xref: /openbmc/qemu/hw/ppc/spapr_pci.c (revision b917da4c)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/msi.h"
30 #include "hw/pci/msix.h"
31 #include "hw/pci/pci_host.h"
32 #include "hw/ppc/spapr.h"
33 #include "hw/pci-host/spapr.h"
34 #include "exec/address-spaces.h"
35 #include <libfdt.h>
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qapi/qmp/qerror.h"
39 
40 #include "hw/pci/pci_bridge.h"
41 #include "hw/pci/pci_bus.h"
42 #include "hw/ppc/spapr_drc.h"
43 #include "sysemu/device_tree.h"
44 
45 #include "hw/vfio/vfio.h"
46 
47 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
48 #define RTAS_QUERY_FN           0
49 #define RTAS_CHANGE_FN          1
50 #define RTAS_RESET_FN           2
51 #define RTAS_CHANGE_MSI_FN      3
52 #define RTAS_CHANGE_MSIX_FN     4
53 
54 /* Interrupt types to return on RTAS_CHANGE_* */
55 #define RTAS_TYPE_MSI           1
56 #define RTAS_TYPE_MSIX          2
57 
58 #define FDT_NAME_MAX          128
59 
60 #define _FDT(exp) \
61     do { \
62         int ret = (exp);                                           \
63         if (ret < 0) {                                             \
64             return ret;                                            \
65         }                                                          \
66     } while (0)
67 
68 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
69 {
70     sPAPRPHBState *sphb;
71 
72     QLIST_FOREACH(sphb, &spapr->phbs, list) {
73         if (sphb->buid != buid) {
74             continue;
75         }
76         return sphb;
77     }
78 
79     return NULL;
80 }
81 
82 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
83                               uint32_t config_addr)
84 {
85     sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
86     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
87     int bus_num = (config_addr >> 16) & 0xFF;
88     int devfn = (config_addr >> 8) & 0xFF;
89 
90     if (!phb) {
91         return NULL;
92     }
93 
94     return pci_find_device(phb->bus, bus_num, devfn);
95 }
96 
97 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
98 {
99     /* This handles the encoding of extended config space addresses */
100     return ((arg >> 20) & 0xf00) | (arg & 0xff);
101 }
102 
103 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
104                                    uint32_t addr, uint32_t size,
105                                    target_ulong rets)
106 {
107     PCIDevice *pci_dev;
108     uint32_t val;
109 
110     if ((size != 1) && (size != 2) && (size != 4)) {
111         /* access must be 1, 2 or 4 bytes */
112         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
113         return;
114     }
115 
116     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
117     addr = rtas_pci_cfgaddr(addr);
118 
119     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
120         /* Access must be to a valid device, within bounds and
121          * naturally aligned */
122         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
123         return;
124     }
125 
126     val = pci_host_config_read_common(pci_dev, addr,
127                                       pci_config_size(pci_dev), size);
128 
129     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
130     rtas_st(rets, 1, val);
131 }
132 
133 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
134                                      uint32_t token, uint32_t nargs,
135                                      target_ulong args,
136                                      uint32_t nret, target_ulong rets)
137 {
138     uint64_t buid;
139     uint32_t size, addr;
140 
141     if ((nargs != 4) || (nret != 2)) {
142         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
143         return;
144     }
145 
146     buid = rtas_ldq(args, 1);
147     size = rtas_ld(args, 3);
148     addr = rtas_ld(args, 0);
149 
150     finish_read_pci_config(spapr, buid, addr, size, rets);
151 }
152 
153 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
154                                  uint32_t token, uint32_t nargs,
155                                  target_ulong args,
156                                  uint32_t nret, target_ulong rets)
157 {
158     uint32_t size, addr;
159 
160     if ((nargs != 2) || (nret != 2)) {
161         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
162         return;
163     }
164 
165     size = rtas_ld(args, 1);
166     addr = rtas_ld(args, 0);
167 
168     finish_read_pci_config(spapr, 0, addr, size, rets);
169 }
170 
171 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
172                                     uint32_t addr, uint32_t size,
173                                     uint32_t val, target_ulong rets)
174 {
175     PCIDevice *pci_dev;
176 
177     if ((size != 1) && (size != 2) && (size != 4)) {
178         /* access must be 1, 2 or 4 bytes */
179         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
180         return;
181     }
182 
183     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
184     addr = rtas_pci_cfgaddr(addr);
185 
186     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
187         /* Access must be to a valid device, within bounds and
188          * naturally aligned */
189         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
190         return;
191     }
192 
193     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
194                                  val, size);
195 
196     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
197 }
198 
199 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
200                                       uint32_t token, uint32_t nargs,
201                                       target_ulong args,
202                                       uint32_t nret, target_ulong rets)
203 {
204     uint64_t buid;
205     uint32_t val, size, addr;
206 
207     if ((nargs != 5) || (nret != 1)) {
208         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
209         return;
210     }
211 
212     buid = rtas_ldq(args, 1);
213     val = rtas_ld(args, 4);
214     size = rtas_ld(args, 3);
215     addr = rtas_ld(args, 0);
216 
217     finish_write_pci_config(spapr, buid, addr, size, val, rets);
218 }
219 
220 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
221                                   uint32_t token, uint32_t nargs,
222                                   target_ulong args,
223                                   uint32_t nret, target_ulong rets)
224 {
225     uint32_t val, size, addr;
226 
227     if ((nargs != 3) || (nret != 1)) {
228         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
229         return;
230     }
231 
232 
233     val = rtas_ld(args, 2);
234     size = rtas_ld(args, 1);
235     addr = rtas_ld(args, 0);
236 
237     finish_write_pci_config(spapr, 0, addr, size, val, rets);
238 }
239 
240 /*
241  * Set MSI/MSIX message data.
242  * This is required for msi_notify()/msix_notify() which
243  * will write at the addresses via spapr_msi_write().
244  *
245  * If hwaddr == 0, all entries will have .data == first_irq i.e.
246  * table will be reset.
247  */
248 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
249                              unsigned first_irq, unsigned req_num)
250 {
251     unsigned i;
252     MSIMessage msg = { .address = addr, .data = first_irq };
253 
254     if (!msix) {
255         msi_set_message(pdev, msg);
256         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
257         return;
258     }
259 
260     for (i = 0; i < req_num; ++i) {
261         msix_set_message(pdev, i, msg);
262         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
263         if (addr) {
264             ++msg.data;
265         }
266     }
267 }
268 
269 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
270                                 uint32_t token, uint32_t nargs,
271                                 target_ulong args, uint32_t nret,
272                                 target_ulong rets)
273 {
274     uint32_t config_addr = rtas_ld(args, 0);
275     uint64_t buid = rtas_ldq(args, 1);
276     unsigned int func = rtas_ld(args, 3);
277     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
278     unsigned int seq_num = rtas_ld(args, 5);
279     unsigned int ret_intr_type;
280     unsigned int irq, max_irqs = 0;
281     sPAPRPHBState *phb = NULL;
282     PCIDevice *pdev = NULL;
283     spapr_pci_msi *msi;
284     int *config_addr_key;
285     Error *err = NULL;
286 
287     switch (func) {
288     case RTAS_CHANGE_MSI_FN:
289     case RTAS_CHANGE_FN:
290         ret_intr_type = RTAS_TYPE_MSI;
291         break;
292     case RTAS_CHANGE_MSIX_FN:
293         ret_intr_type = RTAS_TYPE_MSIX;
294         break;
295     default:
296         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
297         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
298         return;
299     }
300 
301     /* Fins sPAPRPHBState */
302     phb = spapr_pci_find_phb(spapr, buid);
303     if (phb) {
304         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
305     }
306     if (!phb || !pdev) {
307         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
308         return;
309     }
310 
311     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
312 
313     /* Releasing MSIs */
314     if (!req_num) {
315         if (!msi) {
316             trace_spapr_pci_msi("Releasing wrong config", config_addr);
317             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
318             return;
319         }
320 
321         xics_free(spapr->icp, msi->first_irq, msi->num);
322         if (msi_present(pdev)) {
323             spapr_msi_setmsg(pdev, 0, false, 0, 0);
324         }
325         if (msix_present(pdev)) {
326             spapr_msi_setmsg(pdev, 0, true, 0, 0);
327         }
328         g_hash_table_remove(phb->msi, &config_addr);
329 
330         trace_spapr_pci_msi("Released MSIs", config_addr);
331         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
332         rtas_st(rets, 1, 0);
333         return;
334     }
335 
336     /* Enabling MSI */
337 
338     /* Check if the device supports as many IRQs as requested */
339     if (ret_intr_type == RTAS_TYPE_MSI) {
340         max_irqs = msi_nr_vectors_allocated(pdev);
341     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
342         max_irqs = pdev->msix_entries_nr;
343     }
344     if (!max_irqs) {
345         error_report("Requested interrupt type %d is not enabled for device %x",
346                      ret_intr_type, config_addr);
347         rtas_st(rets, 0, -1); /* Hardware error */
348         return;
349     }
350     /* Correct the number if the guest asked for too many */
351     if (req_num > max_irqs) {
352         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
353         req_num = max_irqs;
354         irq = 0; /* to avoid misleading trace */
355         goto out;
356     }
357 
358     /* Allocate MSIs */
359     irq = xics_alloc_block(spapr->icp, 0, req_num, false,
360                            ret_intr_type == RTAS_TYPE_MSI, &err);
361     if (err) {
362         error_reportf_err(err, "Can't allocate MSIs for device %x: ",
363                           config_addr);
364         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
365         return;
366     }
367 
368     /* Release previous MSIs */
369     if (msi) {
370         xics_free(spapr->icp, msi->first_irq, msi->num);
371         g_hash_table_remove(phb->msi, &config_addr);
372     }
373 
374     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
375     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
376                      irq, req_num);
377 
378     /* Add MSI device to cache */
379     msi = g_new(spapr_pci_msi, 1);
380     msi->first_irq = irq;
381     msi->num = req_num;
382     config_addr_key = g_new(int, 1);
383     *config_addr_key = config_addr;
384     g_hash_table_insert(phb->msi, config_addr_key, msi);
385 
386 out:
387     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
388     rtas_st(rets, 1, req_num);
389     rtas_st(rets, 2, ++seq_num);
390     if (nret > 3) {
391         rtas_st(rets, 3, ret_intr_type);
392     }
393 
394     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
395 }
396 
397 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
398                                                    sPAPRMachineState *spapr,
399                                                    uint32_t token,
400                                                    uint32_t nargs,
401                                                    target_ulong args,
402                                                    uint32_t nret,
403                                                    target_ulong rets)
404 {
405     uint32_t config_addr = rtas_ld(args, 0);
406     uint64_t buid = rtas_ldq(args, 1);
407     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
408     sPAPRPHBState *phb = NULL;
409     PCIDevice *pdev = NULL;
410     spapr_pci_msi *msi;
411 
412     /* Find sPAPRPHBState */
413     phb = spapr_pci_find_phb(spapr, buid);
414     if (phb) {
415         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
416     }
417     if (!phb || !pdev) {
418         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
419         return;
420     }
421 
422     /* Find device descriptor and start IRQ */
423     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
424     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
425         trace_spapr_pci_msi("Failed to return vector", config_addr);
426         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
427         return;
428     }
429     intr_src_num = msi->first_irq + ioa_intr_num;
430     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
431                                                            intr_src_num);
432 
433     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
434     rtas_st(rets, 1, intr_src_num);
435     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
436 }
437 
438 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
439                                     sPAPRMachineState *spapr,
440                                     uint32_t token, uint32_t nargs,
441                                     target_ulong args, uint32_t nret,
442                                     target_ulong rets)
443 {
444     sPAPRPHBState *sphb;
445     uint32_t addr, option;
446     uint64_t buid;
447     int ret;
448 
449     if ((nargs != 4) || (nret != 1)) {
450         goto param_error_exit;
451     }
452 
453     buid = rtas_ldq(args, 1);
454     addr = rtas_ld(args, 0);
455     option = rtas_ld(args, 3);
456 
457     sphb = spapr_pci_find_phb(spapr, buid);
458     if (!sphb) {
459         goto param_error_exit;
460     }
461 
462     if (!spapr_phb_eeh_available(sphb)) {
463         goto param_error_exit;
464     }
465 
466     ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
467     rtas_st(rets, 0, ret);
468     return;
469 
470 param_error_exit:
471     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
472 }
473 
474 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
475                                            sPAPRMachineState *spapr,
476                                            uint32_t token, uint32_t nargs,
477                                            target_ulong args, uint32_t nret,
478                                            target_ulong rets)
479 {
480     sPAPRPHBState *sphb;
481     PCIDevice *pdev;
482     uint32_t addr, option;
483     uint64_t buid;
484 
485     if ((nargs != 4) || (nret != 2)) {
486         goto param_error_exit;
487     }
488 
489     buid = rtas_ldq(args, 1);
490     sphb = spapr_pci_find_phb(spapr, buid);
491     if (!sphb) {
492         goto param_error_exit;
493     }
494 
495     if (!spapr_phb_eeh_available(sphb)) {
496         goto param_error_exit;
497     }
498 
499     /*
500      * We always have PE address of form "00BB0001". "BB"
501      * represents the bus number of PE's primary bus.
502      */
503     option = rtas_ld(args, 3);
504     switch (option) {
505     case RTAS_GET_PE_ADDR:
506         addr = rtas_ld(args, 0);
507         pdev = spapr_pci_find_dev(spapr, buid, addr);
508         if (!pdev) {
509             goto param_error_exit;
510         }
511 
512         rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
513         break;
514     case RTAS_GET_PE_MODE:
515         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
516         break;
517     default:
518         goto param_error_exit;
519     }
520 
521     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
522     return;
523 
524 param_error_exit:
525     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
526 }
527 
528 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
529                                             sPAPRMachineState *spapr,
530                                             uint32_t token, uint32_t nargs,
531                                             target_ulong args, uint32_t nret,
532                                             target_ulong rets)
533 {
534     sPAPRPHBState *sphb;
535     uint64_t buid;
536     int state, ret;
537 
538     if ((nargs != 3) || (nret != 4 && nret != 5)) {
539         goto param_error_exit;
540     }
541 
542     buid = rtas_ldq(args, 1);
543     sphb = spapr_pci_find_phb(spapr, buid);
544     if (!sphb) {
545         goto param_error_exit;
546     }
547 
548     if (!spapr_phb_eeh_available(sphb)) {
549         goto param_error_exit;
550     }
551 
552     ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
553     rtas_st(rets, 0, ret);
554     if (ret != RTAS_OUT_SUCCESS) {
555         return;
556     }
557 
558     rtas_st(rets, 1, state);
559     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
560     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
561     if (nret >= 5) {
562         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
563     }
564     return;
565 
566 param_error_exit:
567     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
568 }
569 
570 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
571                                     sPAPRMachineState *spapr,
572                                     uint32_t token, uint32_t nargs,
573                                     target_ulong args, uint32_t nret,
574                                     target_ulong rets)
575 {
576     sPAPRPHBState *sphb;
577     uint32_t option;
578     uint64_t buid;
579     int ret;
580 
581     if ((nargs != 4) || (nret != 1)) {
582         goto param_error_exit;
583     }
584 
585     buid = rtas_ldq(args, 1);
586     option = rtas_ld(args, 3);
587     sphb = spapr_pci_find_phb(spapr, buid);
588     if (!sphb) {
589         goto param_error_exit;
590     }
591 
592     if (!spapr_phb_eeh_available(sphb)) {
593         goto param_error_exit;
594     }
595 
596     ret = spapr_phb_vfio_eeh_reset(sphb, option);
597     rtas_st(rets, 0, ret);
598     return;
599 
600 param_error_exit:
601     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
602 }
603 
604 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
605                                   sPAPRMachineState *spapr,
606                                   uint32_t token, uint32_t nargs,
607                                   target_ulong args, uint32_t nret,
608                                   target_ulong rets)
609 {
610     sPAPRPHBState *sphb;
611     uint64_t buid;
612     int ret;
613 
614     if ((nargs != 3) || (nret != 1)) {
615         goto param_error_exit;
616     }
617 
618     buid = rtas_ldq(args, 1);
619     sphb = spapr_pci_find_phb(spapr, buid);
620     if (!sphb) {
621         goto param_error_exit;
622     }
623 
624     if (!spapr_phb_eeh_available(sphb)) {
625         goto param_error_exit;
626     }
627 
628     ret = spapr_phb_vfio_eeh_configure(sphb);
629     rtas_st(rets, 0, ret);
630     return;
631 
632 param_error_exit:
633     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
634 }
635 
636 /* To support it later */
637 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
638                                        sPAPRMachineState *spapr,
639                                        uint32_t token, uint32_t nargs,
640                                        target_ulong args, uint32_t nret,
641                                        target_ulong rets)
642 {
643     sPAPRPHBState *sphb;
644     int option;
645     uint64_t buid;
646 
647     if ((nargs != 8) || (nret != 1)) {
648         goto param_error_exit;
649     }
650 
651     buid = rtas_ldq(args, 1);
652     sphb = spapr_pci_find_phb(spapr, buid);
653     if (!sphb) {
654         goto param_error_exit;
655     }
656 
657     if (!spapr_phb_eeh_available(sphb)) {
658         goto param_error_exit;
659     }
660 
661     option = rtas_ld(args, 7);
662     switch (option) {
663     case RTAS_SLOT_TEMP_ERR_LOG:
664     case RTAS_SLOT_PERM_ERR_LOG:
665         break;
666     default:
667         goto param_error_exit;
668     }
669 
670     /* We don't have error log yet */
671     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
672     return;
673 
674 param_error_exit:
675     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
676 }
677 
678 static int pci_spapr_swizzle(int slot, int pin)
679 {
680     return (slot + pin) % PCI_NUM_PINS;
681 }
682 
683 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
684 {
685     /*
686      * Here we need to convert pci_dev + irq_num to some unique value
687      * which is less than number of IRQs on the specific bus (4).  We
688      * use standard PCI swizzling, that is (slot number + pin number)
689      * % 4.
690      */
691     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
692 }
693 
694 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
695 {
696     /*
697      * Here we use the number returned by pci_spapr_map_irq to find a
698      * corresponding qemu_irq.
699      */
700     sPAPRPHBState *phb = opaque;
701 
702     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
703     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
704 }
705 
706 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
707 {
708     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
709     PCIINTxRoute route;
710 
711     route.mode = PCI_INTX_ENABLED;
712     route.irq = sphb->lsi_table[pin].irq;
713 
714     return route;
715 }
716 
717 /*
718  * MSI/MSIX memory region implementation.
719  * The handler handles both MSI and MSIX.
720  * For MSI-X, the vector number is encoded as a part of the address,
721  * data is set to 0.
722  * For MSI, the vector number is encoded in least bits in data.
723  */
724 static void spapr_msi_write(void *opaque, hwaddr addr,
725                             uint64_t data, unsigned size)
726 {
727     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
728     uint32_t irq = data;
729 
730     trace_spapr_pci_msi_write(addr, data, irq);
731 
732     qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
733 }
734 
735 static const MemoryRegionOps spapr_msi_ops = {
736     /* There is no .read as the read result is undefined by PCI spec */
737     .read = NULL,
738     .write = spapr_msi_write,
739     .endianness = DEVICE_LITTLE_ENDIAN
740 };
741 
742 /*
743  * PHB PCI device
744  */
745 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
746 {
747     sPAPRPHBState *phb = opaque;
748 
749     return &phb->iommu_as;
750 }
751 
752 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
753 {
754     char *path = NULL, *buf = NULL, *host = NULL;
755 
756     /* Get the PCI VFIO host id */
757     host = object_property_get_str(OBJECT(pdev), "host", NULL);
758     if (!host) {
759         goto err_out;
760     }
761 
762     /* Construct the path of the file that will give us the DT location */
763     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
764     g_free(host);
765     if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
766         goto err_out;
767     }
768     g_free(path);
769 
770     /* Construct and read from host device tree the loc-code */
771     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
772     g_free(buf);
773     if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
774         goto err_out;
775     }
776     return buf;
777 
778 err_out:
779     g_free(path);
780     return NULL;
781 }
782 
783 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
784 {
785     char *buf;
786     const char *devtype = "qemu";
787     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
788 
789     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
790         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
791         if (buf) {
792             return buf;
793         }
794         devtype = "vfio";
795     }
796     /*
797      * For emulated devices and VFIO-failure case, make up
798      * the loc-code.
799      */
800     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
801                           devtype, pdev->name, sphb->index, busnr,
802                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
803     return buf;
804 }
805 
806 /* Macros to operate with address in OF binding to PCI */
807 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
808 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
809 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
810 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
811 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
812 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
813 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
814 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
815 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
816 
817 /* for 'reg'/'assigned-addresses' OF properties */
818 #define RESOURCE_CELLS_SIZE 2
819 #define RESOURCE_CELLS_ADDRESS 3
820 
821 typedef struct ResourceFields {
822     uint32_t phys_hi;
823     uint32_t phys_mid;
824     uint32_t phys_lo;
825     uint32_t size_hi;
826     uint32_t size_lo;
827 } QEMU_PACKED ResourceFields;
828 
829 typedef struct ResourceProps {
830     ResourceFields reg[8];
831     ResourceFields assigned[7];
832     uint32_t reg_len;
833     uint32_t assigned_len;
834 } ResourceProps;
835 
836 /* fill in the 'reg'/'assigned-resources' OF properties for
837  * a PCI device. 'reg' describes resource requirements for a
838  * device's IO/MEM regions, 'assigned-addresses' describes the
839  * actual resource assignments.
840  *
841  * the properties are arrays of ('phys-addr', 'size') pairs describing
842  * the addressable regions of the PCI device, where 'phys-addr' is a
843  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
844  * (phys.hi, phys.mid, phys.lo), and 'size' is a
845  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
846  *
847  * phys.hi = 0xYYXXXXZZ, where:
848  *   0xYY = npt000ss
849  *          |||   |
850  *          |||   +-- space code
851  *          |||               |
852  *          |||               +  00 if configuration space
853  *          |||               +  01 if IO region,
854  *          |||               +  10 if 32-bit MEM region
855  *          |||               +  11 if 64-bit MEM region
856  *          |||
857  *          ||+------ for non-relocatable IO: 1 if aliased
858  *          ||        for relocatable IO: 1 if below 64KB
859  *          ||        for MEM: 1 if below 1MB
860  *          |+------- 1 if region is prefetchable
861  *          +-------- 1 if region is non-relocatable
862  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
863  *            bits respectively
864  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
865  *          to the region
866  *
867  * phys.mid and phys.lo correspond respectively to the hi/lo portions
868  * of the actual address of the region.
869  *
870  * how the phys-addr/size values are used differ slightly between
871  * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
872  * an additional description for the config space region of the
873  * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
874  * to describe the region as relocatable, with an address-mapping
875  * that corresponds directly to the PHB's address space for the
876  * resource. 'assigned-addresses' always has n=1 set with an absolute
877  * address assigned for the resource. in general, 'assigned-addresses'
878  * won't be populated, since addresses for PCI devices are generally
879  * unmapped initially and left to the guest to assign.
880  *
881  * note also that addresses defined in these properties are, at least
882  * for PAPR guests, relative to the PHBs IO/MEM windows, and
883  * correspond directly to the addresses in the BARs.
884  *
885  * in accordance with PCI Bus Binding to Open Firmware,
886  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
887  * Appendix C.
888  */
889 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
890 {
891     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
892     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
893                        b_ddddd(PCI_SLOT(d->devfn)) |
894                        b_fff(PCI_FUNC(d->devfn)));
895     ResourceFields *reg, *assigned;
896     int i, reg_idx = 0, assigned_idx = 0;
897 
898     /* config space region */
899     reg = &rp->reg[reg_idx++];
900     reg->phys_hi = cpu_to_be32(dev_id);
901     reg->phys_mid = 0;
902     reg->phys_lo = 0;
903     reg->size_hi = 0;
904     reg->size_lo = 0;
905 
906     for (i = 0; i < PCI_NUM_REGIONS; i++) {
907         if (!d->io_regions[i].size) {
908             continue;
909         }
910 
911         reg = &rp->reg[reg_idx++];
912 
913         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
914         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
915             reg->phys_hi |= cpu_to_be32(b_ss(1));
916         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
917             reg->phys_hi |= cpu_to_be32(b_ss(3));
918         } else {
919             reg->phys_hi |= cpu_to_be32(b_ss(2));
920         }
921         reg->phys_mid = 0;
922         reg->phys_lo = 0;
923         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
924         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
925 
926         if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
927             continue;
928         }
929 
930         assigned = &rp->assigned[assigned_idx++];
931         assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
932         assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
933         assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
934         assigned->size_hi = reg->size_hi;
935         assigned->size_lo = reg->size_lo;
936     }
937 
938     rp->reg_len = reg_idx * sizeof(ResourceFields);
939     rp->assigned_len = assigned_idx * sizeof(ResourceFields);
940 }
941 
942 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
943                                             PCIDevice *pdev);
944 
945 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
946                                        sPAPRPHBState *sphb)
947 {
948     ResourceProps rp;
949     bool is_bridge = false;
950     int pci_status, err;
951     char *buf = NULL;
952     uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
953     uint32_t max_msi, max_msix;
954 
955     if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
956         PCI_HEADER_TYPE_BRIDGE) {
957         is_bridge = true;
958     }
959 
960     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
961     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
962                           pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
963     _FDT(fdt_setprop_cell(fdt, offset, "device-id",
964                           pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
965     _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
966                           pci_default_read_config(dev, PCI_REVISION_ID, 1)));
967     _FDT(fdt_setprop_cell(fdt, offset, "class-code",
968                           pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
969     if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
970         _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
971                  pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
972     }
973 
974     if (!is_bridge) {
975         _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
976             pci_default_read_config(dev, PCI_MIN_GNT, 1)));
977         _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
978             pci_default_read_config(dev, PCI_MAX_LAT, 1)));
979     }
980 
981     if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
982         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
983                  pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
984     }
985 
986     if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
987         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
988                  pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
989     }
990 
991     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
992         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
993 
994     /* the following fdt cells are masked off the pci status register */
995     pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
996     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
997                           PCI_STATUS_DEVSEL_MASK & pci_status));
998 
999     if (pci_status & PCI_STATUS_FAST_BACK) {
1000         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1001     }
1002     if (pci_status & PCI_STATUS_66MHZ) {
1003         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1004     }
1005     if (pci_status & PCI_STATUS_UDF) {
1006         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1007     }
1008 
1009     /* NOTE: this is normally generated by firmware via path/unit name,
1010      * but in our case we must set it manually since it does not get
1011      * processed by OF beforehand
1012      */
1013     _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1014     buf = spapr_phb_get_loc_code(sphb, dev);
1015     if (!buf) {
1016         error_report("Failed setting the ibm,loc-code");
1017         return -1;
1018     }
1019 
1020     err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1021     g_free(buf);
1022     if (err < 0) {
1023         return err;
1024     }
1025 
1026     if (drc_index) {
1027         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1028     }
1029 
1030     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1031                           RESOURCE_CELLS_ADDRESS));
1032     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1033                           RESOURCE_CELLS_SIZE));
1034 
1035     max_msi = msi_nr_vectors_allocated(dev);
1036     if (max_msi) {
1037         _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1038     }
1039     max_msix = dev->msix_entries_nr;
1040     if (max_msix) {
1041         _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1042     }
1043 
1044     populate_resource_props(dev, &rp);
1045     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1046     _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1047                      (uint8_t *)rp.assigned, rp.assigned_len));
1048 
1049     return 0;
1050 }
1051 
1052 /* create OF node for pci device and required OF DT properties */
1053 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1054                                      void *fdt, int node_offset)
1055 {
1056     int offset, ret;
1057     int slot = PCI_SLOT(dev->devfn);
1058     int func = PCI_FUNC(dev->devfn);
1059     char nodename[FDT_NAME_MAX];
1060 
1061     if (func != 0) {
1062         snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1063     } else {
1064         snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1065     }
1066     offset = fdt_add_subnode(fdt, node_offset, nodename);
1067     ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1068 
1069     g_assert(!ret);
1070     if (ret) {
1071         return 0;
1072     }
1073     return offset;
1074 }
1075 
1076 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1077                                      sPAPRPHBState *phb,
1078                                      PCIDevice *pdev,
1079                                      Error **errp)
1080 {
1081     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1082     DeviceState *dev = DEVICE(pdev);
1083     void *fdt = NULL;
1084     int fdt_start_offset = 0, fdt_size;
1085 
1086     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
1087         sPAPRTCETable *tcet = spapr_tce_find_by_liobn(phb->dma_liobn);
1088 
1089         spapr_tce_set_need_vfio(tcet, true);
1090     }
1091 
1092     if (dev->hotplugged) {
1093         fdt = create_device_tree(&fdt_size);
1094         fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1095         if (!fdt_start_offset) {
1096             error_setg(errp, "Failed to create pci child device tree node");
1097             goto out;
1098         }
1099     }
1100 
1101     drck->attach(drc, DEVICE(pdev),
1102                  fdt, fdt_start_offset, !dev->hotplugged, errp);
1103 out:
1104     if (*errp) {
1105         g_free(fdt);
1106     }
1107 }
1108 
1109 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1110 {
1111     /* some version guests do not wait for completion of a device
1112      * cleanup (generally done asynchronously by the kernel) before
1113      * signaling to QEMU that the device is safe, but instead sleep
1114      * for some 'safe' period of time. unfortunately on a busy host
1115      * this sleep isn't guaranteed to be long enough, resulting in
1116      * bad things like IRQ lines being left asserted during final
1117      * device removal. to deal with this we call reset just prior
1118      * to finalizing the device, which will put the device back into
1119      * an 'idle' state, as the device cleanup code expects.
1120      */
1121     pci_device_reset(PCI_DEVICE(dev));
1122     object_unparent(OBJECT(dev));
1123 }
1124 
1125 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1126                                         sPAPRPHBState *phb,
1127                                         PCIDevice *pdev,
1128                                         Error **errp)
1129 {
1130     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1131 
1132     drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1133 }
1134 
1135 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1136                                                     uint32_t busnr,
1137                                                     int32_t devfn)
1138 {
1139     return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1140                                     (phb->index << 16) |
1141                                     (busnr << 8) |
1142                                     devfn);
1143 }
1144 
1145 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1146                                                PCIDevice *pdev)
1147 {
1148     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1149     return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1150 }
1151 
1152 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1153                                             PCIDevice *pdev)
1154 {
1155     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1156     sPAPRDRConnectorClass *drck;
1157 
1158     if (!drc) {
1159         return 0;
1160     }
1161 
1162     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1163     return drck->get_index(drc);
1164 }
1165 
1166 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1167                                      DeviceState *plugged_dev, Error **errp)
1168 {
1169     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1170     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1171     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1172     Error *local_err = NULL;
1173     PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1174     uint32_t slotnr = PCI_SLOT(pdev->devfn);
1175 
1176     /* if DR is disabled we don't need to do anything in the case of
1177      * hotplug or coldplug callbacks
1178      */
1179     if (!phb->dr_enabled) {
1180         /* if this is a hotplug operation initiated by the user
1181          * we need to let them know it's not enabled
1182          */
1183         if (plugged_dev->hotplugged) {
1184             error_setg(errp, QERR_BUS_NO_HOTPLUG,
1185                        object_get_typename(OBJECT(phb)));
1186         }
1187         return;
1188     }
1189 
1190     g_assert(drc);
1191 
1192     /* Following the QEMU convention used for PCIe multifunction
1193      * hotplug, we do not allow functions to be hotplugged to a
1194      * slot that already has function 0 present
1195      */
1196     if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1197         PCI_FUNC(pdev->devfn) != 0) {
1198         error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s,"
1199                    " additional functions can no longer be exposed to guest.",
1200                    slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1201         return;
1202     }
1203 
1204     spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1205     if (local_err) {
1206         error_propagate(errp, local_err);
1207         return;
1208     }
1209 
1210     /* If this is function 0, signal hotplug for all the device functions.
1211      * Otherwise defer sending the hotplug event.
1212      */
1213     if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) {
1214         int i;
1215 
1216         for (i = 0; i < 8; i++) {
1217             sPAPRDRConnector *func_drc;
1218             sPAPRDRConnectorClass *func_drck;
1219             sPAPRDREntitySense state;
1220 
1221             func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1222                                                   PCI_DEVFN(slotnr, i));
1223             func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1224             func_drck->entity_sense(func_drc, &state);
1225 
1226             if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1227                 spapr_hotplug_req_add_by_index(func_drc);
1228             }
1229         }
1230     }
1231 }
1232 
1233 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1234                                        DeviceState *plugged_dev, Error **errp)
1235 {
1236     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1237     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1238     sPAPRDRConnectorClass *drck;
1239     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1240     Error *local_err = NULL;
1241 
1242     if (!phb->dr_enabled) {
1243         error_setg(errp, QERR_BUS_NO_HOTPLUG,
1244                    object_get_typename(OBJECT(phb)));
1245         return;
1246     }
1247 
1248     g_assert(drc);
1249 
1250     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1251     if (!drck->release_pending(drc)) {
1252         PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1253         uint32_t slotnr = PCI_SLOT(pdev->devfn);
1254         sPAPRDRConnector *func_drc;
1255         sPAPRDRConnectorClass *func_drck;
1256         sPAPRDREntitySense state;
1257         int i;
1258 
1259         /* ensure any other present functions are pending unplug */
1260         if (PCI_FUNC(pdev->devfn) == 0) {
1261             for (i = 1; i < 8; i++) {
1262                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1263                                                       PCI_DEVFN(slotnr, i));
1264                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1265                 func_drck->entity_sense(func_drc, &state);
1266                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1267                     && !func_drck->release_pending(func_drc)) {
1268                     error_setg(errp,
1269                                "PCI: slot %d, function %d still present. "
1270                                "Must unplug all non-0 functions first.",
1271                                slotnr, i);
1272                     return;
1273                 }
1274             }
1275         }
1276 
1277         spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1278         if (local_err) {
1279             error_propagate(errp, local_err);
1280             return;
1281         }
1282 
1283         /* if this isn't func 0, defer unplug event. otherwise signal removal
1284          * for all present functions
1285          */
1286         if (PCI_FUNC(pdev->devfn) == 0) {
1287             for (i = 7; i >= 0; i--) {
1288                 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1289                                                       PCI_DEVFN(slotnr, i));
1290                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1291                 func_drck->entity_sense(func_drc, &state);
1292                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1293                     spapr_hotplug_req_remove_by_index(func_drc);
1294                 }
1295             }
1296         }
1297     }
1298 }
1299 
1300 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1301 {
1302     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1303     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1304     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1305     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1306     char *namebuf;
1307     int i;
1308     PCIBus *bus;
1309     uint64_t msi_window_size = 4096;
1310     sPAPRTCETable *tcet;
1311     uint32_t nb_table;
1312 
1313     if (sphb->index != (uint32_t)-1) {
1314         hwaddr windows_base;
1315 
1316         if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1317             || (sphb->mem_win_addr != (hwaddr)-1)
1318             || (sphb->io_win_addr != (hwaddr)-1)) {
1319             error_setg(errp, "Either \"index\" or other parameters must"
1320                        " be specified for PAPR PHB, not both");
1321             return;
1322         }
1323 
1324         if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1325             error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1326                        SPAPR_PCI_MAX_INDEX);
1327             return;
1328         }
1329 
1330         sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1331         sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1332 
1333         windows_base = SPAPR_PCI_WINDOW_BASE
1334             + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1335         sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1336         sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1337     }
1338 
1339     if (sphb->buid == (uint64_t)-1) {
1340         error_setg(errp, "BUID not specified for PHB");
1341         return;
1342     }
1343 
1344     if (sphb->dma_liobn == (uint32_t)-1) {
1345         error_setg(errp, "LIOBN not specified for PHB");
1346         return;
1347     }
1348 
1349     if (sphb->mem_win_addr == (hwaddr)-1) {
1350         error_setg(errp, "Memory window address not specified for PHB");
1351         return;
1352     }
1353 
1354     if (sphb->io_win_addr == (hwaddr)-1) {
1355         error_setg(errp, "IO window address not specified for PHB");
1356         return;
1357     }
1358 
1359     if (spapr_pci_find_phb(spapr, sphb->buid)) {
1360         error_setg(errp, "PCI host bridges must have unique BUIDs");
1361         return;
1362     }
1363 
1364     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1365 
1366     namebuf = alloca(strlen(sphb->dtbusname) + 32);
1367 
1368     /* Initialize memory regions */
1369     sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1370     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1371 
1372     sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1373     memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1374                              namebuf, &sphb->memspace,
1375                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1376     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1377                                 &sphb->memwindow);
1378 
1379     /* Initialize IO regions */
1380     sprintf(namebuf, "%s.io", sphb->dtbusname);
1381     memory_region_init(&sphb->iospace, OBJECT(sphb),
1382                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
1383 
1384     sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1385     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1386                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1387     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1388                                 &sphb->iowindow);
1389 
1390     bus = pci_register_bus(dev, NULL,
1391                            pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1392                            &sphb->memspace, &sphb->iospace,
1393                            PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1394     phb->bus = bus;
1395     qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1396 
1397     /*
1398      * Initialize PHB address space.
1399      * By default there will be at least one subregion for default
1400      * 32bit DMA window.
1401      * Later the guest might want to create another DMA window
1402      * which will become another memory subregion.
1403      */
1404     sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1405 
1406     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1407                        namebuf, UINT64_MAX);
1408     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1409                        sphb->dtbusname);
1410 
1411     /*
1412      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1413      * we need to allocate some memory to catch those writes coming
1414      * from msi_notify()/msix_notify().
1415      * As MSIMessage:addr is going to be the same and MSIMessage:data
1416      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1417      * be used.
1418      *
1419      * For KVM we want to ensure that this memory is a full page so that
1420      * our memory slot is of page size granularity.
1421      */
1422 #ifdef CONFIG_KVM
1423     if (kvm_enabled()) {
1424         msi_window_size = getpagesize();
1425     }
1426 #endif
1427 
1428     memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1429                           "msi", msi_window_size);
1430     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1431                                 &sphb->msiwindow);
1432 
1433     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1434 
1435     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1436 
1437     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1438 
1439     /* Initialize the LSI table */
1440     for (i = 0; i < PCI_NUM_PINS; i++) {
1441         uint32_t irq;
1442         Error *local_err = NULL;
1443 
1444         irq = xics_alloc_block(spapr->icp, 0, 1, true, false, &local_err);
1445         if (local_err) {
1446             error_propagate(errp, local_err);
1447             error_prepend(errp, "can't allocate LSIs: ");
1448             return;
1449         }
1450 
1451         sphb->lsi_table[i].irq = irq;
1452     }
1453 
1454     /* allocate connectors for child PCI devices */
1455     if (sphb->dr_enabled) {
1456         for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1457             spapr_dr_connector_new(OBJECT(phb),
1458                                    SPAPR_DR_CONNECTOR_TYPE_PCI,
1459                                    (sphb->index << 16) | i);
1460         }
1461     }
1462 
1463     nb_table = sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT;
1464     tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
1465                                0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
1466     if (!tcet) {
1467         error_setg(errp, "Unable to create TCE table for %s",
1468                    sphb->dtbusname);
1469         return;
1470     }
1471 
1472     /* Register default 32bit DMA window */
1473     memory_region_add_subregion(&sphb->iommu_root, sphb->dma_win_addr,
1474                                 spapr_tce_get_iommu(tcet));
1475 
1476     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1477 }
1478 
1479 static int spapr_phb_children_reset(Object *child, void *opaque)
1480 {
1481     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1482 
1483     if (dev) {
1484         device_reset(dev);
1485     }
1486 
1487     return 0;
1488 }
1489 
1490 static void spapr_phb_reset(DeviceState *qdev)
1491 {
1492     /* Reset the IOMMU state */
1493     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1494 
1495     if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1496         spapr_phb_vfio_reset(qdev);
1497     }
1498 }
1499 
1500 static Property spapr_phb_properties[] = {
1501     DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1502     DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1503     DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1504     DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1505     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1506                        SPAPR_PCI_MMIO_WIN_SIZE),
1507     DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1508     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1509                        SPAPR_PCI_IO_WIN_SIZE),
1510     DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1511                      true),
1512     /* Default DMA window is 0..1GB */
1513     DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1514     DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1515     DEFINE_PROP_END_OF_LIST(),
1516 };
1517 
1518 static const VMStateDescription vmstate_spapr_pci_lsi = {
1519     .name = "spapr_pci/lsi",
1520     .version_id = 1,
1521     .minimum_version_id = 1,
1522     .fields = (VMStateField[]) {
1523         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1524 
1525         VMSTATE_END_OF_LIST()
1526     },
1527 };
1528 
1529 static const VMStateDescription vmstate_spapr_pci_msi = {
1530     .name = "spapr_pci/msi",
1531     .version_id = 1,
1532     .minimum_version_id = 1,
1533     .fields = (VMStateField []) {
1534         VMSTATE_UINT32(key, spapr_pci_msi_mig),
1535         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1536         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1537         VMSTATE_END_OF_LIST()
1538     },
1539 };
1540 
1541 static void spapr_pci_pre_save(void *opaque)
1542 {
1543     sPAPRPHBState *sphb = opaque;
1544     GHashTableIter iter;
1545     gpointer key, value;
1546     int i;
1547 
1548     g_free(sphb->msi_devs);
1549     sphb->msi_devs = NULL;
1550     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1551     if (!sphb->msi_devs_num) {
1552         return;
1553     }
1554     sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1555 
1556     g_hash_table_iter_init(&iter, sphb->msi);
1557     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1558         sphb->msi_devs[i].key = *(uint32_t *) key;
1559         sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1560     }
1561 }
1562 
1563 static int spapr_pci_post_load(void *opaque, int version_id)
1564 {
1565     sPAPRPHBState *sphb = opaque;
1566     gpointer key, value;
1567     int i;
1568 
1569     for (i = 0; i < sphb->msi_devs_num; ++i) {
1570         key = g_memdup(&sphb->msi_devs[i].key,
1571                        sizeof(sphb->msi_devs[i].key));
1572         value = g_memdup(&sphb->msi_devs[i].value,
1573                          sizeof(sphb->msi_devs[i].value));
1574         g_hash_table_insert(sphb->msi, key, value);
1575     }
1576     g_free(sphb->msi_devs);
1577     sphb->msi_devs = NULL;
1578     sphb->msi_devs_num = 0;
1579 
1580     return 0;
1581 }
1582 
1583 static const VMStateDescription vmstate_spapr_pci = {
1584     .name = "spapr_pci",
1585     .version_id = 2,
1586     .minimum_version_id = 2,
1587     .pre_save = spapr_pci_pre_save,
1588     .post_load = spapr_pci_post_load,
1589     .fields = (VMStateField[]) {
1590         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1591         VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1592         VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1593         VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1594         VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1595         VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1596         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1597                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1598         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1599         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1600                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1601         VMSTATE_END_OF_LIST()
1602     },
1603 };
1604 
1605 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1606                                            PCIBus *rootbus)
1607 {
1608     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1609 
1610     return sphb->dtbusname;
1611 }
1612 
1613 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1614 {
1615     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1616     DeviceClass *dc = DEVICE_CLASS(klass);
1617     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1618 
1619     hc->root_bus_path = spapr_phb_root_bus_path;
1620     dc->realize = spapr_phb_realize;
1621     dc->props = spapr_phb_properties;
1622     dc->reset = spapr_phb_reset;
1623     dc->vmsd = &vmstate_spapr_pci;
1624     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1625     dc->cannot_instantiate_with_device_add_yet = false;
1626     hp->plug = spapr_phb_hot_plug_child;
1627     hp->unplug = spapr_phb_hot_unplug_child;
1628 }
1629 
1630 static const TypeInfo spapr_phb_info = {
1631     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1632     .parent        = TYPE_PCI_HOST_BRIDGE,
1633     .instance_size = sizeof(sPAPRPHBState),
1634     .class_init    = spapr_phb_class_init,
1635     .interfaces    = (InterfaceInfo[]) {
1636         { TYPE_HOTPLUG_HANDLER },
1637         { }
1638     }
1639 };
1640 
1641 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1642 {
1643     DeviceState *dev;
1644 
1645     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1646     qdev_prop_set_uint32(dev, "index", index);
1647     qdev_init_nofail(dev);
1648 
1649     return PCI_HOST_BRIDGE(dev);
1650 }
1651 
1652 typedef struct sPAPRFDT {
1653     void *fdt;
1654     int node_off;
1655     sPAPRPHBState *sphb;
1656 } sPAPRFDT;
1657 
1658 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1659                                           void *opaque)
1660 {
1661     PCIBus *sec_bus;
1662     sPAPRFDT *p = opaque;
1663     int offset;
1664     sPAPRFDT s_fdt;
1665 
1666     offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1667     if (!offset) {
1668         error_report("Failed to create pci child device tree node");
1669         return;
1670     }
1671 
1672     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1673          PCI_HEADER_TYPE_BRIDGE)) {
1674         return;
1675     }
1676 
1677     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1678     if (!sec_bus) {
1679         return;
1680     }
1681 
1682     s_fdt.fdt = p->fdt;
1683     s_fdt.node_off = offset;
1684     s_fdt.sphb = p->sphb;
1685     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1686                         spapr_populate_pci_devices_dt,
1687                         &s_fdt);
1688 }
1689 
1690 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1691                                            void *opaque)
1692 {
1693     unsigned int *bus_no = opaque;
1694     unsigned int primary = *bus_no;
1695     unsigned int subordinate = 0xff;
1696     PCIBus *sec_bus = NULL;
1697 
1698     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1699          PCI_HEADER_TYPE_BRIDGE)) {
1700         return;
1701     }
1702 
1703     (*bus_no)++;
1704     pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1705     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1706     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1707 
1708     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1709     if (!sec_bus) {
1710         return;
1711     }
1712 
1713     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1714     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1715                         spapr_phb_pci_enumerate_bridge, bus_no);
1716     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1717 }
1718 
1719 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1720 {
1721     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1722     unsigned int bus_no = 0;
1723 
1724     pci_for_each_device(bus, pci_bus_num(bus),
1725                         spapr_phb_pci_enumerate_bridge,
1726                         &bus_no);
1727 
1728 }
1729 
1730 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1731                           uint32_t xics_phandle,
1732                           void *fdt)
1733 {
1734     int bus_off, i, j, ret;
1735     char nodename[FDT_NAME_MAX];
1736     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1737     const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1738     const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1739     const uint64_t w32size = MIN(w32max, mmiosize);
1740     const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1741     struct {
1742         uint32_t hi;
1743         uint64_t child;
1744         uint64_t parent;
1745         uint64_t size;
1746     } QEMU_PACKED ranges[] = {
1747         {
1748             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1749             cpu_to_be64(phb->io_win_addr),
1750             cpu_to_be64(memory_region_size(&phb->iospace)),
1751         },
1752         {
1753             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1754             cpu_to_be64(phb->mem_win_addr),
1755             cpu_to_be64(w32size),
1756         },
1757         {
1758             cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1759             cpu_to_be64(phb->mem_win_addr + w32size),
1760             cpu_to_be64(w64size)
1761         },
1762     };
1763     const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1764     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1765     uint32_t interrupt_map_mask[] = {
1766         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1767     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1768     sPAPRTCETable *tcet;
1769     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1770     sPAPRFDT s_fdt;
1771 
1772     /* Start populating the FDT */
1773     snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1774     bus_off = fdt_add_subnode(fdt, 0, nodename);
1775     if (bus_off < 0) {
1776         return bus_off;
1777     }
1778 
1779     /* Write PHB properties */
1780     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1781     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1782     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1783     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1784     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1785     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1786     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1787     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1788     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1789     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1790     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1791 
1792     /* Build the interrupt-map, this must matches what is done
1793      * in pci_spapr_map_irq
1794      */
1795     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1796                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
1797     for (i = 0; i < PCI_SLOT_MAX; i++) {
1798         for (j = 0; j < PCI_NUM_PINS; j++) {
1799             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1800             int lsi_num = pci_spapr_swizzle(i, j);
1801 
1802             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1803             irqmap[1] = 0;
1804             irqmap[2] = 0;
1805             irqmap[3] = cpu_to_be32(j+1);
1806             irqmap[4] = cpu_to_be32(xics_phandle);
1807             irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1808             irqmap[6] = cpu_to_be32(0x8);
1809         }
1810     }
1811     /* Write interrupt map */
1812     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1813                      sizeof(interrupt_map)));
1814 
1815     tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
1816     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1817                  tcet->liobn, tcet->bus_offset,
1818                  tcet->nb_table << tcet->page_shift);
1819 
1820     /* Walk the bridges and program the bus numbers*/
1821     spapr_phb_pci_enumerate(phb);
1822     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1823 
1824     /* Populate tree nodes with PCI devices attached */
1825     s_fdt.fdt = fdt;
1826     s_fdt.node_off = bus_off;
1827     s_fdt.sphb = phb;
1828     pci_for_each_device(bus, pci_bus_num(bus),
1829                         spapr_populate_pci_devices_dt,
1830                         &s_fdt);
1831 
1832     ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1833                                 SPAPR_DR_CONNECTOR_TYPE_PCI);
1834     if (ret) {
1835         return ret;
1836     }
1837 
1838     return 0;
1839 }
1840 
1841 void spapr_pci_rtas_init(void)
1842 {
1843     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1844                         rtas_read_pci_config);
1845     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1846                         rtas_write_pci_config);
1847     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1848                         rtas_ibm_read_pci_config);
1849     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1850                         rtas_ibm_write_pci_config);
1851     if (msi_nonbroken) {
1852         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1853                             "ibm,query-interrupt-source-number",
1854                             rtas_ibm_query_interrupt_source_number);
1855         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1856                             rtas_ibm_change_msi);
1857     }
1858 
1859     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1860                         "ibm,set-eeh-option",
1861                         rtas_ibm_set_eeh_option);
1862     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1863                         "ibm,get-config-addr-info2",
1864                         rtas_ibm_get_config_addr_info2);
1865     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1866                         "ibm,read-slot-reset-state2",
1867                         rtas_ibm_read_slot_reset_state2);
1868     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1869                         "ibm,set-slot-reset",
1870                         rtas_ibm_set_slot_reset);
1871     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1872                         "ibm,configure-pe",
1873                         rtas_ibm_configure_pe);
1874     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1875                         "ibm,slot-error-detail",
1876                         rtas_ibm_slot_error_detail);
1877 }
1878 
1879 static void spapr_pci_register_types(void)
1880 {
1881     type_register_static(&spapr_phb_info);
1882 }
1883 
1884 type_init(spapr_pci_register_types)
1885 
1886 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1887 {
1888     bool be = *(bool *)opaque;
1889 
1890     if (object_dynamic_cast(OBJECT(dev), "VGA")
1891         || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1892         object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1893                                  &error_abort);
1894     }
1895     return 0;
1896 }
1897 
1898 void spapr_pci_switch_vga(bool big_endian)
1899 {
1900     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1901     sPAPRPHBState *sphb;
1902 
1903     /*
1904      * For backward compatibility with existing guests, we switch
1905      * the endianness of the VGA controller when changing the guest
1906      * interrupt mode
1907      */
1908     QLIST_FOREACH(sphb, &spapr->phbs, list) {
1909         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1910         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1911                            &big_endian);
1912     }
1913 }
1914