1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "hw/hw.h" 30 #include "hw/sysbus.h" 31 #include "hw/pci/pci.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci_host.h" 35 #include "hw/ppc/spapr.h" 36 #include "hw/pci-host/spapr.h" 37 #include "exec/address-spaces.h" 38 #include "exec/ram_addr.h" 39 #include <libfdt.h> 40 #include "trace.h" 41 #include "qemu/error-report.h" 42 #include "qapi/qmp/qerror.h" 43 44 #include "hw/pci/pci_bridge.h" 45 #include "hw/pci/pci_bus.h" 46 #include "hw/ppc/spapr_drc.h" 47 #include "sysemu/device_tree.h" 48 #include "sysemu/kvm.h" 49 #include "sysemu/hostmem.h" 50 #include "sysemu/numa.h" 51 52 #include "hw/vfio/vfio.h" 53 54 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 55 #define RTAS_QUERY_FN 0 56 #define RTAS_CHANGE_FN 1 57 #define RTAS_RESET_FN 2 58 #define RTAS_CHANGE_MSI_FN 3 59 #define RTAS_CHANGE_MSIX_FN 4 60 61 /* Interrupt types to return on RTAS_CHANGE_* */ 62 #define RTAS_TYPE_MSI 1 63 #define RTAS_TYPE_MSIX 2 64 65 #define FDT_NAME_MAX 128 66 67 #define _FDT(exp) \ 68 do { \ 69 int ret = (exp); \ 70 if (ret < 0) { \ 71 return ret; \ 72 } \ 73 } while (0) 74 75 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid) 76 { 77 sPAPRPHBState *sphb; 78 79 QLIST_FOREACH(sphb, &spapr->phbs, list) { 80 if (sphb->buid != buid) { 81 continue; 82 } 83 return sphb; 84 } 85 86 return NULL; 87 } 88 89 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid, 90 uint32_t config_addr) 91 { 92 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid); 93 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 94 int bus_num = (config_addr >> 16) & 0xFF; 95 int devfn = (config_addr >> 8) & 0xFF; 96 97 if (!phb) { 98 return NULL; 99 } 100 101 return pci_find_device(phb->bus, bus_num, devfn); 102 } 103 104 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 105 { 106 /* This handles the encoding of extended config space addresses */ 107 return ((arg >> 20) & 0xf00) | (arg & 0xff); 108 } 109 110 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid, 111 uint32_t addr, uint32_t size, 112 target_ulong rets) 113 { 114 PCIDevice *pci_dev; 115 uint32_t val; 116 117 if ((size != 1) && (size != 2) && (size != 4)) { 118 /* access must be 1, 2 or 4 bytes */ 119 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 120 return; 121 } 122 123 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 124 addr = rtas_pci_cfgaddr(addr); 125 126 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 127 /* Access must be to a valid device, within bounds and 128 * naturally aligned */ 129 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 130 return; 131 } 132 133 val = pci_host_config_read_common(pci_dev, addr, 134 pci_config_size(pci_dev), size); 135 136 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 137 rtas_st(rets, 1, val); 138 } 139 140 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 141 uint32_t token, uint32_t nargs, 142 target_ulong args, 143 uint32_t nret, target_ulong rets) 144 { 145 uint64_t buid; 146 uint32_t size, addr; 147 148 if ((nargs != 4) || (nret != 2)) { 149 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 150 return; 151 } 152 153 buid = rtas_ldq(args, 1); 154 size = rtas_ld(args, 3); 155 addr = rtas_ld(args, 0); 156 157 finish_read_pci_config(spapr, buid, addr, size, rets); 158 } 159 160 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 161 uint32_t token, uint32_t nargs, 162 target_ulong args, 163 uint32_t nret, target_ulong rets) 164 { 165 uint32_t size, addr; 166 167 if ((nargs != 2) || (nret != 2)) { 168 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 169 return; 170 } 171 172 size = rtas_ld(args, 1); 173 addr = rtas_ld(args, 0); 174 175 finish_read_pci_config(spapr, 0, addr, size, rets); 176 } 177 178 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid, 179 uint32_t addr, uint32_t size, 180 uint32_t val, target_ulong rets) 181 { 182 PCIDevice *pci_dev; 183 184 if ((size != 1) && (size != 2) && (size != 4)) { 185 /* access must be 1, 2 or 4 bytes */ 186 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 187 return; 188 } 189 190 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 191 addr = rtas_pci_cfgaddr(addr); 192 193 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 194 /* Access must be to a valid device, within bounds and 195 * naturally aligned */ 196 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 197 return; 198 } 199 200 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 201 val, size); 202 203 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 204 } 205 206 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 207 uint32_t token, uint32_t nargs, 208 target_ulong args, 209 uint32_t nret, target_ulong rets) 210 { 211 uint64_t buid; 212 uint32_t val, size, addr; 213 214 if ((nargs != 5) || (nret != 1)) { 215 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 216 return; 217 } 218 219 buid = rtas_ldq(args, 1); 220 val = rtas_ld(args, 4); 221 size = rtas_ld(args, 3); 222 addr = rtas_ld(args, 0); 223 224 finish_write_pci_config(spapr, buid, addr, size, val, rets); 225 } 226 227 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 228 uint32_t token, uint32_t nargs, 229 target_ulong args, 230 uint32_t nret, target_ulong rets) 231 { 232 uint32_t val, size, addr; 233 234 if ((nargs != 3) || (nret != 1)) { 235 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 236 return; 237 } 238 239 240 val = rtas_ld(args, 2); 241 size = rtas_ld(args, 1); 242 addr = rtas_ld(args, 0); 243 244 finish_write_pci_config(spapr, 0, addr, size, val, rets); 245 } 246 247 /* 248 * Set MSI/MSIX message data. 249 * This is required for msi_notify()/msix_notify() which 250 * will write at the addresses via spapr_msi_write(). 251 * 252 * If hwaddr == 0, all entries will have .data == first_irq i.e. 253 * table will be reset. 254 */ 255 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 256 unsigned first_irq, unsigned req_num) 257 { 258 unsigned i; 259 MSIMessage msg = { .address = addr, .data = first_irq }; 260 261 if (!msix) { 262 msi_set_message(pdev, msg); 263 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 264 return; 265 } 266 267 for (i = 0; i < req_num; ++i) { 268 msix_set_message(pdev, i, msg); 269 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 270 if (addr) { 271 ++msg.data; 272 } 273 } 274 } 275 276 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr, 277 uint32_t token, uint32_t nargs, 278 target_ulong args, uint32_t nret, 279 target_ulong rets) 280 { 281 uint32_t config_addr = rtas_ld(args, 0); 282 uint64_t buid = rtas_ldq(args, 1); 283 unsigned int func = rtas_ld(args, 3); 284 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 285 unsigned int seq_num = rtas_ld(args, 5); 286 unsigned int ret_intr_type; 287 unsigned int irq, max_irqs = 0; 288 sPAPRPHBState *phb = NULL; 289 PCIDevice *pdev = NULL; 290 spapr_pci_msi *msi; 291 int *config_addr_key; 292 Error *err = NULL; 293 294 switch (func) { 295 case RTAS_CHANGE_MSI_FN: 296 case RTAS_CHANGE_FN: 297 ret_intr_type = RTAS_TYPE_MSI; 298 break; 299 case RTAS_CHANGE_MSIX_FN: 300 ret_intr_type = RTAS_TYPE_MSIX; 301 break; 302 default: 303 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 304 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 305 return; 306 } 307 308 /* Fins sPAPRPHBState */ 309 phb = spapr_pci_find_phb(spapr, buid); 310 if (phb) { 311 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 312 } 313 if (!phb || !pdev) { 314 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 315 return; 316 } 317 318 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 319 320 /* Releasing MSIs */ 321 if (!req_num) { 322 if (!msi) { 323 trace_spapr_pci_msi("Releasing wrong config", config_addr); 324 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 325 return; 326 } 327 328 xics_spapr_free(spapr->xics, msi->first_irq, msi->num); 329 if (msi_present(pdev)) { 330 spapr_msi_setmsg(pdev, 0, false, 0, 0); 331 } 332 if (msix_present(pdev)) { 333 spapr_msi_setmsg(pdev, 0, true, 0, 0); 334 } 335 g_hash_table_remove(phb->msi, &config_addr); 336 337 trace_spapr_pci_msi("Released MSIs", config_addr); 338 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 339 rtas_st(rets, 1, 0); 340 return; 341 } 342 343 /* Enabling MSI */ 344 345 /* Check if the device supports as many IRQs as requested */ 346 if (ret_intr_type == RTAS_TYPE_MSI) { 347 max_irqs = msi_nr_vectors_allocated(pdev); 348 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 349 max_irqs = pdev->msix_entries_nr; 350 } 351 if (!max_irqs) { 352 error_report("Requested interrupt type %d is not enabled for device %x", 353 ret_intr_type, config_addr); 354 rtas_st(rets, 0, -1); /* Hardware error */ 355 return; 356 } 357 /* Correct the number if the guest asked for too many */ 358 if (req_num > max_irqs) { 359 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 360 req_num = max_irqs; 361 irq = 0; /* to avoid misleading trace */ 362 goto out; 363 } 364 365 /* Allocate MSIs */ 366 irq = xics_spapr_alloc_block(spapr->xics, req_num, false, 367 ret_intr_type == RTAS_TYPE_MSI, &err); 368 if (err) { 369 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 370 config_addr); 371 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 372 return; 373 } 374 375 /* Release previous MSIs */ 376 if (msi) { 377 xics_spapr_free(spapr->xics, msi->first_irq, msi->num); 378 g_hash_table_remove(phb->msi, &config_addr); 379 } 380 381 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 382 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 383 irq, req_num); 384 385 /* Add MSI device to cache */ 386 msi = g_new(spapr_pci_msi, 1); 387 msi->first_irq = irq; 388 msi->num = req_num; 389 config_addr_key = g_new(int, 1); 390 *config_addr_key = config_addr; 391 g_hash_table_insert(phb->msi, config_addr_key, msi); 392 393 out: 394 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 395 rtas_st(rets, 1, req_num); 396 rtas_st(rets, 2, ++seq_num); 397 if (nret > 3) { 398 rtas_st(rets, 3, ret_intr_type); 399 } 400 401 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 402 } 403 404 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 405 sPAPRMachineState *spapr, 406 uint32_t token, 407 uint32_t nargs, 408 target_ulong args, 409 uint32_t nret, 410 target_ulong rets) 411 { 412 uint32_t config_addr = rtas_ld(args, 0); 413 uint64_t buid = rtas_ldq(args, 1); 414 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 415 sPAPRPHBState *phb = NULL; 416 PCIDevice *pdev = NULL; 417 spapr_pci_msi *msi; 418 419 /* Find sPAPRPHBState */ 420 phb = spapr_pci_find_phb(spapr, buid); 421 if (phb) { 422 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 423 } 424 if (!phb || !pdev) { 425 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 426 return; 427 } 428 429 /* Find device descriptor and start IRQ */ 430 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 431 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 432 trace_spapr_pci_msi("Failed to return vector", config_addr); 433 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 434 return; 435 } 436 intr_src_num = msi->first_irq + ioa_intr_num; 437 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 438 intr_src_num); 439 440 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 441 rtas_st(rets, 1, intr_src_num); 442 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 443 } 444 445 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 446 sPAPRMachineState *spapr, 447 uint32_t token, uint32_t nargs, 448 target_ulong args, uint32_t nret, 449 target_ulong rets) 450 { 451 sPAPRPHBState *sphb; 452 uint32_t addr, option; 453 uint64_t buid; 454 int ret; 455 456 if ((nargs != 4) || (nret != 1)) { 457 goto param_error_exit; 458 } 459 460 buid = rtas_ldq(args, 1); 461 addr = rtas_ld(args, 0); 462 option = rtas_ld(args, 3); 463 464 sphb = spapr_pci_find_phb(spapr, buid); 465 if (!sphb) { 466 goto param_error_exit; 467 } 468 469 if (!spapr_phb_eeh_available(sphb)) { 470 goto param_error_exit; 471 } 472 473 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 474 rtas_st(rets, 0, ret); 475 return; 476 477 param_error_exit: 478 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 479 } 480 481 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 482 sPAPRMachineState *spapr, 483 uint32_t token, uint32_t nargs, 484 target_ulong args, uint32_t nret, 485 target_ulong rets) 486 { 487 sPAPRPHBState *sphb; 488 PCIDevice *pdev; 489 uint32_t addr, option; 490 uint64_t buid; 491 492 if ((nargs != 4) || (nret != 2)) { 493 goto param_error_exit; 494 } 495 496 buid = rtas_ldq(args, 1); 497 sphb = spapr_pci_find_phb(spapr, buid); 498 if (!sphb) { 499 goto param_error_exit; 500 } 501 502 if (!spapr_phb_eeh_available(sphb)) { 503 goto param_error_exit; 504 } 505 506 /* 507 * We always have PE address of form "00BB0001". "BB" 508 * represents the bus number of PE's primary bus. 509 */ 510 option = rtas_ld(args, 3); 511 switch (option) { 512 case RTAS_GET_PE_ADDR: 513 addr = rtas_ld(args, 0); 514 pdev = spapr_pci_find_dev(spapr, buid, addr); 515 if (!pdev) { 516 goto param_error_exit; 517 } 518 519 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1); 520 break; 521 case RTAS_GET_PE_MODE: 522 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 523 break; 524 default: 525 goto param_error_exit; 526 } 527 528 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 529 return; 530 531 param_error_exit: 532 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 533 } 534 535 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 536 sPAPRMachineState *spapr, 537 uint32_t token, uint32_t nargs, 538 target_ulong args, uint32_t nret, 539 target_ulong rets) 540 { 541 sPAPRPHBState *sphb; 542 uint64_t buid; 543 int state, ret; 544 545 if ((nargs != 3) || (nret != 4 && nret != 5)) { 546 goto param_error_exit; 547 } 548 549 buid = rtas_ldq(args, 1); 550 sphb = spapr_pci_find_phb(spapr, buid); 551 if (!sphb) { 552 goto param_error_exit; 553 } 554 555 if (!spapr_phb_eeh_available(sphb)) { 556 goto param_error_exit; 557 } 558 559 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 560 rtas_st(rets, 0, ret); 561 if (ret != RTAS_OUT_SUCCESS) { 562 return; 563 } 564 565 rtas_st(rets, 1, state); 566 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 567 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 568 if (nret >= 5) { 569 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 570 } 571 return; 572 573 param_error_exit: 574 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 575 } 576 577 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 578 sPAPRMachineState *spapr, 579 uint32_t token, uint32_t nargs, 580 target_ulong args, uint32_t nret, 581 target_ulong rets) 582 { 583 sPAPRPHBState *sphb; 584 uint32_t option; 585 uint64_t buid; 586 int ret; 587 588 if ((nargs != 4) || (nret != 1)) { 589 goto param_error_exit; 590 } 591 592 buid = rtas_ldq(args, 1); 593 option = rtas_ld(args, 3); 594 sphb = spapr_pci_find_phb(spapr, buid); 595 if (!sphb) { 596 goto param_error_exit; 597 } 598 599 if (!spapr_phb_eeh_available(sphb)) { 600 goto param_error_exit; 601 } 602 603 ret = spapr_phb_vfio_eeh_reset(sphb, option); 604 rtas_st(rets, 0, ret); 605 return; 606 607 param_error_exit: 608 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 609 } 610 611 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 612 sPAPRMachineState *spapr, 613 uint32_t token, uint32_t nargs, 614 target_ulong args, uint32_t nret, 615 target_ulong rets) 616 { 617 sPAPRPHBState *sphb; 618 uint64_t buid; 619 int ret; 620 621 if ((nargs != 3) || (nret != 1)) { 622 goto param_error_exit; 623 } 624 625 buid = rtas_ldq(args, 1); 626 sphb = spapr_pci_find_phb(spapr, buid); 627 if (!sphb) { 628 goto param_error_exit; 629 } 630 631 if (!spapr_phb_eeh_available(sphb)) { 632 goto param_error_exit; 633 } 634 635 ret = spapr_phb_vfio_eeh_configure(sphb); 636 rtas_st(rets, 0, ret); 637 return; 638 639 param_error_exit: 640 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 641 } 642 643 /* To support it later */ 644 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 645 sPAPRMachineState *spapr, 646 uint32_t token, uint32_t nargs, 647 target_ulong args, uint32_t nret, 648 target_ulong rets) 649 { 650 sPAPRPHBState *sphb; 651 int option; 652 uint64_t buid; 653 654 if ((nargs != 8) || (nret != 1)) { 655 goto param_error_exit; 656 } 657 658 buid = rtas_ldq(args, 1); 659 sphb = spapr_pci_find_phb(spapr, buid); 660 if (!sphb) { 661 goto param_error_exit; 662 } 663 664 if (!spapr_phb_eeh_available(sphb)) { 665 goto param_error_exit; 666 } 667 668 option = rtas_ld(args, 7); 669 switch (option) { 670 case RTAS_SLOT_TEMP_ERR_LOG: 671 case RTAS_SLOT_PERM_ERR_LOG: 672 break; 673 default: 674 goto param_error_exit; 675 } 676 677 /* We don't have error log yet */ 678 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 679 return; 680 681 param_error_exit: 682 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 683 } 684 685 static int pci_spapr_swizzle(int slot, int pin) 686 { 687 return (slot + pin) % PCI_NUM_PINS; 688 } 689 690 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) 691 { 692 /* 693 * Here we need to convert pci_dev + irq_num to some unique value 694 * which is less than number of IRQs on the specific bus (4). We 695 * use standard PCI swizzling, that is (slot number + pin number) 696 * % 4. 697 */ 698 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); 699 } 700 701 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 702 { 703 /* 704 * Here we use the number returned by pci_spapr_map_irq to find a 705 * corresponding qemu_irq. 706 */ 707 sPAPRPHBState *phb = opaque; 708 709 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 710 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); 711 } 712 713 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 714 { 715 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 716 PCIINTxRoute route; 717 718 route.mode = PCI_INTX_ENABLED; 719 route.irq = sphb->lsi_table[pin].irq; 720 721 return route; 722 } 723 724 /* 725 * MSI/MSIX memory region implementation. 726 * The handler handles both MSI and MSIX. 727 * For MSI-X, the vector number is encoded as a part of the address, 728 * data is set to 0. 729 * For MSI, the vector number is encoded in least bits in data. 730 */ 731 static void spapr_msi_write(void *opaque, hwaddr addr, 732 uint64_t data, unsigned size) 733 { 734 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 735 uint32_t irq = data; 736 737 trace_spapr_pci_msi_write(addr, data, irq); 738 739 qemu_irq_pulse(xics_get_qirq(spapr->xics, irq)); 740 } 741 742 static const MemoryRegionOps spapr_msi_ops = { 743 /* There is no .read as the read result is undefined by PCI spec */ 744 .read = NULL, 745 .write = spapr_msi_write, 746 .endianness = DEVICE_LITTLE_ENDIAN 747 }; 748 749 /* 750 * PHB PCI device 751 */ 752 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 753 { 754 sPAPRPHBState *phb = opaque; 755 756 return &phb->iommu_as; 757 } 758 759 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 760 { 761 char *path = NULL, *buf = NULL, *host = NULL; 762 763 /* Get the PCI VFIO host id */ 764 host = object_property_get_str(OBJECT(pdev), "host", NULL); 765 if (!host) { 766 goto err_out; 767 } 768 769 /* Construct the path of the file that will give us the DT location */ 770 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 771 g_free(host); 772 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) { 773 goto err_out; 774 } 775 g_free(path); 776 777 /* Construct and read from host device tree the loc-code */ 778 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); 779 g_free(buf); 780 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) { 781 goto err_out; 782 } 783 return buf; 784 785 err_out: 786 g_free(path); 787 return NULL; 788 } 789 790 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 791 { 792 char *buf; 793 const char *devtype = "qemu"; 794 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 795 796 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 797 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 798 if (buf) { 799 return buf; 800 } 801 devtype = "vfio"; 802 } 803 /* 804 * For emulated devices and VFIO-failure case, make up 805 * the loc-code. 806 */ 807 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 808 devtype, pdev->name, sphb->index, busnr, 809 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 810 return buf; 811 } 812 813 /* Macros to operate with address in OF binding to PCI */ 814 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 815 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 816 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 817 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 818 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 819 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 820 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 821 #define b_fff(x) b_x((x), 8, 3) /* function number */ 822 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 823 824 /* for 'reg'/'assigned-addresses' OF properties */ 825 #define RESOURCE_CELLS_SIZE 2 826 #define RESOURCE_CELLS_ADDRESS 3 827 828 typedef struct ResourceFields { 829 uint32_t phys_hi; 830 uint32_t phys_mid; 831 uint32_t phys_lo; 832 uint32_t size_hi; 833 uint32_t size_lo; 834 } QEMU_PACKED ResourceFields; 835 836 typedef struct ResourceProps { 837 ResourceFields reg[8]; 838 ResourceFields assigned[7]; 839 uint32_t reg_len; 840 uint32_t assigned_len; 841 } ResourceProps; 842 843 /* fill in the 'reg'/'assigned-resources' OF properties for 844 * a PCI device. 'reg' describes resource requirements for a 845 * device's IO/MEM regions, 'assigned-addresses' describes the 846 * actual resource assignments. 847 * 848 * the properties are arrays of ('phys-addr', 'size') pairs describing 849 * the addressable regions of the PCI device, where 'phys-addr' is a 850 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 851 * (phys.hi, phys.mid, phys.lo), and 'size' is a 852 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 853 * 854 * phys.hi = 0xYYXXXXZZ, where: 855 * 0xYY = npt000ss 856 * ||| | 857 * ||| +-- space code 858 * ||| | 859 * ||| + 00 if configuration space 860 * ||| + 01 if IO region, 861 * ||| + 10 if 32-bit MEM region 862 * ||| + 11 if 64-bit MEM region 863 * ||| 864 * ||+------ for non-relocatable IO: 1 if aliased 865 * || for relocatable IO: 1 if below 64KB 866 * || for MEM: 1 if below 1MB 867 * |+------- 1 if region is prefetchable 868 * +-------- 1 if region is non-relocatable 869 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 870 * bits respectively 871 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 872 * to the region 873 * 874 * phys.mid and phys.lo correspond respectively to the hi/lo portions 875 * of the actual address of the region. 876 * 877 * how the phys-addr/size values are used differ slightly between 878 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has 879 * an additional description for the config space region of the 880 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0 881 * to describe the region as relocatable, with an address-mapping 882 * that corresponds directly to the PHB's address space for the 883 * resource. 'assigned-addresses' always has n=1 set with an absolute 884 * address assigned for the resource. in general, 'assigned-addresses' 885 * won't be populated, since addresses for PCI devices are generally 886 * unmapped initially and left to the guest to assign. 887 * 888 * note also that addresses defined in these properties are, at least 889 * for PAPR guests, relative to the PHBs IO/MEM windows, and 890 * correspond directly to the addresses in the BARs. 891 * 892 * in accordance with PCI Bus Binding to Open Firmware, 893 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 894 * Appendix C. 895 */ 896 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 897 { 898 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 899 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 900 b_ddddd(PCI_SLOT(d->devfn)) | 901 b_fff(PCI_FUNC(d->devfn))); 902 ResourceFields *reg, *assigned; 903 int i, reg_idx = 0, assigned_idx = 0; 904 905 /* config space region */ 906 reg = &rp->reg[reg_idx++]; 907 reg->phys_hi = cpu_to_be32(dev_id); 908 reg->phys_mid = 0; 909 reg->phys_lo = 0; 910 reg->size_hi = 0; 911 reg->size_lo = 0; 912 913 for (i = 0; i < PCI_NUM_REGIONS; i++) { 914 if (!d->io_regions[i].size) { 915 continue; 916 } 917 918 reg = &rp->reg[reg_idx++]; 919 920 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 921 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 922 reg->phys_hi |= cpu_to_be32(b_ss(1)); 923 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 924 reg->phys_hi |= cpu_to_be32(b_ss(3)); 925 } else { 926 reg->phys_hi |= cpu_to_be32(b_ss(2)); 927 } 928 reg->phys_mid = 0; 929 reg->phys_lo = 0; 930 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 931 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 932 933 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) { 934 continue; 935 } 936 937 assigned = &rp->assigned[assigned_idx++]; 938 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1)); 939 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32); 940 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr); 941 assigned->size_hi = reg->size_hi; 942 assigned->size_lo = reg->size_lo; 943 } 944 945 rp->reg_len = reg_idx * sizeof(ResourceFields); 946 rp->assigned_len = assigned_idx * sizeof(ResourceFields); 947 } 948 949 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 950 PCIDevice *pdev); 951 952 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset, 953 sPAPRPHBState *sphb) 954 { 955 ResourceProps rp; 956 bool is_bridge = false; 957 int pci_status, err; 958 char *buf = NULL; 959 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev); 960 uint32_t max_msi, max_msix; 961 962 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) == 963 PCI_HEADER_TYPE_BRIDGE) { 964 is_bridge = true; 965 } 966 967 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 968 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", 969 pci_default_read_config(dev, PCI_VENDOR_ID, 2))); 970 _FDT(fdt_setprop_cell(fdt, offset, "device-id", 971 pci_default_read_config(dev, PCI_DEVICE_ID, 2))); 972 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", 973 pci_default_read_config(dev, PCI_REVISION_ID, 1))); 974 _FDT(fdt_setprop_cell(fdt, offset, "class-code", 975 pci_default_read_config(dev, PCI_CLASS_PROG, 3))); 976 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) { 977 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", 978 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1))); 979 } 980 981 if (!is_bridge) { 982 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", 983 pci_default_read_config(dev, PCI_MIN_GNT, 1))); 984 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", 985 pci_default_read_config(dev, PCI_MAX_LAT, 1))); 986 } 987 988 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) { 989 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", 990 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2))); 991 } 992 993 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) { 994 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 995 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2))); 996 } 997 998 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", 999 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1))); 1000 1001 /* the following fdt cells are masked off the pci status register */ 1002 pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1003 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1004 PCI_STATUS_DEVSEL_MASK & pci_status)); 1005 1006 if (pci_status & PCI_STATUS_FAST_BACK) { 1007 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1008 } 1009 if (pci_status & PCI_STATUS_66MHZ) { 1010 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1011 } 1012 if (pci_status & PCI_STATUS_UDF) { 1013 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1014 } 1015 1016 /* NOTE: this is normally generated by firmware via path/unit name, 1017 * but in our case we must set it manually since it does not get 1018 * processed by OF beforehand 1019 */ 1020 _FDT(fdt_setprop_string(fdt, offset, "name", "pci")); 1021 buf = spapr_phb_get_loc_code(sphb, dev); 1022 if (!buf) { 1023 error_report("Failed setting the ibm,loc-code"); 1024 return -1; 1025 } 1026 1027 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf); 1028 g_free(buf); 1029 if (err < 0) { 1030 return err; 1031 } 1032 1033 if (drc_index) { 1034 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)); 1035 } 1036 1037 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1038 RESOURCE_CELLS_ADDRESS)); 1039 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1040 RESOURCE_CELLS_SIZE)); 1041 1042 max_msi = msi_nr_vectors_allocated(dev); 1043 if (max_msi) { 1044 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1045 } 1046 max_msix = dev->msix_entries_nr; 1047 if (max_msix) { 1048 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1049 } 1050 1051 populate_resource_props(dev, &rp); 1052 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1053 _FDT(fdt_setprop(fdt, offset, "assigned-addresses", 1054 (uint8_t *)rp.assigned, rp.assigned_len)); 1055 1056 return 0; 1057 } 1058 1059 /* create OF node for pci device and required OF DT properties */ 1060 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev, 1061 void *fdt, int node_offset) 1062 { 1063 int offset, ret; 1064 int slot = PCI_SLOT(dev->devfn); 1065 int func = PCI_FUNC(dev->devfn); 1066 char nodename[FDT_NAME_MAX]; 1067 1068 if (func != 0) { 1069 snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func); 1070 } else { 1071 snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot); 1072 } 1073 offset = fdt_add_subnode(fdt, node_offset, nodename); 1074 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb); 1075 1076 g_assert(!ret); 1077 if (ret) { 1078 return 0; 1079 } 1080 return offset; 1081 } 1082 1083 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc, 1084 sPAPRPHBState *phb, 1085 PCIDevice *pdev, 1086 Error **errp) 1087 { 1088 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1089 DeviceState *dev = DEVICE(pdev); 1090 void *fdt = NULL; 1091 int fdt_start_offset = 0, fdt_size; 1092 1093 fdt = create_device_tree(&fdt_size); 1094 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0); 1095 if (!fdt_start_offset) { 1096 error_setg(errp, "Failed to create pci child device tree node"); 1097 goto out; 1098 } 1099 1100 drck->attach(drc, DEVICE(pdev), 1101 fdt, fdt_start_offset, !dev->hotplugged, errp); 1102 out: 1103 if (*errp) { 1104 g_free(fdt); 1105 } 1106 } 1107 1108 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque) 1109 { 1110 /* some version guests do not wait for completion of a device 1111 * cleanup (generally done asynchronously by the kernel) before 1112 * signaling to QEMU that the device is safe, but instead sleep 1113 * for some 'safe' period of time. unfortunately on a busy host 1114 * this sleep isn't guaranteed to be long enough, resulting in 1115 * bad things like IRQ lines being left asserted during final 1116 * device removal. to deal with this we call reset just prior 1117 * to finalizing the device, which will put the device back into 1118 * an 'idle' state, as the device cleanup code expects. 1119 */ 1120 pci_device_reset(PCI_DEVICE(dev)); 1121 object_unparent(OBJECT(dev)); 1122 } 1123 1124 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc, 1125 sPAPRPHBState *phb, 1126 PCIDevice *pdev, 1127 Error **errp) 1128 { 1129 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1130 1131 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp); 1132 } 1133 1134 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb, 1135 uint32_t busnr, 1136 int32_t devfn) 1137 { 1138 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI, 1139 (phb->index << 16) | 1140 (busnr << 8) | 1141 devfn); 1142 } 1143 1144 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb, 1145 PCIDevice *pdev) 1146 { 1147 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 1148 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn); 1149 } 1150 1151 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 1152 PCIDevice *pdev) 1153 { 1154 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1155 sPAPRDRConnectorClass *drck; 1156 1157 if (!drc) { 1158 return 0; 1159 } 1160 1161 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1162 return drck->get_index(drc); 1163 } 1164 1165 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler, 1166 DeviceState *plugged_dev, Error **errp) 1167 { 1168 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1169 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1170 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1171 Error *local_err = NULL; 1172 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1173 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1174 1175 /* if DR is disabled we don't need to do anything in the case of 1176 * hotplug or coldplug callbacks 1177 */ 1178 if (!phb->dr_enabled) { 1179 /* if this is a hotplug operation initiated by the user 1180 * we need to let them know it's not enabled 1181 */ 1182 if (plugged_dev->hotplugged) { 1183 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1184 object_get_typename(OBJECT(phb))); 1185 } 1186 return; 1187 } 1188 1189 g_assert(drc); 1190 1191 /* Following the QEMU convention used for PCIe multifunction 1192 * hotplug, we do not allow functions to be hotplugged to a 1193 * slot that already has function 0 present 1194 */ 1195 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1196 PCI_FUNC(pdev->devfn) != 0) { 1197 error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s," 1198 " additional functions can no longer be exposed to guest.", 1199 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1200 return; 1201 } 1202 1203 spapr_phb_add_pci_device(drc, phb, pdev, &local_err); 1204 if (local_err) { 1205 error_propagate(errp, local_err); 1206 return; 1207 } 1208 1209 /* If this is function 0, signal hotplug for all the device functions. 1210 * Otherwise defer sending the hotplug event. 1211 */ 1212 if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) { 1213 int i; 1214 1215 for (i = 0; i < 8; i++) { 1216 sPAPRDRConnector *func_drc; 1217 sPAPRDRConnectorClass *func_drck; 1218 sPAPRDREntitySense state; 1219 1220 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1221 PCI_DEVFN(slotnr, i)); 1222 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1223 func_drck->entity_sense(func_drc, &state); 1224 1225 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1226 spapr_hotplug_req_add_by_index(func_drc); 1227 } 1228 } 1229 } 1230 } 1231 1232 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler, 1233 DeviceState *plugged_dev, Error **errp) 1234 { 1235 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1236 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1237 sPAPRDRConnectorClass *drck; 1238 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1239 Error *local_err = NULL; 1240 1241 if (!phb->dr_enabled) { 1242 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1243 object_get_typename(OBJECT(phb))); 1244 return; 1245 } 1246 1247 g_assert(drc); 1248 1249 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1250 if (!drck->release_pending(drc)) { 1251 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1252 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1253 sPAPRDRConnector *func_drc; 1254 sPAPRDRConnectorClass *func_drck; 1255 sPAPRDREntitySense state; 1256 int i; 1257 1258 /* ensure any other present functions are pending unplug */ 1259 if (PCI_FUNC(pdev->devfn) == 0) { 1260 for (i = 1; i < 8; i++) { 1261 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1262 PCI_DEVFN(slotnr, i)); 1263 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1264 func_drck->entity_sense(func_drc, &state); 1265 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1266 && !func_drck->release_pending(func_drc)) { 1267 error_setg(errp, 1268 "PCI: slot %d, function %d still present. " 1269 "Must unplug all non-0 functions first.", 1270 slotnr, i); 1271 return; 1272 } 1273 } 1274 } 1275 1276 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err); 1277 if (local_err) { 1278 error_propagate(errp, local_err); 1279 return; 1280 } 1281 1282 /* if this isn't func 0, defer unplug event. otherwise signal removal 1283 * for all present functions 1284 */ 1285 if (PCI_FUNC(pdev->devfn) == 0) { 1286 for (i = 7; i >= 0; i--) { 1287 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1288 PCI_DEVFN(slotnr, i)); 1289 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1290 func_drck->entity_sense(func_drc, &state); 1291 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1292 spapr_hotplug_req_remove_by_index(func_drc); 1293 } 1294 } 1295 } 1296 } 1297 } 1298 1299 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1300 { 1301 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1302 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1303 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 1304 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1305 char *namebuf; 1306 int i; 1307 PCIBus *bus; 1308 uint64_t msi_window_size = 4096; 1309 sPAPRTCETable *tcet; 1310 const unsigned windows_supported = 1311 sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1; 1312 1313 if (sphb->index != (uint32_t)-1) { 1314 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1315 Error *local_err = NULL; 1316 1317 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn[0] != (uint32_t)-1) 1318 || (sphb->dma_liobn[1] != (uint32_t)-1 && windows_supported == 2) 1319 || (sphb->mem_win_addr != (hwaddr)-1) 1320 || (sphb->mem64_win_addr != (hwaddr)-1) 1321 || (sphb->io_win_addr != (hwaddr)-1)) { 1322 error_setg(errp, "Either \"index\" or other parameters must" 1323 " be specified for PAPR PHB, not both"); 1324 return; 1325 } 1326 1327 smc->phb_placement(spapr, sphb->index, 1328 &sphb->buid, &sphb->io_win_addr, 1329 &sphb->mem_win_addr, &sphb->mem64_win_addr, 1330 windows_supported, sphb->dma_liobn, &local_err); 1331 if (local_err) { 1332 error_propagate(errp, local_err); 1333 return; 1334 } 1335 } 1336 1337 if (sphb->buid == (uint64_t)-1) { 1338 error_setg(errp, "BUID not specified for PHB"); 1339 return; 1340 } 1341 1342 if ((sphb->dma_liobn[0] == (uint32_t)-1) || 1343 ((sphb->dma_liobn[1] == (uint32_t)-1) && (windows_supported > 1))) { 1344 error_setg(errp, "LIOBN(s) not specified for PHB"); 1345 return; 1346 } 1347 1348 if (sphb->mem_win_addr == (hwaddr)-1) { 1349 error_setg(errp, "Memory window address not specified for PHB"); 1350 return; 1351 } 1352 1353 if (sphb->io_win_addr == (hwaddr)-1) { 1354 error_setg(errp, "IO window address not specified for PHB"); 1355 return; 1356 } 1357 1358 if (sphb->mem64_win_size != 0) { 1359 if (sphb->mem64_win_addr == (hwaddr)-1) { 1360 error_setg(errp, 1361 "64-bit memory window address not specified for PHB"); 1362 return; 1363 } 1364 1365 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1366 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1367 " (max 2 GiB)", sphb->mem_win_size); 1368 return; 1369 } 1370 1371 if (sphb->mem64_win_pciaddr == (hwaddr)-1) { 1372 /* 64-bit window defaults to identity mapping */ 1373 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1374 } 1375 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1376 /* 1377 * For compatibility with old configuration, if no 64-bit MMIO 1378 * window is specified, but the ordinary (32-bit) memory 1379 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1380 * window, with a 64-bit MMIO window following on immediately 1381 * afterwards 1382 */ 1383 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1384 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1385 sphb->mem64_win_pciaddr = 1386 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1387 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1388 } 1389 1390 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1391 error_setg(errp, "PCI host bridges must have unique BUIDs"); 1392 return; 1393 } 1394 1395 if (sphb->numa_node != -1 && 1396 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) { 1397 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1398 return; 1399 } 1400 1401 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1402 1403 namebuf = alloca(strlen(sphb->dtbusname) + 32); 1404 1405 /* Initialize memory regions */ 1406 sprintf(namebuf, "%s.mmio", sphb->dtbusname); 1407 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1408 1409 sprintf(namebuf, "%s.mmio32-alias", sphb->dtbusname); 1410 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1411 namebuf, &sphb->memspace, 1412 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1413 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1414 &sphb->mem32window); 1415 1416 sprintf(namebuf, "%s.mmio64-alias", sphb->dtbusname); 1417 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1418 namebuf, &sphb->memspace, 1419 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1420 memory_region_add_subregion(get_system_memory(), sphb->mem64_win_addr, 1421 &sphb->mem64window); 1422 1423 /* Initialize IO regions */ 1424 sprintf(namebuf, "%s.io", sphb->dtbusname); 1425 memory_region_init(&sphb->iospace, OBJECT(sphb), 1426 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1427 1428 sprintf(namebuf, "%s.io-alias", sphb->dtbusname); 1429 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1430 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1431 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1432 &sphb->iowindow); 1433 1434 bus = pci_register_bus(dev, NULL, 1435 pci_spapr_set_irq, pci_spapr_map_irq, sphb, 1436 &sphb->memspace, &sphb->iospace, 1437 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); 1438 phb->bus = bus; 1439 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL); 1440 1441 /* 1442 * Initialize PHB address space. 1443 * By default there will be at least one subregion for default 1444 * 32bit DMA window. 1445 * Later the guest might want to create another DMA window 1446 * which will become another memory subregion. 1447 */ 1448 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname); 1449 1450 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1451 namebuf, UINT64_MAX); 1452 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1453 sphb->dtbusname); 1454 1455 /* 1456 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1457 * we need to allocate some memory to catch those writes coming 1458 * from msi_notify()/msix_notify(). 1459 * As MSIMessage:addr is going to be the same and MSIMessage:data 1460 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1461 * be used. 1462 * 1463 * For KVM we want to ensure that this memory is a full page so that 1464 * our memory slot is of page size granularity. 1465 */ 1466 #ifdef CONFIG_KVM 1467 if (kvm_enabled()) { 1468 msi_window_size = getpagesize(); 1469 } 1470 #endif 1471 1472 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr, 1473 "msi", msi_window_size); 1474 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1475 &sphb->msiwindow); 1476 1477 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1478 1479 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1480 1481 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1482 1483 /* Initialize the LSI table */ 1484 for (i = 0; i < PCI_NUM_PINS; i++) { 1485 uint32_t irq; 1486 Error *local_err = NULL; 1487 1488 irq = xics_spapr_alloc_block(spapr->xics, 1, true, false, &local_err); 1489 if (local_err) { 1490 error_propagate(errp, local_err); 1491 error_prepend(errp, "can't allocate LSIs: "); 1492 return; 1493 } 1494 1495 sphb->lsi_table[i].irq = irq; 1496 } 1497 1498 /* allocate connectors for child PCI devices */ 1499 if (sphb->dr_enabled) { 1500 for (i = 0; i < PCI_SLOT_MAX * 8; i++) { 1501 spapr_dr_connector_new(OBJECT(phb), 1502 SPAPR_DR_CONNECTOR_TYPE_PCI, 1503 (sphb->index << 16) | i); 1504 } 1505 } 1506 1507 /* DMA setup */ 1508 for (i = 0; i < windows_supported; ++i) { 1509 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 1510 if (!tcet) { 1511 error_setg(errp, "Creating window#%d failed for %s", 1512 i, sphb->dtbusname); 1513 return; 1514 } 1515 memory_region_add_subregion_overlap(&sphb->iommu_root, 0, 1516 spapr_tce_get_iommu(tcet), 0); 1517 } 1518 1519 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); 1520 } 1521 1522 static int spapr_phb_children_reset(Object *child, void *opaque) 1523 { 1524 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 1525 1526 if (dev) { 1527 device_reset(dev); 1528 } 1529 1530 return 0; 1531 } 1532 1533 void spapr_phb_dma_reset(sPAPRPHBState *sphb) 1534 { 1535 int i; 1536 sPAPRTCETable *tcet; 1537 1538 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 1539 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1540 1541 if (tcet && tcet->nb_table) { 1542 spapr_tce_table_disable(tcet); 1543 } 1544 } 1545 1546 /* Register default 32bit DMA window */ 1547 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 1548 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 1549 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 1550 } 1551 1552 static void spapr_phb_reset(DeviceState *qdev) 1553 { 1554 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 1555 1556 spapr_phb_dma_reset(sphb); 1557 1558 /* Reset the IOMMU state */ 1559 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 1560 1561 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 1562 spapr_phb_vfio_reset(qdev); 1563 } 1564 } 1565 1566 static Property spapr_phb_properties[] = { 1567 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1), 1568 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1), 1569 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn[0], -1), 1570 DEFINE_PROP_UINT32("liobn64", sPAPRPHBState, dma_liobn[1], -1), 1571 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1), 1572 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, 1573 SPAPR_PCI_MEM32_WIN_SIZE), 1574 DEFINE_PROP_UINT64("mem64_win_addr", sPAPRPHBState, mem64_win_addr, -1), 1575 DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size, 1576 SPAPR_PCI_MEM64_WIN_SIZE), 1577 DEFINE_PROP_UINT64("mem64_win_pciaddr", sPAPRPHBState, mem64_win_pciaddr, 1578 -1), 1579 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1), 1580 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, 1581 SPAPR_PCI_IO_WIN_SIZE), 1582 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled, 1583 true), 1584 /* Default DMA window is 0..1GB */ 1585 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0), 1586 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000), 1587 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr, 1588 0x800000000000000ULL), 1589 DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true), 1590 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask, 1591 (1ULL << 12) | (1ULL << 16)), 1592 DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1), 1593 DEFINE_PROP_END_OF_LIST(), 1594 }; 1595 1596 static const VMStateDescription vmstate_spapr_pci_lsi = { 1597 .name = "spapr_pci/lsi", 1598 .version_id = 1, 1599 .minimum_version_id = 1, 1600 .fields = (VMStateField[]) { 1601 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi), 1602 1603 VMSTATE_END_OF_LIST() 1604 }, 1605 }; 1606 1607 static const VMStateDescription vmstate_spapr_pci_msi = { 1608 .name = "spapr_pci/msi", 1609 .version_id = 1, 1610 .minimum_version_id = 1, 1611 .fields = (VMStateField []) { 1612 VMSTATE_UINT32(key, spapr_pci_msi_mig), 1613 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), 1614 VMSTATE_UINT32(value.num, spapr_pci_msi_mig), 1615 VMSTATE_END_OF_LIST() 1616 }, 1617 }; 1618 1619 static void spapr_pci_pre_save(void *opaque) 1620 { 1621 sPAPRPHBState *sphb = opaque; 1622 GHashTableIter iter; 1623 gpointer key, value; 1624 int i; 1625 1626 g_free(sphb->msi_devs); 1627 sphb->msi_devs = NULL; 1628 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 1629 if (!sphb->msi_devs_num) { 1630 return; 1631 } 1632 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig)); 1633 1634 g_hash_table_iter_init(&iter, sphb->msi); 1635 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 1636 sphb->msi_devs[i].key = *(uint32_t *) key; 1637 sphb->msi_devs[i].value = *(spapr_pci_msi *) value; 1638 } 1639 } 1640 1641 static int spapr_pci_post_load(void *opaque, int version_id) 1642 { 1643 sPAPRPHBState *sphb = opaque; 1644 gpointer key, value; 1645 int i; 1646 1647 for (i = 0; i < sphb->msi_devs_num; ++i) { 1648 key = g_memdup(&sphb->msi_devs[i].key, 1649 sizeof(sphb->msi_devs[i].key)); 1650 value = g_memdup(&sphb->msi_devs[i].value, 1651 sizeof(sphb->msi_devs[i].value)); 1652 g_hash_table_insert(sphb->msi, key, value); 1653 } 1654 g_free(sphb->msi_devs); 1655 sphb->msi_devs = NULL; 1656 sphb->msi_devs_num = 0; 1657 1658 return 0; 1659 } 1660 1661 static const VMStateDescription vmstate_spapr_pci = { 1662 .name = "spapr_pci", 1663 .version_id = 2, 1664 .minimum_version_id = 2, 1665 .pre_save = spapr_pci_pre_save, 1666 .post_load = spapr_pci_post_load, 1667 .fields = (VMStateField[]) { 1668 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState), 1669 VMSTATE_UINT32_EQUAL(dma_liobn[0], sPAPRPHBState), 1670 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState), 1671 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState), 1672 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState), 1673 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState), 1674 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, 1675 vmstate_spapr_pci_lsi, struct spapr_pci_lsi), 1676 VMSTATE_INT32(msi_devs_num, sPAPRPHBState), 1677 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0, 1678 vmstate_spapr_pci_msi, spapr_pci_msi_mig), 1679 VMSTATE_END_OF_LIST() 1680 }, 1681 }; 1682 1683 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 1684 PCIBus *rootbus) 1685 { 1686 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 1687 1688 return sphb->dtbusname; 1689 } 1690 1691 static void spapr_phb_class_init(ObjectClass *klass, void *data) 1692 { 1693 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 1694 DeviceClass *dc = DEVICE_CLASS(klass); 1695 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 1696 1697 hc->root_bus_path = spapr_phb_root_bus_path; 1698 dc->realize = spapr_phb_realize; 1699 dc->props = spapr_phb_properties; 1700 dc->reset = spapr_phb_reset; 1701 dc->vmsd = &vmstate_spapr_pci; 1702 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1703 hp->plug = spapr_phb_hot_plug_child; 1704 hp->unplug = spapr_phb_hot_unplug_child; 1705 } 1706 1707 static const TypeInfo spapr_phb_info = { 1708 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 1709 .parent = TYPE_PCI_HOST_BRIDGE, 1710 .instance_size = sizeof(sPAPRPHBState), 1711 .class_init = spapr_phb_class_init, 1712 .interfaces = (InterfaceInfo[]) { 1713 { TYPE_HOTPLUG_HANDLER }, 1714 { } 1715 } 1716 }; 1717 1718 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index) 1719 { 1720 DeviceState *dev; 1721 1722 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 1723 qdev_prop_set_uint32(dev, "index", index); 1724 qdev_init_nofail(dev); 1725 1726 return PCI_HOST_BRIDGE(dev); 1727 } 1728 1729 typedef struct sPAPRFDT { 1730 void *fdt; 1731 int node_off; 1732 sPAPRPHBState *sphb; 1733 } sPAPRFDT; 1734 1735 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev, 1736 void *opaque) 1737 { 1738 PCIBus *sec_bus; 1739 sPAPRFDT *p = opaque; 1740 int offset; 1741 sPAPRFDT s_fdt; 1742 1743 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off); 1744 if (!offset) { 1745 error_report("Failed to create pci child device tree node"); 1746 return; 1747 } 1748 1749 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 1750 PCI_HEADER_TYPE_BRIDGE)) { 1751 return; 1752 } 1753 1754 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 1755 if (!sec_bus) { 1756 return; 1757 } 1758 1759 s_fdt.fdt = p->fdt; 1760 s_fdt.node_off = offset; 1761 s_fdt.sphb = p->sphb; 1762 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 1763 spapr_populate_pci_devices_dt, 1764 &s_fdt); 1765 } 1766 1767 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 1768 void *opaque) 1769 { 1770 unsigned int *bus_no = opaque; 1771 unsigned int primary = *bus_no; 1772 unsigned int subordinate = 0xff; 1773 PCIBus *sec_bus = NULL; 1774 1775 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 1776 PCI_HEADER_TYPE_BRIDGE)) { 1777 return; 1778 } 1779 1780 (*bus_no)++; 1781 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1); 1782 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 1783 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 1784 1785 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 1786 if (!sec_bus) { 1787 return; 1788 } 1789 1790 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1); 1791 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 1792 spapr_phb_pci_enumerate_bridge, bus_no); 1793 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 1794 } 1795 1796 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb) 1797 { 1798 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 1799 unsigned int bus_no = 0; 1800 1801 pci_for_each_device(bus, pci_bus_num(bus), 1802 spapr_phb_pci_enumerate_bridge, 1803 &bus_no); 1804 1805 } 1806 1807 int spapr_populate_pci_dt(sPAPRPHBState *phb, 1808 uint32_t xics_phandle, 1809 void *fdt) 1810 { 1811 int bus_off, i, j, ret; 1812 char nodename[FDT_NAME_MAX]; 1813 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 1814 struct { 1815 uint32_t hi; 1816 uint64_t child; 1817 uint64_t parent; 1818 uint64_t size; 1819 } QEMU_PACKED ranges[] = { 1820 { 1821 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 1822 cpu_to_be64(phb->io_win_addr), 1823 cpu_to_be64(memory_region_size(&phb->iospace)), 1824 }, 1825 { 1826 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 1827 cpu_to_be64(phb->mem_win_addr), 1828 cpu_to_be64(phb->mem_win_size), 1829 }, 1830 { 1831 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 1832 cpu_to_be64(phb->mem64_win_addr), 1833 cpu_to_be64(phb->mem64_win_size), 1834 }, 1835 }; 1836 const unsigned sizeof_ranges = 1837 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 1838 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 1839 uint32_t interrupt_map_mask[] = { 1840 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 1841 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 1842 uint32_t ddw_applicable[] = { 1843 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 1844 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 1845 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 1846 }; 1847 uint32_t ddw_extensions[] = { 1848 cpu_to_be32(1), 1849 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) 1850 }; 1851 uint32_t associativity[] = {cpu_to_be32(0x4), 1852 cpu_to_be32(0x0), 1853 cpu_to_be32(0x0), 1854 cpu_to_be32(0x0), 1855 cpu_to_be32(phb->numa_node)}; 1856 sPAPRTCETable *tcet; 1857 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 1858 sPAPRFDT s_fdt; 1859 1860 /* Start populating the FDT */ 1861 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid); 1862 bus_off = fdt_add_subnode(fdt, 0, nodename); 1863 if (bus_off < 0) { 1864 return bus_off; 1865 } 1866 1867 /* Write PHB properties */ 1868 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 1869 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 1870 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); 1871 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); 1872 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 1873 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 1874 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 1875 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 1876 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 1877 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 1878 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR)); 1879 1880 /* Dynamic DMA window */ 1881 if (phb->ddw_enabled) { 1882 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 1883 sizeof(ddw_applicable))); 1884 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 1885 &ddw_extensions, sizeof(ddw_extensions))); 1886 } 1887 1888 /* Advertise NUMA via ibm,associativity */ 1889 if (phb->numa_node != -1) { 1890 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity, 1891 sizeof(associativity))); 1892 } 1893 1894 /* Build the interrupt-map, this must matches what is done 1895 * in pci_spapr_map_irq 1896 */ 1897 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 1898 &interrupt_map_mask, sizeof(interrupt_map_mask))); 1899 for (i = 0; i < PCI_SLOT_MAX; i++) { 1900 for (j = 0; j < PCI_NUM_PINS; j++) { 1901 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 1902 int lsi_num = pci_spapr_swizzle(i, j); 1903 1904 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 1905 irqmap[1] = 0; 1906 irqmap[2] = 0; 1907 irqmap[3] = cpu_to_be32(j+1); 1908 irqmap[4] = cpu_to_be32(xics_phandle); 1909 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); 1910 irqmap[6] = cpu_to_be32(0x8); 1911 } 1912 } 1913 /* Write interrupt map */ 1914 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 1915 sizeof(interrupt_map))); 1916 1917 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 1918 if (!tcet) { 1919 return -1; 1920 } 1921 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 1922 tcet->liobn, tcet->bus_offset, 1923 tcet->nb_table << tcet->page_shift); 1924 1925 /* Walk the bridges and program the bus numbers*/ 1926 spapr_phb_pci_enumerate(phb); 1927 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 1928 1929 /* Populate tree nodes with PCI devices attached */ 1930 s_fdt.fdt = fdt; 1931 s_fdt.node_off = bus_off; 1932 s_fdt.sphb = phb; 1933 pci_for_each_device(bus, pci_bus_num(bus), 1934 spapr_populate_pci_devices_dt, 1935 &s_fdt); 1936 1937 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb), 1938 SPAPR_DR_CONNECTOR_TYPE_PCI); 1939 if (ret) { 1940 return ret; 1941 } 1942 1943 return 0; 1944 } 1945 1946 void spapr_pci_rtas_init(void) 1947 { 1948 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 1949 rtas_read_pci_config); 1950 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 1951 rtas_write_pci_config); 1952 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 1953 rtas_ibm_read_pci_config); 1954 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 1955 rtas_ibm_write_pci_config); 1956 if (msi_nonbroken) { 1957 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 1958 "ibm,query-interrupt-source-number", 1959 rtas_ibm_query_interrupt_source_number); 1960 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 1961 rtas_ibm_change_msi); 1962 } 1963 1964 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 1965 "ibm,set-eeh-option", 1966 rtas_ibm_set_eeh_option); 1967 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 1968 "ibm,get-config-addr-info2", 1969 rtas_ibm_get_config_addr_info2); 1970 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 1971 "ibm,read-slot-reset-state2", 1972 rtas_ibm_read_slot_reset_state2); 1973 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 1974 "ibm,set-slot-reset", 1975 rtas_ibm_set_slot_reset); 1976 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 1977 "ibm,configure-pe", 1978 rtas_ibm_configure_pe); 1979 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 1980 "ibm,slot-error-detail", 1981 rtas_ibm_slot_error_detail); 1982 } 1983 1984 static void spapr_pci_register_types(void) 1985 { 1986 type_register_static(&spapr_phb_info); 1987 } 1988 1989 type_init(spapr_pci_register_types) 1990 1991 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 1992 { 1993 bool be = *(bool *)opaque; 1994 1995 if (object_dynamic_cast(OBJECT(dev), "VGA") 1996 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) { 1997 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer", 1998 &error_abort); 1999 } 2000 return 0; 2001 } 2002 2003 void spapr_pci_switch_vga(bool big_endian) 2004 { 2005 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 2006 sPAPRPHBState *sphb; 2007 2008 /* 2009 * For backward compatibility with existing guests, we switch 2010 * the endianness of the VGA controller when changing the guest 2011 * interrupt mode 2012 */ 2013 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2014 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2015 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2016 &big_endian); 2017 } 2018 } 2019