpu", cpu_subclass }, 1139 { "serial-bus", ser_subclass }, 1140 { "wireless-controller", wrl_subclass }, 1141 { "intelligent-io", NULL }, 1142 { "satellite-device", sat_subclass }, 1143 { "encryption", crypt_subclass }, 1144 { "data-processing-controller", spc_subclass }, 1145 }; 1146 1147 static const char *dt_name_from_class(uint8_t class, uint8_t subclass, 1148 uint8_t iface) 1149 { 1150 const PCIClass *pclass; 1151 const PCISubClass *psubclass; 1152 const PCIIFace *piface; 1153 const char *name; 1154 1155 if (class >= ARRAY_SIZE(pci_classes)) { 1156 return "pci"; 1157 } 1158 1159 pclass = pci_classes + class; 1160 name = pclass->name; 1161 1162 if (pclass->subc == NULL) { 1163 return name; 1164 } 1165 1166 psubclass = pclass->subc; 1167 while ((psubclass->subclass & 0xff) != 0xff) { 1168 if ((psubclass->subclass & 0xff) == subclass) { 1169 name = psubclass->name; 1170 break; 1171 } 1172 psubclass++; 1173 } 1174 1175 piface = psubclass->iface; 1176 if (piface == NULL) { 1177 return name; 1178 } 1179 while ((piface->iface & 0xff) != 0xff) { 1180 if ((piface->iface & 0xff) == iface) { 1181 name = piface->name; 1182 break; 1183 } 1184 piface++; 1185 } 1186 1187 return name; 1188 } 1189 1190 /* 1191 * DRC helper functions 1192 */ 1193 1194 static uint32_t drc_id_from_devfn(SpaprPhbState *phb, 1195 uint8_t chassis, int32_t devfn) 1196 { 1197 return (phb->index << 16) | (chassis << 8) | devfn; 1198 } 1199 1200 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb, 1201 uint8_t chassis, int32_t devfn) 1202 { 1203 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1204 drc_id_from_devfn(phb, chassis, devfn)); 1205 } 1206 1207 static uint8_t chassis_from_bus(PCIBus *bus) 1208 { 1209 if (pci_bus_is_root(bus)) { 1210 return 0; 1211 } else { 1212 PCIDevice *bridge = pci_bridge_get_device(bus); 1213 1214 return object_property_get_uint(OBJECT(bridge), "chassis_nr", 1215 &error_abort); 1216 } 1217 } 1218 1219 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev) 1220 { 1221 uint8_t chassis = chassis_from_bus(pci_get_bus(dev)); 1222 1223 return drc_from_devfn(phb, chassis, dev->devfn); 1224 } 1225 1226 static void add_drcs(SpaprPhbState *phb, PCIBus *bus) 1227 { 1228 Object *owner; 1229 int i; 1230 uint8_t chassis; 1231 1232 if (!phb->dr_enabled) { 1233 return; 1234 } 1235 1236 chassis = chassis_from_bus(bus); 1237 1238 if (pci_bus_is_root(bus)) { 1239 owner = OBJECT(phb); 1240 } else { 1241 owner = OBJECT(pci_bridge_get_device(bus)); 1242 } 1243 1244 for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) { 1245 spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI, 1246 drc_id_from_devfn(phb, chassis, i)); 1247 } 1248 } 1249 1250 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus) 1251 { 1252 int i; 1253 uint8_t chassis; 1254 1255 if (!phb->dr_enabled) { 1256 return; 1257 } 1258 1259 chassis = chassis_from_bus(bus); 1260 1261 for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) { 1262 SpaprDrc *drc = drc_from_devfn(phb, chassis, i); 1263 1264 if (drc) { 1265 object_unparent(OBJECT(drc)); 1266 } 1267 } 1268 } 1269 1270 typedef struct PciWalkFdt { 1271 void *fdt; 1272 int offset; 1273 SpaprPhbState *sphb; 1274 int err; 1275 } PciWalkFdt; 1276 1277 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev, 1278 void *fdt, int parent_offset); 1279 1280 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev, 1281 void *opaque) 1282 { 1283 PciWalkFdt *p = opaque; 1284 int err; 1285 1286 if (p->err) { 1287 /* Something's already broken, don't keep going */ 1288 return; 1289 } 1290 1291 err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset); 1292 if (err < 0) { 1293 p->err = err; 1294 } 1295 } 1296 1297 /* Augment PCI device node with bridge specific information */ 1298 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus, 1299 void *fdt, int offset) 1300 { 1301 Object *owner; 1302 PciWalkFdt cbinfo = { 1303 .fdt = fdt, 1304 .offset = offset, 1305 .sphb = sphb, 1306 .err = 0, 1307 }; 1308 int ret; 1309 1310 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1311 RESOURCE_CELLS_ADDRESS)); 1312 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1313 RESOURCE_CELLS_SIZE)); 1314 1315 assert(bus); 1316 pci_for_each_device_reverse(bus, pci_bus_num(bus), 1317 spapr_dt_pci_device_cb, &cbinfo); 1318 if (cbinfo.err) { 1319 return cbinfo.err; 1320 } 1321 1322 if (pci_bus_is_root(bus)) { 1323 owner = OBJECT(sphb); 1324 } else { 1325 owner = OBJECT(pci_bridge_get_device(bus)); 1326 } 1327 1328 ret = spapr_dt_drc(fdt, offset, owner, 1329 SPAPR_DR_CONNECTOR_TYPE_PCI); 1330 if (ret) { 1331 return ret; 1332 } 1333 1334 return offset; 1335 } 1336 1337 /* create OF node for pci device and required OF DT properties */ 1338 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev, 1339 void *fdt, int parent_offset) 1340 { 1341 int offset; 1342 const gchar *basename; 1343 gchar *nodename; 1344 int slot = PCI_SLOT(dev->devfn); 1345 int func = PCI_FUNC(dev->devfn); 1346 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev); 1347 ResourceProps rp; 1348 SpaprDrc *drc = drc_from_dev(sphb, dev); 1349 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2); 1350 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2); 1351 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1); 1352 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1353 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1); 1354 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2); 1355 uint32_t subsystem_vendor_id = 1356 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2); 1357 uint32_t cache_line_size = 1358 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1); 1359 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1360 gchar *loc_code; 1361 1362 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, 1363 ccode & 0xff); 1364 1365 if (func != 0) { 1366 nodename = g_strdup_printf("%s@%x,%x", basename, slot, func); 1367 } else { 1368 nodename = g_strdup_printf("%s@%x", basename, slot); 1369 } 1370 1371 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename)); 1372 1373 g_free(nodename); 1374 1375 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 1376 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id)); 1377 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id)); 1378 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id)); 1379 1380 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); 1381 if (irq_pin) { 1382 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin)); 1383 } 1384 1385 if (subsystem_id) { 1386 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id)); 1387 } 1388 1389 if (subsystem_vendor_id) { 1390 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 1391 subsystem_vendor_id)); 1392 } 1393 1394 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size)); 1395 1396 1397 /* the following fdt cells are masked off the pci status register */ 1398 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1399 PCI_STATUS_DEVSEL_MASK & pci_status)); 1400 1401 if (pci_status & PCI_STATUS_FAST_BACK) { 1402 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1403 } 1404 if (pci_status & PCI_STATUS_66MHZ) { 1405 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1406 } 1407 if (pci_status & PCI_STATUS_UDF) { 1408 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1409 } 1410 1411 loc_code = spapr_phb_get_loc_code(sphb, dev); 1412 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code)); 1413 g_free(loc_code); 1414 1415 if (drc) { 1416 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", 1417 spapr_drc_index(drc))); 1418 } 1419 1420 if (msi_present(dev)) { 1421 uint32_t max_msi = msi_nr_vectors_allocated(dev); 1422 if (max_msi) { 1423 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1424 } 1425 } 1426 if (msix_present(dev)) { 1427 uint32_t max_msix = dev->msix_entries_nr; 1428 if (max_msix) { 1429 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1430 } 1431 } 1432 1433 populate_resource_props(dev, &rp); 1434 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1435 1436 if (sphb->pcie_ecs && pci_is_express(dev)) { 1437 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); 1438 } 1439 1440 spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb); 1441 1442 if (!pc->is_bridge) { 1443 /* Properties only for non-bridges */ 1444 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1); 1445 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1); 1446 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant)); 1447 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency)); 1448 return offset; 1449 } else { 1450 PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev)); 1451 1452 return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset); 1453 } 1454 } 1455 1456 /* Callback to be called during DRC release. */ 1457 void spapr_phb_remove_pci_device_cb(DeviceState *dev) 1458 { 1459 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 1460 1461 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 1462 object_unparent(OBJECT(dev)); 1463 } 1464 1465 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 1466 void *fdt, int *fdt_start_offset, Error **errp) 1467 { 1468 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev); 1469 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler); 1470 PCIDevice *pdev = PCI_DEVICE(drc->dev); 1471 1472 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0); 1473 return 0; 1474 } 1475 1476 static void spapr_pci_bridge_plug(SpaprPhbState *phb, 1477 PCIBridge *bridge) 1478 { 1479 PCIBus *bus = pci_bridge_get_sec_bus(bridge); 1480 1481 add_drcs(phb, bus); 1482 } 1483 1484 /* Returns non-zero if the value of "chassis_nr" is already in use */ 1485 static int check_chassis_nr(Object *obj, void *opaque) 1486 { 1487 int new_chassis_nr = 1488 object_property_get_uint(opaque, "chassis_nr", &error_abort); 1489 int chassis_nr = 1490 object_property_get_uint(obj, "chassis_nr", NULL); 1491 1492 if (!object_dynamic_cast(obj, TYPE_PCI_BRIDGE)) { 1493 return 0; 1494 } 1495 1496 /* Skip unsupported bridge types */ 1497 if (!chassis_nr) { 1498 return 0; 1499 } 1500 1501 /* Skip self */ 1502 if (obj == opaque) { 1503 return 0; 1504 } 1505 1506 return chassis_nr == new_chassis_nr; 1507 } 1508 1509 static bool bridge_has_valid_chassis_nr(Object *bridge, Error **errp) 1510 { 1511 int chassis_nr = 1512 object_property_get_uint(bridge, "chassis_nr", NULL); 1513 1514 /* 1515 * slotid_cap_init() already ensures that "chassis_nr" isn't null for 1516 * standard PCI bridges, so this really tells if "chassis_nr" is present 1517 * or not. 1518 */ 1519 if (!chassis_nr) { 1520 error_setg(errp, "PCI Bridge lacks a \"chassis_nr\" property"); 1521 error_append_hint(errp, "Try -device pci-bridge instead.\n"); 1522 return false; 1523 } 1524 1525 /* We want unique values for "chassis_nr" */ 1526 if (object_child_foreach_recursive(object_get_root(), check_chassis_nr, 1527 bridge)) { 1528 error_setg(errp, "Bridge chassis %d already in use", chassis_nr); 1529 return false; 1530 } 1531 1532 return true; 1533 } 1534 1535 static void spapr_pci_pre_plug(HotplugHandler *plug_handler, 1536 DeviceState *plugged_dev, Error **errp) 1537 { 1538 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1539 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1540 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1541 SpaprDrc *drc = drc_from_dev(phb, pdev); 1542 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1543 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1544 1545 if (!phb->dr_enabled) { 1546 /* if this is a hotplug operation initiated by the user 1547 * we need to let them know it's not enabled 1548 */ 1549 if (plugged_dev->hotplugged) { 1550 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1551 object_get_typename(OBJECT(phb))); 1552 return; 1553 } 1554 } 1555 1556 if (pc->is_bridge) { 1557 if (!bridge_has_valid_chassis_nr(OBJECT(plugged_dev), errp)) { 1558 return; 1559 } 1560 } 1561 1562 /* Following the QEMU convention used for PCIe multifunction 1563 * hotplug, we do not allow functions to be hotplugged to a 1564 * slot that already has function 0 present 1565 */ 1566 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1567 PCI_FUNC(pdev->devfn) != 0) { 1568 error_setg(errp, "PCI: slot %d function 0 already occupied by %s," 1569 " additional functions can no longer be exposed to guest.", 1570 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1571 } 1572 1573 if (drc && drc->dev) { 1574 error_setg(errp, "PCI: slot %d already occupied by %s", slotnr, 1575 pci_get_function_0(PCI_DEVICE(drc->dev))->name); 1576 return; 1577 } 1578 } 1579 1580 static void spapr_pci_plug(HotplugHandler *plug_handler, 1581 DeviceState *plugged_dev, Error **errp) 1582 { 1583 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1584 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1585 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1586 SpaprDrc *drc = drc_from_dev(phb, pdev); 1587 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1588 1589 /* 1590 * If DR is disabled we don't need to do anything in the case of 1591 * hotplug or coldplug callbacks. 1592 */ 1593 if (!phb->dr_enabled) { 1594 return; 1595 } 1596 1597 g_assert(drc); 1598 1599 if (pc->is_bridge) { 1600 spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev)); 1601 } 1602 1603 /* spapr_pci_pre_plug() already checked the DRC is attachable */ 1604 spapr_drc_attach(drc, DEVICE(pdev)); 1605 1606 /* If this is function 0, signal hotplug for all the device functions. 1607 * Otherwise defer sending the hotplug event. 1608 */ 1609 if (!spapr_drc_hotplugged(plugged_dev)) { 1610 spapr_drc_reset(drc); 1611 } else if (PCI_FUNC(pdev->devfn) == 0) { 1612 int i; 1613 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev)); 1614 1615 for (i = 0; i < 8; i++) { 1616 SpaprDrc *func_drc; 1617 SpaprDrcClass *func_drck; 1618 SpaprDREntitySense state; 1619 1620 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1621 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1622 state = func_drck->dr_entity_sense(func_drc); 1623 1624 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1625 spapr_hotplug_req_add_by_index(func_drc); 1626 } 1627 } 1628 } 1629 } 1630 1631 static void spapr_pci_bridge_unplug(SpaprPhbState *phb, 1632 PCIBridge *bridge) 1633 { 1634 PCIBus *bus = pci_bridge_get_sec_bus(bridge); 1635 1636 remove_drcs(phb, bus); 1637 } 1638 1639 static void spapr_pci_unplug(HotplugHandler *plug_handler, 1640 DeviceState *plugged_dev, Error **errp) 1641 { 1642 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1643 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1644 1645 /* some version guests do not wait for completion of a device 1646 * cleanup (generally done asynchronously by the kernel) before 1647 * signaling to QEMU that the device is safe, but instead sleep 1648 * for some 'safe' period of time. unfortunately on a busy host 1649 * this sleep isn't guaranteed to be long enough, resulting in 1650 * bad things like IRQ lines being left asserted during final 1651 * device removal. to deal with this we call reset just prior 1652 * to finalizing the device, which will put the device back into 1653 * an 'idle' state, as the device cleanup code expects. 1654 */ 1655 pci_device_reset(PCI_DEVICE(plugged_dev)); 1656 1657 if (pc->is_bridge) { 1658 spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev)); 1659 return; 1660 } 1661 1662 qdev_unrealize(plugged_dev); 1663 } 1664 1665 static void spapr_pci_unplug_request(HotplugHandler *plug_handler, 1666 DeviceState *plugged_dev, Error **errp) 1667 { 1668 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1669 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1670 SpaprDrc *drc = drc_from_dev(phb, pdev); 1671 1672 if (!phb->dr_enabled) { 1673 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1674 object_get_typename(OBJECT(phb))); 1675 return; 1676 } 1677 1678 g_assert(drc); 1679 g_assert(drc->dev == plugged_dev); 1680 1681 if (!spapr_drc_unplug_requested(drc)) { 1682 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1683 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1684 SpaprDrc *func_drc; 1685 SpaprDrcClass *func_drck; 1686 SpaprDREntitySense state; 1687 int i; 1688 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev)); 1689 1690 if (pc->is_bridge) { 1691 error_setg(errp, "PCI: Hot unplug of PCI bridges not supported"); 1692 return; 1693 } 1694 if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) { 1695 error_setg(errp, "PCI: Cannot unplug NVLink2 devices"); 1696 return; 1697 } 1698 1699 /* ensure any other present functions are pending unplug */ 1700 if (PCI_FUNC(pdev->devfn) == 0) { 1701 for (i = 1; i < 8; i++) { 1702 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1703 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1704 state = func_drck->dr_entity_sense(func_drc); 1705 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1706 && !spapr_drc_unplug_requested(func_drc)) { 1707 /* 1708 * Attempting to remove function 0 of a multifunction 1709 * device will will cascade into removing all child 1710 * functions, even if their unplug weren't requested 1711 * beforehand. 1712 */ 1713 spapr_drc_detach(func_drc); 1714 } 1715 } 1716 } 1717 1718 spapr_drc_detach(drc); 1719 1720 /* if this isn't func 0, defer unplug event. otherwise signal removal 1721 * for all present functions 1722 */ 1723 if (PCI_FUNC(pdev->devfn) == 0) { 1724 for (i = 7; i >= 0; i--) { 1725 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1726 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1727 state = func_drck->dr_entity_sense(func_drc); 1728 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1729 spapr_hotplug_req_remove_by_index(func_drc); 1730 } 1731 } 1732 } 1733 } 1734 } 1735 1736 static void spapr_phb_finalizefn(Object *obj) 1737 { 1738 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj); 1739 1740 g_free(sphb->dtbusname); 1741 sphb->dtbusname = NULL; 1742 } 1743 1744 static void spapr_phb_unrealize(DeviceState *dev) 1745 { 1746 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1747 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1748 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1749 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb); 1750 SpaprTceTable *tcet; 1751 int i; 1752 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1753 1754 spapr_phb_nvgpu_free(sphb); 1755 1756 if (sphb->msi) { 1757 g_hash_table_unref(sphb->msi); 1758 sphb->msi = NULL; 1759 } 1760 1761 /* 1762 * Remove IO/MMIO subregions and aliases, rest should get cleaned 1763 * via PHB's unrealize->object_finalize 1764 */ 1765 for (i = windows_supported - 1; i >= 0; i--) { 1766 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1767 if (tcet) { 1768 memory_region_del_subregion(&sphb->iommu_root, 1769 spapr_tce_get_iommu(tcet)); 1770 } 1771 } 1772 1773 remove_drcs(sphb, phb->bus); 1774 1775 for (i = PCI_NUM_PINS - 1; i >= 0; i--) { 1776 if (sphb->lsi_table[i].irq) { 1777 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1); 1778 sphb->lsi_table[i].irq = 0; 1779 } 1780 } 1781 1782 QLIST_REMOVE(sphb, list); 1783 1784 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow); 1785 1786 /* 1787 * An attached PCI device may have memory listeners, eg. VFIO PCI. We have 1788 * unmapped all sections. Remove the listeners now, before destroying the 1789 * address space. 1790 */ 1791 address_space_remove_listeners(&sphb->iommu_as); 1792 address_space_destroy(&sphb->iommu_as); 1793 1794 qbus_set_hotplug_handler(BUS(phb->bus), NULL); 1795 pci_unregister_root_bus(phb->bus); 1796 1797 memory_region_del_subregion(get_system_memory(), &sphb->iowindow); 1798 if (sphb->mem64_win_pciaddr != (hwaddr)-1) { 1799 memory_region_del_subregion(get_system_memory(), &sphb->mem64window); 1800 } 1801 memory_region_del_subregion(get_system_memory(), &sphb->mem32window); 1802 } 1803 1804 static void spapr_phb_destroy_msi(gpointer opaque) 1805 { 1806 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1807 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1808 SpaprPciMsi *msi = opaque; 1809 1810 if (!smc->legacy_irq_allocation) { 1811 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 1812 } 1813 spapr_irq_free(spapr, msi->first_irq, msi->num); 1814 g_free(msi); 1815 } 1816 1817 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1818 { 1819 ERRP_GUARD(); 1820 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 1821 * tries to add a sPAPR PHB to a non-pseries machine. 1822 */ 1823 SpaprMachineState *spapr = 1824 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(), 1825 TYPE_SPAPR_MACHINE); 1826 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL; 1827 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1828 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 1829 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1830 MachineState *ms = MACHINE(spapr); 1831 char *namebuf; 1832 int i; 1833 PCIBus *bus; 1834 uint64_t msi_window_size = 4096; 1835 SpaprTceTable *tcet; 1836 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1837 1838 if (!spapr) { 1839 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine"); 1840 return; 1841 } 1842 1843 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */ 1844 1845 if (sphb->mem64_win_size != 0) { 1846 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1847 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1848 " (max 2 GiB)", sphb->mem_win_size); 1849 return; 1850 } 1851 1852 /* 64-bit window defaults to identity mapping */ 1853 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1854 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1855 /* 1856 * For compatibility with old configuration, if no 64-bit MMIO 1857 * window is specified, but the ordinary (32-bit) memory 1858 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1859 * window, with a 64-bit MMIO window following on immediately 1860 * afterwards 1861 */ 1862 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1863 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1864 sphb->mem64_win_pciaddr = 1865 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1866 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1867 } 1868 1869 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1870 SpaprPhbState *s; 1871 1872 error_setg(errp, "PCI host bridges must have unique indexes"); 1873 error_append_hint(errp, "The following indexes are already in use:"); 1874 QLIST_FOREACH(s, &spapr->phbs, list) { 1875 error_append_hint(errp, " %d", s->index); 1876 } 1877 error_append_hint(errp, "\nTry another value for the index property\n"); 1878 return; 1879 } 1880 1881 if (sphb->numa_node != -1 && 1882 (sphb->numa_node >= MAX_NODES || 1883 !ms->numa_state->nodes[sphb->numa_node].present)) { 1884 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1885 return; 1886 } 1887 1888 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1889 1890 /* Initialize memory regions */ 1891 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname); 1892 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1893 g_free(namebuf); 1894 1895 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname); 1896 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1897 namebuf, &sphb->memspace, 1898 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1899 g_free(namebuf); 1900 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1901 &sphb->mem32window); 1902 1903 if (sphb->mem64_win_size != 0) { 1904 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname); 1905 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1906 namebuf, &sphb->memspace, 1907 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1908 g_free(namebuf); 1909 1910 memory_region_add_subregion(get_system_memory(), 1911 sphb->mem64_win_addr, 1912 &sphb->mem64window); 1913 } 1914 1915 /* Initialize IO regions */ 1916 namebuf = g_strdup_printf("%s.io", sphb->dtbusname); 1917 memory_region_init(&sphb->iospace, OBJECT(sphb), 1918 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1919 g_free(namebuf); 1920 1921 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname); 1922 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1923 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1924 g_free(namebuf); 1925 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1926 &sphb->iowindow); 1927 1928 bus = pci_register_root_bus(dev, NULL, 1929 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb, 1930 &sphb->memspace, &sphb->iospace, 1931 PCI_DEVFN(0, 0), PCI_NUM_PINS, 1932 TYPE_PCI_BUS); 1933 1934 /* 1935 * Despite resembling a vanilla PCI bus in most ways, the PAPR 1936 * para-virtualized PCI bus *does* permit PCI-E extended config 1937 * space access 1938 */ 1939 if (sphb->pcie_ecs) { 1940 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 1941 } 1942 phb->bus = bus; 1943 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb)); 1944 1945 /* 1946 * Initialize PHB address space. 1947 * By default there will be at least one subregion for default 1948 * 32bit DMA window. 1949 * Later the guest might want to create another DMA window 1950 * which will become another memory subregion. 1951 */ 1952 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname); 1953 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1954 namebuf, UINT64_MAX); 1955 g_free(namebuf); 1956 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1957 sphb->dtbusname); 1958 1959 /* 1960 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1961 * we need to allocate some memory to catch those writes coming 1962 * from msi_notify()/msix_notify(). 1963 * As MSIMessage:addr is going to be the same and MSIMessage:data 1964 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1965 * be used. 1966 * 1967 * For KVM we want to ensure that this memory is a full page so that 1968 * our memory slot is of page size granularity. 1969 */ 1970 if (kvm_enabled()) { 1971 msi_window_size = qemu_real_host_page_size; 1972 } 1973 1974 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, 1975 "msi", msi_window_size); 1976 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1977 &sphb->msiwindow); 1978 1979 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1980 1981 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1982 1983 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1984 1985 /* Initialize the LSI table */ 1986 for (i = 0; i < PCI_NUM_PINS; i++) { 1987 int irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i; 1988 1989 if (smc->legacy_irq_allocation) { 1990 irq = spapr_irq_findone(spapr, errp); 1991 if (irq < 0) { 1992 error_prepend(errp, "can't allocate LSIs: "); 1993 /* 1994 * Older machines will never support PHB hotplug, ie, this is an 1995 * init only path and QEMU will terminate. No need to rollback. 1996 */ 1997 return; 1998 } 1999 } 2000 2001 if (spapr_irq_claim(spapr, irq, true, errp) < 0) { 2002 error_prepend(errp, "can't allocate LSIs: "); 2003 goto unrealize; 2004 } 2005 2006 sphb->lsi_table[i].irq = irq; 2007 } 2008 2009 /* allocate connectors for child PCI devices */ 2010 add_drcs(sphb, phb->bus); 2011 2012 /* DMA setup */ 2013 for (i = 0; i < windows_supported; ++i) { 2014 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 2015 if (!tcet) { 2016 error_setg(errp, "Creating window#%d failed for %s", 2017 i, sphb->dtbusname); 2018 goto unrealize; 2019 } 2020 memory_region_add_subregion(&sphb->iommu_root, 0, 2021 spapr_tce_get_iommu(tcet)); 2022 } 2023 2024 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, 2025 spapr_phb_destroy_msi); 2026 return; 2027 2028 unrealize: 2029 spapr_phb_unrealize(dev); 2030 } 2031 2032 static int spapr_phb_children_reset(Object *child, void *opaque) 2033 { 2034 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 2035 2036 if (dev) { 2037 device_legacy_reset(dev); 2038 } 2039 2040 return 0; 2041 } 2042 2043 void spapr_phb_dma_reset(SpaprPhbState *sphb) 2044 { 2045 int i; 2046 SpaprTceTable *tcet; 2047 2048 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 2049 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 2050 2051 if (tcet && tcet->nb_table) { 2052 spapr_tce_table_disable(tcet); 2053 } 2054 } 2055 2056 /* Register default 32bit DMA window */ 2057 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 2058 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 2059 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 2060 } 2061 2062 static void spapr_phb_reset(DeviceState *qdev) 2063 { 2064 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 2065 Error *err = NULL; 2066 2067 spapr_phb_dma_reset(sphb); 2068 spapr_phb_nvgpu_free(sphb); 2069 spapr_phb_nvgpu_setup(sphb, &err); 2070 if (err) { 2071 error_report_err(err); 2072 } 2073 2074 /* Reset the IOMMU state */ 2075 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 2076 2077 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 2078 spapr_phb_vfio_reset(qdev); 2079 } 2080 2081 g_hash_table_remove_all(sphb->msi); 2082 } 2083 2084 static Property spapr_phb_properties[] = { 2085 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1), 2086 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size, 2087 SPAPR_PCI_MEM32_WIN_SIZE), 2088 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size, 2089 SPAPR_PCI_MEM64_WIN_SIZE), 2090 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size, 2091 SPAPR_PCI_IO_WIN_SIZE), 2092 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled, 2093 true), 2094 /* Default DMA window is 0..1GB */ 2095 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0), 2096 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000), 2097 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr, 2098 0x800000000000000ULL), 2099 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true), 2100 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask, 2101 (1ULL << 12) | (1ULL << 16) 2102 | (1ULL << 21) | (1ULL << 24)), 2103 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1), 2104 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState, 2105 pre_2_8_migration, false), 2106 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState, 2107 pcie_ecs, true), 2108 DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0), 2109 DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0), 2110 DEFINE_PROP_BOOL("pre-5.1-associativity", SpaprPhbState, 2111 pre_5_1_assoc, false), 2112 DEFINE_PROP_END_OF_LIST(), 2113 }; 2114 2115 static const VMStateDescription vmstate_spapr_pci_lsi = { 2116 .name = "spapr_pci/lsi", 2117 .version_id = 1, 2118 .minimum_version_id = 1, 2119 .fields = (VMStateField[]) { 2120 VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL), 2121 2122 VMSTATE_END_OF_LIST() 2123 }, 2124 }; 2125 2126 static const VMStateDescription vmstate_spapr_pci_msi = { 2127 .name = "spapr_pci/msi", 2128 .version_id = 1, 2129 .minimum_version_id = 1, 2130 .fields = (VMStateField []) { 2131 VMSTATE_UINT32(key, SpaprPciMsiMig), 2132 VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig), 2133 VMSTATE_UINT32(value.num, SpaprPciMsiMig), 2134 VMSTATE_END_OF_LIST() 2135 }, 2136 }; 2137 2138 static int spapr_pci_pre_save(void *opaque) 2139 { 2140 SpaprPhbState *sphb = opaque; 2141 GHashTableIter iter; 2142 gpointer key, value; 2143 int i; 2144 2145 if (sphb->pre_2_8_migration) { 2146 sphb->mig_liobn = sphb->dma_liobn[0]; 2147 sphb->mig_mem_win_addr = sphb->mem_win_addr; 2148 sphb->mig_mem_win_size = sphb->mem_win_size; 2149 sphb->mig_io_win_addr = sphb->io_win_addr; 2150 sphb->mig_io_win_size = sphb->io_win_size; 2151 2152 if ((sphb->mem64_win_size != 0) 2153 && (sphb->mem64_win_addr 2154 == (sphb->mem_win_addr + sphb->mem_win_size))) { 2155 sphb->mig_mem_win_size += sphb->mem64_win_size; 2156 } 2157 } 2158 2159 g_free(sphb->msi_devs); 2160 sphb->msi_devs = NULL; 2161 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 2162 if (!sphb->msi_devs_num) { 2163 return 0; 2164 } 2165 sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num); 2166 2167 g_hash_table_iter_init(&iter, sphb->msi); 2168 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 2169 sphb->msi_devs[i].key = *(uint32_t *) key; 2170 sphb->msi_devs[i].value = *(SpaprPciMsi *) value; 2171 } 2172 2173 return 0; 2174 } 2175 2176 static int spapr_pci_post_load(void *opaque, int version_id) 2177 { 2178 SpaprPhbState *sphb = opaque; 2179 gpointer key, value; 2180 int i; 2181 2182 for (i = 0; i < sphb->msi_devs_num; ++i) { 2183 key = g_memdup(&sphb->msi_devs[i].key, 2184 sizeof(sphb->msi_devs[i].key)); 2185 value = g_memdup(&sphb->msi_devs[i].value, 2186 sizeof(sphb->msi_devs[i].value)); 2187 g_hash_table_insert(sphb->msi, key, value); 2188 } 2189 g_free(sphb->msi_devs); 2190 sphb->msi_devs = NULL; 2191 sphb->msi_devs_num = 0; 2192 2193 return 0; 2194 } 2195 2196 static bool pre_2_8_migration(void *opaque, int version_id) 2197 { 2198 SpaprPhbState *sphb = opaque; 2199 2200 return sphb->pre_2_8_migration; 2201 } 2202 2203 static const VMStateDescription vmstate_spapr_pci = { 2204 .name = "spapr_pci", 2205 .version_id = 2, 2206 .minimum_version_id = 2, 2207 .pre_save = spapr_pci_pre_save, 2208 .post_load = spapr_pci_post_load, 2209 .fields = (VMStateField[]) { 2210 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL), 2211 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration), 2212 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration), 2213 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration), 2214 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration), 2215 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration), 2216 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0, 2217 vmstate_spapr_pci_lsi, SpaprPciLsi), 2218 VMSTATE_INT32(msi_devs_num, SpaprPhbState), 2219 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0, 2220 vmstate_spapr_pci_msi, SpaprPciMsiMig), 2221 VMSTATE_END_OF_LIST() 2222 }, 2223 }; 2224 2225 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 2226 PCIBus *rootbus) 2227 { 2228 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 2229 2230 return sphb->dtbusname; 2231 } 2232 2233 static void spapr_phb_class_init(ObjectClass *klass, void *data) 2234 { 2235 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 2236 DeviceClass *dc = DEVICE_CLASS(klass); 2237 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 2238 2239 hc->root_bus_path = spapr_phb_root_bus_path; 2240 dc->realize = spapr_phb_realize; 2241 dc->unrealize = spapr_phb_unrealize; 2242 device_class_set_props(dc, spapr_phb_properties); 2243 dc->reset = spapr_phb_reset; 2244 dc->vmsd = &vmstate_spapr_pci; 2245 /* Supported by TYPE_SPAPR_MACHINE */ 2246 dc->user_creatable = true; 2247 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 2248 hp->pre_plug = spapr_pci_pre_plug; 2249 hp->plug = spapr_pci_plug; 2250 hp->unplug = spapr_pci_unplug; 2251 hp->unplug_request = spapr_pci_unplug_request; 2252 } 2253 2254 static const TypeInfo spapr_phb_info = { 2255 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 2256 .parent = TYPE_PCI_HOST_BRIDGE, 2257 .instance_size = sizeof(SpaprPhbState), 2258 .instance_finalize = spapr_phb_finalizefn, 2259 .class_init = spapr_phb_class_init, 2260 .interfaces = (InterfaceInfo[]) { 2261 { TYPE_HOTPLUG_HANDLER }, 2262 { } 2263 } 2264 }; 2265 2266 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 2267 void *opaque) 2268 { 2269 unsigned int *bus_no = opaque; 2270 PCIBus *sec_bus = NULL; 2271 2272 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2273 PCI_HEADER_TYPE_BRIDGE)) { 2274 return; 2275 } 2276 2277 (*bus_no)++; 2278 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1); 2279 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 2280 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2281 2282 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2283 if (!sec_bus) { 2284 return; 2285 } 2286 2287 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 2288 spapr_phb_pci_enumerate_bridge, bus_no); 2289 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2290 } 2291 2292 static void spapr_phb_pci_enumerate(SpaprPhbState *phb) 2293 { 2294 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2295 unsigned int bus_no = 0; 2296 2297 pci_for_each_device(bus, pci_bus_num(bus), 2298 spapr_phb_pci_enumerate_bridge, 2299 &bus_no); 2300 2301 } 2302 2303 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb, 2304 uint32_t intc_phandle, void *fdt, int *node_offset) 2305 { 2306 int bus_off, i, j, ret; 2307 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 2308 struct { 2309 uint32_t hi; 2310 uint64_t child; 2311 uint64_t parent; 2312 uint64_t size; 2313 } QEMU_PACKED ranges[] = { 2314 { 2315 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 2316 cpu_to_be64(phb->io_win_addr), 2317 cpu_to_be64(memory_region_size(&phb->iospace)), 2318 }, 2319 { 2320 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 2321 cpu_to_be64(phb->mem_win_addr), 2322 cpu_to_be64(phb->mem_win_size), 2323 }, 2324 { 2325 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 2326 cpu_to_be64(phb->mem64_win_addr), 2327 cpu_to_be64(phb->mem64_win_size), 2328 }, 2329 }; 2330 const unsigned sizeof_ranges = 2331 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 2332 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 2333 uint32_t interrupt_map_mask[] = { 2334 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 2335 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 2336 uint32_t ddw_applicable[] = { 2337 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 2338 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 2339 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 2340 }; 2341 uint32_t ddw_extensions[] = { 2342 cpu_to_be32(1), 2343 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) 2344 }; 2345 SpaprTceTable *tcet; 2346 SpaprDrc *drc; 2347 Error *err = NULL; 2348 2349 /* Start populating the FDT */ 2350 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname)); 2351 if (node_offset) { 2352 *node_offset = bus_off; 2353 } 2354 2355 /* Write PHB properties */ 2356 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 2357 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 2358 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 2359 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 2360 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 2361 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 2362 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 2363 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 2364 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", 2365 spapr_irq_nr_msis(spapr))); 2366 2367 /* Dynamic DMA window */ 2368 if (phb->ddw_enabled) { 2369 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 2370 sizeof(ddw_applicable))); 2371 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 2372 &ddw_extensions, sizeof(ddw_extensions))); 2373 } 2374 2375 /* Advertise NUMA via ibm,associativity */ 2376 if (phb->numa_node != -1) { 2377 spapr_numa_write_associativity_dt(spapr, fdt, bus_off, phb->numa_node); 2378 } 2379 2380 /* Build the interrupt-map, this must matches what is done 2381 * in pci_swizzle_map_irq_fn 2382 */ 2383 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 2384 &interrupt_map_mask, sizeof(interrupt_map_mask))); 2385 for (i = 0; i < PCI_SLOT_MAX; i++) { 2386 for (j = 0; j < PCI_NUM_PINS; j++) { 2387 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 2388 int lsi_num = pci_swizzle(i, j); 2389 2390 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 2391 irqmap[1] = 0; 2392 irqmap[2] = 0; 2393 irqmap[3] = cpu_to_be32(j+1); 2394 irqmap[4] = cpu_to_be32(intc_phandle); 2395 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true); 2396 } 2397 } 2398 /* Write interrupt map */ 2399 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 2400 sizeof(interrupt_map))); 2401 2402 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 2403 if (!tcet) { 2404 return -1; 2405 } 2406 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 2407 tcet->liobn, tcet->bus_offset, 2408 tcet->nb_table << tcet->page_shift); 2409 2410 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index); 2411 if (drc) { 2412 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc)); 2413 2414 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index, 2415 sizeof(drc_index))); 2416 } 2417 2418 /* Walk the bridges and program the bus numbers*/ 2419 spapr_phb_pci_enumerate(phb); 2420 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 2421 2422 /* Walk the bridge and subordinate buses */ 2423 ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off); 2424 if (ret < 0) { 2425 return ret; 2426 } 2427 2428 spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &err); 2429 if (err) { 2430 error_report_err(err); 2431 } 2432 spapr_phb_nvgpu_ram_populate_dt(phb, fdt); 2433 2434 return 0; 2435 } 2436 2437 void spapr_pci_rtas_init(void) 2438 { 2439 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 2440 rtas_read_pci_config); 2441 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 2442 rtas_write_pci_config); 2443 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 2444 rtas_ibm_read_pci_config); 2445 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 2446 rtas_ibm_write_pci_config); 2447 if (msi_nonbroken) { 2448 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 2449 "ibm,query-interrupt-source-number", 2450 rtas_ibm_query_interrupt_source_number); 2451 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 2452 rtas_ibm_change_msi); 2453 } 2454 2455 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 2456 "ibm,set-eeh-option", 2457 rtas_ibm_set_eeh_option); 2458 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 2459 "ibm,get-config-addr-info2", 2460 rtas_ibm_get_config_addr_info2); 2461 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 2462 "ibm,read-slot-reset-state2", 2463 rtas_ibm_read_slot_reset_state2); 2464 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 2465 "ibm,set-slot-reset", 2466 rtas_ibm_set_slot_reset); 2467 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 2468 "ibm,configure-pe", 2469 rtas_ibm_configure_pe); 2470 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 2471 "ibm,slot-error-detail", 2472 rtas_ibm_slot_error_detail); 2473 } 2474 2475 static void spapr_pci_register_types(void) 2476 { 2477 type_register_static(&spapr_phb_info); 2478 } 2479 2480 type_init(spapr_pci_register_types) 2481 2482 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 2483 { 2484 bool be = *(bool *)opaque; 2485 2486 if (object_dynamic_cast(OBJECT(dev), "VGA") 2487 || object_dynamic_cast(OBJECT(dev), "secondary-vga") 2488 || object_dynamic_cast(OBJECT(dev), "bochs-display") 2489 || object_dynamic_cast(OBJECT(dev), "virtio-vga")) { 2490 object_property_set_bool(OBJECT(dev), "big-endian-framebuffer", be, 2491 &error_abort); 2492 } 2493 return 0; 2494 } 2495 2496 void spapr_pci_switch_vga(SpaprMachineState *spapr, bool big_endian) 2497 { 2498 SpaprPhbState *sphb; 2499 2500 /* 2501 * For backward compatibility with existing guests, we switch 2502 * the endianness of the VGA controller when changing the guest 2503 * interrupt mode 2504 */ 2505 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2506 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2507 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2508 &big_endian); 2509 } 2510 } 2511