1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "hw/hw.h" 30 #include "hw/sysbus.h" 31 #include "hw/pci/pci.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci_host.h" 35 #include "hw/ppc/spapr.h" 36 #include "hw/pci-host/spapr.h" 37 #include "exec/address-spaces.h" 38 #include "exec/ram_addr.h" 39 #include <libfdt.h> 40 #include "trace.h" 41 #include "qemu/error-report.h" 42 #include "qapi/qmp/qerror.h" 43 #include "hw/ppc/fdt.h" 44 #include "hw/pci/pci_bridge.h" 45 #include "hw/pci/pci_bus.h" 46 #include "hw/pci/pci_ids.h" 47 #include "hw/ppc/spapr_drc.h" 48 #include "sysemu/device_tree.h" 49 #include "sysemu/kvm.h" 50 #include "sysemu/hostmem.h" 51 #include "sysemu/numa.h" 52 53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 54 #define RTAS_QUERY_FN 0 55 #define RTAS_CHANGE_FN 1 56 #define RTAS_RESET_FN 2 57 #define RTAS_CHANGE_MSI_FN 3 58 #define RTAS_CHANGE_MSIX_FN 4 59 60 /* Interrupt types to return on RTAS_CHANGE_* */ 61 #define RTAS_TYPE_MSI 1 62 #define RTAS_TYPE_MSIX 2 63 64 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid) 65 { 66 SpaprPhbState *sphb; 67 68 QLIST_FOREACH(sphb, &spapr->phbs, list) { 69 if (sphb->buid != buid) { 70 continue; 71 } 72 return sphb; 73 } 74 75 return NULL; 76 } 77 78 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid, 79 uint32_t config_addr) 80 { 81 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid); 82 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 83 int bus_num = (config_addr >> 16) & 0xFF; 84 int devfn = (config_addr >> 8) & 0xFF; 85 86 if (!phb) { 87 return NULL; 88 } 89 90 return pci_find_device(phb->bus, bus_num, devfn); 91 } 92 93 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 94 { 95 /* This handles the encoding of extended config space addresses */ 96 return ((arg >> 20) & 0xf00) | (arg & 0xff); 97 } 98 99 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid, 100 uint32_t addr, uint32_t size, 101 target_ulong rets) 102 { 103 PCIDevice *pci_dev; 104 uint32_t val; 105 106 if ((size != 1) && (size != 2) && (size != 4)) { 107 /* access must be 1, 2 or 4 bytes */ 108 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 109 return; 110 } 111 112 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 113 addr = rtas_pci_cfgaddr(addr); 114 115 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 116 /* Access must be to a valid device, within bounds and 117 * naturally aligned */ 118 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 119 return; 120 } 121 122 val = pci_host_config_read_common(pci_dev, addr, 123 pci_config_size(pci_dev), size); 124 125 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 126 rtas_st(rets, 1, val); 127 } 128 129 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 130 uint32_t token, uint32_t nargs, 131 target_ulong args, 132 uint32_t nret, target_ulong rets) 133 { 134 uint64_t buid; 135 uint32_t size, addr; 136 137 if ((nargs != 4) || (nret != 2)) { 138 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 139 return; 140 } 141 142 buid = rtas_ldq(args, 1); 143 size = rtas_ld(args, 3); 144 addr = rtas_ld(args, 0); 145 146 finish_read_pci_config(spapr, buid, addr, size, rets); 147 } 148 149 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 150 uint32_t token, uint32_t nargs, 151 target_ulong args, 152 uint32_t nret, target_ulong rets) 153 { 154 uint32_t size, addr; 155 156 if ((nargs != 2) || (nret != 2)) { 157 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 158 return; 159 } 160 161 size = rtas_ld(args, 1); 162 addr = rtas_ld(args, 0); 163 164 finish_read_pci_config(spapr, 0, addr, size, rets); 165 } 166 167 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid, 168 uint32_t addr, uint32_t size, 169 uint32_t val, target_ulong rets) 170 { 171 PCIDevice *pci_dev; 172 173 if ((size != 1) && (size != 2) && (size != 4)) { 174 /* access must be 1, 2 or 4 bytes */ 175 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 176 return; 177 } 178 179 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 180 addr = rtas_pci_cfgaddr(addr); 181 182 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 183 /* Access must be to a valid device, within bounds and 184 * naturally aligned */ 185 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 186 return; 187 } 188 189 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 190 val, size); 191 192 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 193 } 194 195 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 196 uint32_t token, uint32_t nargs, 197 target_ulong args, 198 uint32_t nret, target_ulong rets) 199 { 200 uint64_t buid; 201 uint32_t val, size, addr; 202 203 if ((nargs != 5) || (nret != 1)) { 204 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 205 return; 206 } 207 208 buid = rtas_ldq(args, 1); 209 val = rtas_ld(args, 4); 210 size = rtas_ld(args, 3); 211 addr = rtas_ld(args, 0); 212 213 finish_write_pci_config(spapr, buid, addr, size, val, rets); 214 } 215 216 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 217 uint32_t token, uint32_t nargs, 218 target_ulong args, 219 uint32_t nret, target_ulong rets) 220 { 221 uint32_t val, size, addr; 222 223 if ((nargs != 3) || (nret != 1)) { 224 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 225 return; 226 } 227 228 229 val = rtas_ld(args, 2); 230 size = rtas_ld(args, 1); 231 addr = rtas_ld(args, 0); 232 233 finish_write_pci_config(spapr, 0, addr, size, val, rets); 234 } 235 236 /* 237 * Set MSI/MSIX message data. 238 * This is required for msi_notify()/msix_notify() which 239 * will write at the addresses via spapr_msi_write(). 240 * 241 * If hwaddr == 0, all entries will have .data == first_irq i.e. 242 * table will be reset. 243 */ 244 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 245 unsigned first_irq, unsigned req_num) 246 { 247 unsigned i; 248 MSIMessage msg = { .address = addr, .data = first_irq }; 249 250 if (!msix) { 251 msi_set_message(pdev, msg); 252 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 253 return; 254 } 255 256 for (i = 0; i < req_num; ++i) { 257 msix_set_message(pdev, i, msg); 258 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 259 if (addr) { 260 ++msg.data; 261 } 262 } 263 } 264 265 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr, 266 uint32_t token, uint32_t nargs, 267 target_ulong args, uint32_t nret, 268 target_ulong rets) 269 { 270 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 271 uint32_t config_addr = rtas_ld(args, 0); 272 uint64_t buid = rtas_ldq(args, 1); 273 unsigned int func = rtas_ld(args, 3); 274 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 275 unsigned int seq_num = rtas_ld(args, 5); 276 unsigned int ret_intr_type; 277 unsigned int irq, max_irqs = 0; 278 SpaprPhbState *phb = NULL; 279 PCIDevice *pdev = NULL; 280 spapr_pci_msi *msi; 281 int *config_addr_key; 282 Error *err = NULL; 283 int i; 284 285 /* Fins SpaprPhbState */ 286 phb = spapr_pci_find_phb(spapr, buid); 287 if (phb) { 288 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 289 } 290 if (!phb || !pdev) { 291 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 292 return; 293 } 294 295 switch (func) { 296 case RTAS_CHANGE_FN: 297 if (msi_present(pdev)) { 298 ret_intr_type = RTAS_TYPE_MSI; 299 } else if (msix_present(pdev)) { 300 ret_intr_type = RTAS_TYPE_MSIX; 301 } else { 302 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 303 return; 304 } 305 break; 306 case RTAS_CHANGE_MSI_FN: 307 if (msi_present(pdev)) { 308 ret_intr_type = RTAS_TYPE_MSI; 309 } else { 310 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 311 return; 312 } 313 break; 314 case RTAS_CHANGE_MSIX_FN: 315 if (msix_present(pdev)) { 316 ret_intr_type = RTAS_TYPE_MSIX; 317 } else { 318 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 319 return; 320 } 321 break; 322 default: 323 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 324 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 325 return; 326 } 327 328 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 329 330 /* Releasing MSIs */ 331 if (!req_num) { 332 if (!msi) { 333 trace_spapr_pci_msi("Releasing wrong config", config_addr); 334 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 335 return; 336 } 337 338 if (!smc->legacy_irq_allocation) { 339 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 340 } 341 spapr_irq_free(spapr, msi->first_irq, msi->num); 342 if (msi_present(pdev)) { 343 spapr_msi_setmsg(pdev, 0, false, 0, 0); 344 } 345 if (msix_present(pdev)) { 346 spapr_msi_setmsg(pdev, 0, true, 0, 0); 347 } 348 g_hash_table_remove(phb->msi, &config_addr); 349 350 trace_spapr_pci_msi("Released MSIs", config_addr); 351 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 352 rtas_st(rets, 1, 0); 353 return; 354 } 355 356 /* Enabling MSI */ 357 358 /* Check if the device supports as many IRQs as requested */ 359 if (ret_intr_type == RTAS_TYPE_MSI) { 360 max_irqs = msi_nr_vectors_allocated(pdev); 361 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 362 max_irqs = pdev->msix_entries_nr; 363 } 364 if (!max_irqs) { 365 error_report("Requested interrupt type %d is not enabled for device %x", 366 ret_intr_type, config_addr); 367 rtas_st(rets, 0, -1); /* Hardware error */ 368 return; 369 } 370 /* Correct the number if the guest asked for too many */ 371 if (req_num > max_irqs) { 372 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 373 req_num = max_irqs; 374 irq = 0; /* to avoid misleading trace */ 375 goto out; 376 } 377 378 /* Allocate MSIs */ 379 if (smc->legacy_irq_allocation) { 380 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI, 381 &err); 382 } else { 383 irq = spapr_irq_msi_alloc(spapr, req_num, 384 ret_intr_type == RTAS_TYPE_MSI, &err); 385 } 386 if (err) { 387 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 388 config_addr); 389 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 390 return; 391 } 392 393 for (i = 0; i < req_num; i++) { 394 spapr_irq_claim(spapr, irq + i, false, &err); 395 if (err) { 396 if (i) { 397 spapr_irq_free(spapr, irq, i); 398 } 399 if (!smc->legacy_irq_allocation) { 400 spapr_irq_msi_free(spapr, irq, req_num); 401 } 402 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 403 config_addr); 404 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 405 return; 406 } 407 } 408 409 /* Release previous MSIs */ 410 if (msi) { 411 if (!smc->legacy_irq_allocation) { 412 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 413 } 414 spapr_irq_free(spapr, msi->first_irq, msi->num); 415 g_hash_table_remove(phb->msi, &config_addr); 416 } 417 418 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 419 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 420 irq, req_num); 421 422 /* Add MSI device to cache */ 423 msi = g_new(spapr_pci_msi, 1); 424 msi->first_irq = irq; 425 msi->num = req_num; 426 config_addr_key = g_new(int, 1); 427 *config_addr_key = config_addr; 428 g_hash_table_insert(phb->msi, config_addr_key, msi); 429 430 out: 431 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 432 rtas_st(rets, 1, req_num); 433 rtas_st(rets, 2, ++seq_num); 434 if (nret > 3) { 435 rtas_st(rets, 3, ret_intr_type); 436 } 437 438 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 439 } 440 441 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 442 SpaprMachineState *spapr, 443 uint32_t token, 444 uint32_t nargs, 445 target_ulong args, 446 uint32_t nret, 447 target_ulong rets) 448 { 449 uint32_t config_addr = rtas_ld(args, 0); 450 uint64_t buid = rtas_ldq(args, 1); 451 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 452 SpaprPhbState *phb = NULL; 453 PCIDevice *pdev = NULL; 454 spapr_pci_msi *msi; 455 456 /* Find SpaprPhbState */ 457 phb = spapr_pci_find_phb(spapr, buid); 458 if (phb) { 459 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 460 } 461 if (!phb || !pdev) { 462 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 463 return; 464 } 465 466 /* Find device descriptor and start IRQ */ 467 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 468 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 469 trace_spapr_pci_msi("Failed to return vector", config_addr); 470 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 471 return; 472 } 473 intr_src_num = msi->first_irq + ioa_intr_num; 474 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 475 intr_src_num); 476 477 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 478 rtas_st(rets, 1, intr_src_num); 479 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 480 } 481 482 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 483 SpaprMachineState *spapr, 484 uint32_t token, uint32_t nargs, 485 target_ulong args, uint32_t nret, 486 target_ulong rets) 487 { 488 SpaprPhbState *sphb; 489 uint32_t addr, option; 490 uint64_t buid; 491 int ret; 492 493 if ((nargs != 4) || (nret != 1)) { 494 goto param_error_exit; 495 } 496 497 buid = rtas_ldq(args, 1); 498 addr = rtas_ld(args, 0); 499 option = rtas_ld(args, 3); 500 501 sphb = spapr_pci_find_phb(spapr, buid); 502 if (!sphb) { 503 goto param_error_exit; 504 } 505 506 if (!spapr_phb_eeh_available(sphb)) { 507 goto param_error_exit; 508 } 509 510 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 511 rtas_st(rets, 0, ret); 512 return; 513 514 param_error_exit: 515 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 516 } 517 518 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 519 SpaprMachineState *spapr, 520 uint32_t token, uint32_t nargs, 521 target_ulong args, uint32_t nret, 522 target_ulong rets) 523 { 524 SpaprPhbState *sphb; 525 PCIDevice *pdev; 526 uint32_t addr, option; 527 uint64_t buid; 528 529 if ((nargs != 4) || (nret != 2)) { 530 goto param_error_exit; 531 } 532 533 buid = rtas_ldq(args, 1); 534 sphb = spapr_pci_find_phb(spapr, buid); 535 if (!sphb) { 536 goto param_error_exit; 537 } 538 539 if (!spapr_phb_eeh_available(sphb)) { 540 goto param_error_exit; 541 } 542 543 /* 544 * We always have PE address of form "00BB0001". "BB" 545 * represents the bus number of PE's primary bus. 546 */ 547 option = rtas_ld(args, 3); 548 switch (option) { 549 case RTAS_GET_PE_ADDR: 550 addr = rtas_ld(args, 0); 551 pdev = spapr_pci_find_dev(spapr, buid, addr); 552 if (!pdev) { 553 goto param_error_exit; 554 } 555 556 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1); 557 break; 558 case RTAS_GET_PE_MODE: 559 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 560 break; 561 default: 562 goto param_error_exit; 563 } 564 565 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 566 return; 567 568 param_error_exit: 569 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 570 } 571 572 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 573 SpaprMachineState *spapr, 574 uint32_t token, uint32_t nargs, 575 target_ulong args, uint32_t nret, 576 target_ulong rets) 577 { 578 SpaprPhbState *sphb; 579 uint64_t buid; 580 int state, ret; 581 582 if ((nargs != 3) || (nret != 4 && nret != 5)) { 583 goto param_error_exit; 584 } 585 586 buid = rtas_ldq(args, 1); 587 sphb = spapr_pci_find_phb(spapr, buid); 588 if (!sphb) { 589 goto param_error_exit; 590 } 591 592 if (!spapr_phb_eeh_available(sphb)) { 593 goto param_error_exit; 594 } 595 596 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 597 rtas_st(rets, 0, ret); 598 if (ret != RTAS_OUT_SUCCESS) { 599 return; 600 } 601 602 rtas_st(rets, 1, state); 603 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 604 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 605 if (nret >= 5) { 606 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 607 } 608 return; 609 610 param_error_exit: 611 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 612 } 613 614 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 615 SpaprMachineState *spapr, 616 uint32_t token, uint32_t nargs, 617 target_ulong args, uint32_t nret, 618 target_ulong rets) 619 { 620 SpaprPhbState *sphb; 621 uint32_t option; 622 uint64_t buid; 623 int ret; 624 625 if ((nargs != 4) || (nret != 1)) { 626 goto param_error_exit; 627 } 628 629 buid = rtas_ldq(args, 1); 630 option = rtas_ld(args, 3); 631 sphb = spapr_pci_find_phb(spapr, buid); 632 if (!sphb) { 633 goto param_error_exit; 634 } 635 636 if (!spapr_phb_eeh_available(sphb)) { 637 goto param_error_exit; 638 } 639 640 ret = spapr_phb_vfio_eeh_reset(sphb, option); 641 rtas_st(rets, 0, ret); 642 return; 643 644 param_error_exit: 645 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 646 } 647 648 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 649 SpaprMachineState *spapr, 650 uint32_t token, uint32_t nargs, 651 target_ulong args, uint32_t nret, 652 target_ulong rets) 653 { 654 SpaprPhbState *sphb; 655 uint64_t buid; 656 int ret; 657 658 if ((nargs != 3) || (nret != 1)) { 659 goto param_error_exit; 660 } 661 662 buid = rtas_ldq(args, 1); 663 sphb = spapr_pci_find_phb(spapr, buid); 664 if (!sphb) { 665 goto param_error_exit; 666 } 667 668 if (!spapr_phb_eeh_available(sphb)) { 669 goto param_error_exit; 670 } 671 672 ret = spapr_phb_vfio_eeh_configure(sphb); 673 rtas_st(rets, 0, ret); 674 return; 675 676 param_error_exit: 677 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 678 } 679 680 /* To support it later */ 681 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 682 SpaprMachineState *spapr, 683 uint32_t token, uint32_t nargs, 684 target_ulong args, uint32_t nret, 685 target_ulong rets) 686 { 687 SpaprPhbState *sphb; 688 int option; 689 uint64_t buid; 690 691 if ((nargs != 8) || (nret != 1)) { 692 goto param_error_exit; 693 } 694 695 buid = rtas_ldq(args, 1); 696 sphb = spapr_pci_find_phb(spapr, buid); 697 if (!sphb) { 698 goto param_error_exit; 699 } 700 701 if (!spapr_phb_eeh_available(sphb)) { 702 goto param_error_exit; 703 } 704 705 option = rtas_ld(args, 7); 706 switch (option) { 707 case RTAS_SLOT_TEMP_ERR_LOG: 708 case RTAS_SLOT_PERM_ERR_LOG: 709 break; 710 default: 711 goto param_error_exit; 712 } 713 714 /* We don't have error log yet */ 715 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 716 return; 717 718 param_error_exit: 719 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 720 } 721 722 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 723 { 724 /* 725 * Here we use the number returned by pci_swizzle_map_irq_fn to find a 726 * corresponding qemu_irq. 727 */ 728 SpaprPhbState *phb = opaque; 729 730 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 731 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); 732 } 733 734 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 735 { 736 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 737 PCIINTxRoute route; 738 739 route.mode = PCI_INTX_ENABLED; 740 route.irq = sphb->lsi_table[pin].irq; 741 742 return route; 743 } 744 745 /* 746 * MSI/MSIX memory region implementation. 747 * The handler handles both MSI and MSIX. 748 * The vector number is encoded in least bits in data. 749 */ 750 static void spapr_msi_write(void *opaque, hwaddr addr, 751 uint64_t data, unsigned size) 752 { 753 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 754 uint32_t irq = data; 755 756 trace_spapr_pci_msi_write(addr, data, irq); 757 758 qemu_irq_pulse(spapr_qirq(spapr, irq)); 759 } 760 761 static const MemoryRegionOps spapr_msi_ops = { 762 /* There is no .read as the read result is undefined by PCI spec */ 763 .read = NULL, 764 .write = spapr_msi_write, 765 .endianness = DEVICE_LITTLE_ENDIAN 766 }; 767 768 /* 769 * PHB PCI device 770 */ 771 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 772 { 773 SpaprPhbState *phb = opaque; 774 775 return &phb->iommu_as; 776 } 777 778 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 779 { 780 char *path = NULL, *buf = NULL, *host = NULL; 781 782 /* Get the PCI VFIO host id */ 783 host = object_property_get_str(OBJECT(pdev), "host", NULL); 784 if (!host) { 785 goto err_out; 786 } 787 788 /* Construct the path of the file that will give us the DT location */ 789 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 790 g_free(host); 791 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 792 goto err_out; 793 } 794 g_free(path); 795 796 /* Construct and read from host device tree the loc-code */ 797 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); 798 g_free(buf); 799 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 800 goto err_out; 801 } 802 return buf; 803 804 err_out: 805 g_free(path); 806 return NULL; 807 } 808 809 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 810 { 811 char *buf; 812 const char *devtype = "qemu"; 813 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 814 815 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 816 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 817 if (buf) { 818 return buf; 819 } 820 devtype = "vfio"; 821 } 822 /* 823 * For emulated devices and VFIO-failure case, make up 824 * the loc-code. 825 */ 826 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 827 devtype, pdev->name, sphb->index, busnr, 828 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 829 return buf; 830 } 831 832 /* Macros to operate with address in OF binding to PCI */ 833 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 834 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 835 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 836 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 837 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 838 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 839 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 840 #define b_fff(x) b_x((x), 8, 3) /* function number */ 841 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 842 843 /* for 'reg'/'assigned-addresses' OF properties */ 844 #define RESOURCE_CELLS_SIZE 2 845 #define RESOURCE_CELLS_ADDRESS 3 846 847 typedef struct ResourceFields { 848 uint32_t phys_hi; 849 uint32_t phys_mid; 850 uint32_t phys_lo; 851 uint32_t size_hi; 852 uint32_t size_lo; 853 } QEMU_PACKED ResourceFields; 854 855 typedef struct ResourceProps { 856 ResourceFields reg[8]; 857 ResourceFields assigned[7]; 858 uint32_t reg_len; 859 uint32_t assigned_len; 860 } ResourceProps; 861 862 /* fill in the 'reg'/'assigned-resources' OF properties for 863 * a PCI device. 'reg' describes resource requirements for a 864 * device's IO/MEM regions, 'assigned-addresses' describes the 865 * actual resource assignments. 866 * 867 * the properties are arrays of ('phys-addr', 'size') pairs describing 868 * the addressable regions of the PCI device, where 'phys-addr' is a 869 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 870 * (phys.hi, phys.mid, phys.lo), and 'size' is a 871 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 872 * 873 * phys.hi = 0xYYXXXXZZ, where: 874 * 0xYY = npt000ss 875 * ||| | 876 * ||| +-- space code 877 * ||| | 878 * ||| + 00 if configuration space 879 * ||| + 01 if IO region, 880 * ||| + 10 if 32-bit MEM region 881 * ||| + 11 if 64-bit MEM region 882 * ||| 883 * ||+------ for non-relocatable IO: 1 if aliased 884 * || for relocatable IO: 1 if below 64KB 885 * || for MEM: 1 if below 1MB 886 * |+------- 1 if region is prefetchable 887 * +-------- 1 if region is non-relocatable 888 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 889 * bits respectively 890 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 891 * to the region 892 * 893 * phys.mid and phys.lo correspond respectively to the hi/lo portions 894 * of the actual address of the region. 895 * 896 * how the phys-addr/size values are used differ slightly between 897 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has 898 * an additional description for the config space region of the 899 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0 900 * to describe the region as relocatable, with an address-mapping 901 * that corresponds directly to the PHB's address space for the 902 * resource. 'assigned-addresses' always has n=1 set with an absolute 903 * address assigned for the resource. in general, 'assigned-addresses' 904 * won't be populated, since addresses for PCI devices are generally 905 * unmapped initially and left to the guest to assign. 906 * 907 * note also that addresses defined in these properties are, at least 908 * for PAPR guests, relative to the PHBs IO/MEM windows, and 909 * correspond directly to the addresses in the BARs. 910 * 911 * in accordance with PCI Bus Binding to Open Firmware, 912 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 913 * Appendix C. 914 */ 915 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 916 { 917 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 918 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 919 b_ddddd(PCI_SLOT(d->devfn)) | 920 b_fff(PCI_FUNC(d->devfn))); 921 ResourceFields *reg, *assigned; 922 int i, reg_idx = 0, assigned_idx = 0; 923 924 /* config space region */ 925 reg = &rp->reg[reg_idx++]; 926 reg->phys_hi = cpu_to_be32(dev_id); 927 reg->phys_mid = 0; 928 reg->phys_lo = 0; 929 reg->size_hi = 0; 930 reg->size_lo = 0; 931 932 for (i = 0; i < PCI_NUM_REGIONS; i++) { 933 if (!d->io_regions[i].size) { 934 continue; 935 } 936 937 reg = &rp->reg[reg_idx++]; 938 939 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 940 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 941 reg->phys_hi |= cpu_to_be32(b_ss(1)); 942 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 943 reg->phys_hi |= cpu_to_be32(b_ss(3)); 944 } else { 945 reg->phys_hi |= cpu_to_be32(b_ss(2)); 946 } 947 reg->phys_mid = 0; 948 reg->phys_lo = 0; 949 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 950 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 951 952 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) { 953 continue; 954 } 955 956 assigned = &rp->assigned[assigned_idx++]; 957 assigned->phys_hi = cpu_to_be32(be32_to_cpu(reg->phys_hi) | b_n(1)); 958 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32); 959 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr); 960 assigned->size_hi = reg->size_hi; 961 assigned->size_lo = reg->size_lo; 962 } 963 964 rp->reg_len = reg_idx * sizeof(ResourceFields); 965 rp->assigned_len = assigned_idx * sizeof(ResourceFields); 966 } 967 968 typedef struct PCIClass PCIClass; 969 typedef struct PCISubClass PCISubClass; 970 typedef struct PCIIFace PCIIFace; 971 972 struct PCIIFace { 973 int iface; 974 const char *name; 975 }; 976 977 struct PCISubClass { 978 int subclass; 979 const char *name; 980 const PCIIFace *iface; 981 }; 982 983 struct PCIClass { 984 const char *name; 985 const PCISubClass *subc; 986 }; 987 988 static const PCISubClass undef_subclass[] = { 989 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, 990 { 0xFF, NULL, NULL }, 991 }; 992 993 static const PCISubClass mass_subclass[] = { 994 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, 995 { PCI_CLASS_STORAGE_IDE, "ide", NULL }, 996 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, 997 { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, 998 { PCI_CLASS_STORAGE_RAID, "raid", NULL }, 999 { PCI_CLASS_STORAGE_ATA, "ata", NULL }, 1000 { PCI_CLASS_STORAGE_SATA, "sata", NULL }, 1001 { PCI_CLASS_STORAGE_SAS, "sas", NULL }, 1002 { 0xFF, NULL, NULL }, 1003 }; 1004 1005 static const PCISubClass net_subclass[] = { 1006 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, 1007 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, 1008 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, 1009 { PCI_CLASS_NETWORK_ATM, "atm", NULL }, 1010 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, 1011 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, 1012 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, 1013 { 0xFF, NULL, NULL }, 1014 }; 1015 1016 static const PCISubClass displ_subclass[] = { 1017 { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, 1018 { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, 1019 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, 1020 { 0xFF, NULL, NULL }, 1021 }; 1022 1023 static const PCISubClass media_subclass[] = { 1024 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, 1025 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, 1026 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, 1027 { 0xFF, NULL, NULL }, 1028 }; 1029 1030 static const PCISubClass mem_subclass[] = { 1031 { PCI_CLASS_MEMORY_RAM, "memory", NULL }, 1032 { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, 1033 { 0xFF, NULL, NULL }, 1034 }; 1035 1036 static const PCISubClass bridg_subclass[] = { 1037 { PCI_CLASS_BRIDGE_HOST, "host", NULL }, 1038 { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, 1039 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, 1040 { PCI_CLASS_BRIDGE_MC, "mca", NULL }, 1041 { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, 1042 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, 1043 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, 1044 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, 1045 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, 1046 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, 1047 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, 1048 { 0xFF, NULL, NULL }, 1049 }; 1050 1051 static const PCISubClass comm_subclass[] = { 1052 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, 1053 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, 1054 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, 1055 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, 1056 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, 1057 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, 1058 { 0xFF, NULL, NULL, }, 1059 }; 1060 1061 static const PCIIFace pic_iface[] = { 1062 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, 1063 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, 1064 { 0xFF, NULL }, 1065 }; 1066 1067 static const PCISubClass sys_subclass[] = { 1068 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, 1069 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, 1070 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, 1071 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, 1072 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, 1073 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, 1074 { 0xFF, NULL, NULL }, 1075 }; 1076 1077 static const PCISubClass inp_subclass[] = { 1078 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, 1079 { PCI_CLASS_INPUT_PEN, "pen", NULL }, 1080 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, 1081 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, 1082 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, 1083 { 0xFF, NULL, NULL }, 1084 }; 1085 1086 static const PCISubClass dock_subclass[] = { 1087 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, 1088 { 0xFF, NULL, NULL }, 1089 }; 1090 1091 static const PCISubClass cpu_subclass[] = { 1092 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, 1093 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, 1094 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, 1095 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, 1096 { 0xFF, NULL, NULL }, 1097 }; 1098 1099 static const PCIIFace usb_iface[] = { 1100 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, 1101 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, 1102 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, 1103 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, 1104 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, 1105 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, 1106 { 0xFF, NULL }, 1107 }; 1108 1109 static const PCISubClass ser_subclass[] = { 1110 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, 1111 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, 1112 { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, 1113 { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, 1114 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, 1115 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, 1116 { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, 1117 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, 1118 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, 1119 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, 1120 { 0xFF, NULL, NULL }, 1121 }; 1122 1123 static const PCISubClass wrl_subclass[] = { 1124 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, 1125 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, 1126 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, 1127 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, 1128 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, 1129 { 0xFF, NULL, NULL }, 1130 }; 1131 1132 static const PCISubClass sat_subclass[] = { 1133 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, 1134 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, 1135 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, 1136 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, 1137 { 0xFF, NULL, NULL }, 1138 }; 1139 1140 static const PCISubClass crypt_subclass[] = { 1141 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, 1142 { PCI_CLASS_CRYPT_ENTERTAINMENT, 1143 "entertainment-encryption", NULL }, 1144 { 0xFF, NULL, NULL }, 1145 }; 1146 1147 static const PCISubClass spc_subclass[] = { 1148 { PCI_CLASS_SP_DPIO, "dpio", NULL }, 1149 { PCI_CLASS_SP_PERF, "counter", NULL }, 1150 { PCI_CLASS_SP_SYNCH, "measurement", NULL }, 1151 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, 1152 { 0xFF, NULL, NULL }, 1153 }; 1154 1155 static const PCIClass pci_classes[] = { 1156 { "legacy-device", undef_subclass }, 1157 { "mass-storage", mass_subclass }, 1158 { "network", net_subclass }, 1159 { "display", displ_subclass, }, 1160 { "multimedia-device", media_subclass }, 1161 { "memory-controller", mem_subclass }, 1162 { "unknown-bridge", bridg_subclass }, 1163 { "communication-controller", comm_subclass}, 1164 { "system-peripheral", sys_subclass }, 1165 { "input-controller", inp_subclass }, 1166 { "docking-station", dock_subclass }, 1167 { "cpu", cpu_subclass }, 1168 { "serial-bus", ser_subclass }, 1169 { "wireless-controller", wrl_subclass }, 1170 { "intelligent-io", NULL }, 1171 { "satellite-device", sat_subclass }, 1172 { "encryption", crypt_subclass }, 1173 { "data-processing-controller", spc_subclass }, 1174 }; 1175 1176 static const char *pci_find_device_name(uint8_t class, uint8_t subclass, 1177 uint8_t iface) 1178 { 1179 const PCIClass *pclass; 1180 const PCISubClass *psubclass; 1181 const PCIIFace *piface; 1182 const char *name; 1183 1184 if (class >= ARRAY_SIZE(pci_classes)) { 1185 return "pci"; 1186 } 1187 1188 pclass = pci_classes + class; 1189 name = pclass->name; 1190 1191 if (pclass->subc == NULL) { 1192 return name; 1193 } 1194 1195 psubclass = pclass->subc; 1196 while ((psubclass->subclass & 0xff) != 0xff) { 1197 if ((psubclass->subclass & 0xff) == subclass) { 1198 name = psubclass->name; 1199 break; 1200 } 1201 psubclass++; 1202 } 1203 1204 piface = psubclass->iface; 1205 if (piface == NULL) { 1206 return name; 1207 } 1208 while ((piface->iface & 0xff) != 0xff) { 1209 if ((piface->iface & 0xff) == iface) { 1210 name = piface->name; 1211 break; 1212 } 1213 piface++; 1214 } 1215 1216 return name; 1217 } 1218 1219 static gchar *pci_get_node_name(PCIDevice *dev) 1220 { 1221 int slot = PCI_SLOT(dev->devfn); 1222 int func = PCI_FUNC(dev->devfn); 1223 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1224 const char *name; 1225 1226 name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, 1227 ccode & 0xff); 1228 1229 if (func != 0) { 1230 return g_strdup_printf("%s@%x,%x", name, slot, func); 1231 } else { 1232 return g_strdup_printf("%s@%x", name, slot); 1233 } 1234 } 1235 1236 static uint32_t spapr_phb_get_pci_drc_index(SpaprPhbState *phb, 1237 PCIDevice *pdev); 1238 1239 static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset, 1240 SpaprPhbState *sphb) 1241 { 1242 ResourceProps rp; 1243 bool is_bridge = false; 1244 int pci_status; 1245 char *buf = NULL; 1246 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev); 1247 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1248 uint32_t max_msi, max_msix; 1249 1250 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) == 1251 PCI_HEADER_TYPE_BRIDGE) { 1252 is_bridge = true; 1253 } 1254 1255 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 1256 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", 1257 pci_default_read_config(dev, PCI_VENDOR_ID, 2))); 1258 _FDT(fdt_setprop_cell(fdt, offset, "device-id", 1259 pci_default_read_config(dev, PCI_DEVICE_ID, 2))); 1260 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", 1261 pci_default_read_config(dev, PCI_REVISION_ID, 1))); 1262 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); 1263 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) { 1264 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", 1265 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1))); 1266 } 1267 1268 if (!is_bridge) { 1269 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", 1270 pci_default_read_config(dev, PCI_MIN_GNT, 1))); 1271 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", 1272 pci_default_read_config(dev, PCI_MAX_LAT, 1))); 1273 } 1274 1275 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) { 1276 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", 1277 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2))); 1278 } 1279 1280 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) { 1281 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 1282 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2))); 1283 } 1284 1285 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", 1286 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1))); 1287 1288 /* the following fdt cells are masked off the pci status register */ 1289 pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1290 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1291 PCI_STATUS_DEVSEL_MASK & pci_status)); 1292 1293 if (pci_status & PCI_STATUS_FAST_BACK) { 1294 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1295 } 1296 if (pci_status & PCI_STATUS_66MHZ) { 1297 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1298 } 1299 if (pci_status & PCI_STATUS_UDF) { 1300 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1301 } 1302 1303 _FDT(fdt_setprop_string(fdt, offset, "name", 1304 pci_find_device_name((ccode >> 16) & 0xff, 1305 (ccode >> 8) & 0xff, 1306 ccode & 0xff))); 1307 1308 buf = spapr_phb_get_loc_code(sphb, dev); 1309 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf)); 1310 g_free(buf); 1311 1312 if (drc_index) { 1313 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)); 1314 } 1315 1316 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1317 RESOURCE_CELLS_ADDRESS)); 1318 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1319 RESOURCE_CELLS_SIZE)); 1320 1321 if (msi_present(dev)) { 1322 max_msi = msi_nr_vectors_allocated(dev); 1323 if (max_msi) { 1324 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1325 } 1326 } 1327 if (msix_present(dev)) { 1328 max_msix = dev->msix_entries_nr; 1329 if (max_msix) { 1330 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1331 } 1332 } 1333 1334 populate_resource_props(dev, &rp); 1335 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1336 _FDT(fdt_setprop(fdt, offset, "assigned-addresses", 1337 (uint8_t *)rp.assigned, rp.assigned_len)); 1338 1339 if (sphb->pcie_ecs && pci_is_express(dev)) { 1340 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); 1341 } 1342 1343 spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb); 1344 } 1345 1346 /* create OF node for pci device and required OF DT properties */ 1347 static int spapr_create_pci_child_dt(SpaprPhbState *phb, PCIDevice *dev, 1348 void *fdt, int node_offset) 1349 { 1350 int offset; 1351 gchar *nodename; 1352 1353 nodename = pci_get_node_name(dev); 1354 _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename)); 1355 g_free(nodename); 1356 1357 spapr_populate_pci_child_dt(dev, fdt, offset, phb); 1358 1359 return offset; 1360 } 1361 1362 /* Callback to be called during DRC release. */ 1363 void spapr_phb_remove_pci_device_cb(DeviceState *dev) 1364 { 1365 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 1366 1367 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 1368 object_unparent(OBJECT(dev)); 1369 } 1370 1371 static SpaprDrc *spapr_phb_get_pci_func_drc(SpaprPhbState *phb, 1372 uint32_t busnr, 1373 int32_t devfn) 1374 { 1375 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1376 (phb->index << 16) | (busnr << 8) | devfn); 1377 } 1378 1379 static SpaprDrc *spapr_phb_get_pci_drc(SpaprPhbState *phb, 1380 PCIDevice *pdev) 1381 { 1382 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 1383 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn); 1384 } 1385 1386 static uint32_t spapr_phb_get_pci_drc_index(SpaprPhbState *phb, 1387 PCIDevice *pdev) 1388 { 1389 SpaprDrc *drc = spapr_phb_get_pci_drc(phb, pdev); 1390 1391 if (!drc) { 1392 return 0; 1393 } 1394 1395 return spapr_drc_index(drc); 1396 } 1397 1398 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 1399 void *fdt, int *fdt_start_offset, Error **errp) 1400 { 1401 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev); 1402 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler); 1403 PCIDevice *pdev = PCI_DEVICE(drc->dev); 1404 1405 *fdt_start_offset = spapr_create_pci_child_dt(sphb, pdev, fdt, 0); 1406 return 0; 1407 } 1408 1409 static void spapr_pci_plug(HotplugHandler *plug_handler, 1410 DeviceState *plugged_dev, Error **errp) 1411 { 1412 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1413 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1414 SpaprDrc *drc = spapr_phb_get_pci_drc(phb, pdev); 1415 Error *local_err = NULL; 1416 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1417 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1418 1419 /* if DR is disabled we don't need to do anything in the case of 1420 * hotplug or coldplug callbacks 1421 */ 1422 if (!phb->dr_enabled) { 1423 /* if this is a hotplug operation initiated by the user 1424 * we need to let them know it's not enabled 1425 */ 1426 if (plugged_dev->hotplugged) { 1427 error_setg(&local_err, QERR_BUS_NO_HOTPLUG, 1428 object_get_typename(OBJECT(phb))); 1429 } 1430 goto out; 1431 } 1432 1433 g_assert(drc); 1434 1435 /* Following the QEMU convention used for PCIe multifunction 1436 * hotplug, we do not allow functions to be hotplugged to a 1437 * slot that already has function 0 present 1438 */ 1439 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1440 PCI_FUNC(pdev->devfn) != 0) { 1441 error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s," 1442 " additional functions can no longer be exposed to guest.", 1443 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1444 goto out; 1445 } 1446 1447 spapr_drc_attach(drc, DEVICE(pdev), &local_err); 1448 if (local_err) { 1449 goto out; 1450 } 1451 1452 /* If this is function 0, signal hotplug for all the device functions. 1453 * Otherwise defer sending the hotplug event. 1454 */ 1455 if (!spapr_drc_hotplugged(plugged_dev)) { 1456 spapr_drc_reset(drc); 1457 } else if (PCI_FUNC(pdev->devfn) == 0) { 1458 int i; 1459 1460 for (i = 0; i < 8; i++) { 1461 SpaprDrc *func_drc; 1462 SpaprDrcClass *func_drck; 1463 SpaprDREntitySense state; 1464 1465 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1466 PCI_DEVFN(slotnr, i)); 1467 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1468 state = func_drck->dr_entity_sense(func_drc); 1469 1470 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1471 spapr_hotplug_req_add_by_index(func_drc); 1472 } 1473 } 1474 } 1475 1476 out: 1477 error_propagate(errp, local_err); 1478 } 1479 1480 static void spapr_pci_unplug(HotplugHandler *plug_handler, 1481 DeviceState *plugged_dev, Error **errp) 1482 { 1483 /* some version guests do not wait for completion of a device 1484 * cleanup (generally done asynchronously by the kernel) before 1485 * signaling to QEMU that the device is safe, but instead sleep 1486 * for some 'safe' period of time. unfortunately on a busy host 1487 * this sleep isn't guaranteed to be long enough, resulting in 1488 * bad things like IRQ lines being left asserted during final 1489 * device removal. to deal with this we call reset just prior 1490 * to finalizing the device, which will put the device back into 1491 * an 'idle' state, as the device cleanup code expects. 1492 */ 1493 pci_device_reset(PCI_DEVICE(plugged_dev)); 1494 object_property_set_bool(OBJECT(plugged_dev), false, "realized", NULL); 1495 } 1496 1497 static void spapr_pci_unplug_request(HotplugHandler *plug_handler, 1498 DeviceState *plugged_dev, Error **errp) 1499 { 1500 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1501 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1502 SpaprDrc *drc = spapr_phb_get_pci_drc(phb, pdev); 1503 1504 if (!phb->dr_enabled) { 1505 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1506 object_get_typename(OBJECT(phb))); 1507 return; 1508 } 1509 1510 g_assert(drc); 1511 g_assert(drc->dev == plugged_dev); 1512 1513 if (!spapr_drc_unplug_requested(drc)) { 1514 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1515 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1516 SpaprDrc *func_drc; 1517 SpaprDrcClass *func_drck; 1518 SpaprDREntitySense state; 1519 int i; 1520 1521 /* ensure any other present functions are pending unplug */ 1522 if (PCI_FUNC(pdev->devfn) == 0) { 1523 for (i = 1; i < 8; i++) { 1524 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1525 PCI_DEVFN(slotnr, i)); 1526 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1527 state = func_drck->dr_entity_sense(func_drc); 1528 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1529 && !spapr_drc_unplug_requested(func_drc)) { 1530 error_setg(errp, 1531 "PCI: slot %d, function %d still present. " 1532 "Must unplug all non-0 functions first.", 1533 slotnr, i); 1534 return; 1535 } 1536 } 1537 } 1538 1539 spapr_drc_detach(drc); 1540 1541 /* if this isn't func 0, defer unplug event. otherwise signal removal 1542 * for all present functions 1543 */ 1544 if (PCI_FUNC(pdev->devfn) == 0) { 1545 for (i = 7; i >= 0; i--) { 1546 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1547 PCI_DEVFN(slotnr, i)); 1548 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1549 state = func_drck->dr_entity_sense(func_drc); 1550 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1551 spapr_hotplug_req_remove_by_index(func_drc); 1552 } 1553 } 1554 } 1555 } 1556 } 1557 1558 static void spapr_phb_finalizefn(Object *obj) 1559 { 1560 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj); 1561 1562 g_free(sphb->dtbusname); 1563 sphb->dtbusname = NULL; 1564 } 1565 1566 static void spapr_phb_unrealize(DeviceState *dev, Error **errp) 1567 { 1568 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1569 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1570 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1571 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb); 1572 SpaprTceTable *tcet; 1573 int i; 1574 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1575 1576 spapr_phb_nvgpu_free(sphb); 1577 1578 if (sphb->msi) { 1579 g_hash_table_unref(sphb->msi); 1580 sphb->msi = NULL; 1581 } 1582 1583 /* 1584 * Remove IO/MMIO subregions and aliases, rest should get cleaned 1585 * via PHB's unrealize->object_finalize 1586 */ 1587 for (i = windows_supported - 1; i >= 0; i--) { 1588 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1589 if (tcet) { 1590 memory_region_del_subregion(&sphb->iommu_root, 1591 spapr_tce_get_iommu(tcet)); 1592 } 1593 } 1594 1595 if (sphb->dr_enabled) { 1596 for (i = PCI_SLOT_MAX * 8 - 1; i >= 0; i--) { 1597 SpaprDrc *drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1598 (sphb->index << 16) | i); 1599 1600 if (drc) { 1601 object_unparent(OBJECT(drc)); 1602 } 1603 } 1604 } 1605 1606 for (i = PCI_NUM_PINS - 1; i >= 0; i--) { 1607 if (sphb->lsi_table[i].irq) { 1608 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1); 1609 sphb->lsi_table[i].irq = 0; 1610 } 1611 } 1612 1613 QLIST_REMOVE(sphb, list); 1614 1615 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow); 1616 1617 address_space_destroy(&sphb->iommu_as); 1618 1619 qbus_set_hotplug_handler(BUS(phb->bus), NULL, &error_abort); 1620 pci_unregister_root_bus(phb->bus); 1621 1622 memory_region_del_subregion(get_system_memory(), &sphb->iowindow); 1623 if (sphb->mem64_win_pciaddr != (hwaddr)-1) { 1624 memory_region_del_subregion(get_system_memory(), &sphb->mem64window); 1625 } 1626 memory_region_del_subregion(get_system_memory(), &sphb->mem32window); 1627 } 1628 1629 static bool spapr_phb_allows_extended_config_space(PCIBus *bus) 1630 { 1631 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(BUS(bus)->parent); 1632 1633 return sphb->pcie_ecs; 1634 } 1635 1636 static void spapr_phb_root_bus_class_init(ObjectClass *klass, void *data) 1637 { 1638 PCIBusClass *pbc = PCI_BUS_CLASS(klass); 1639 1640 pbc->allows_extended_config_space = spapr_phb_allows_extended_config_space; 1641 } 1642 1643 #define TYPE_SPAPR_PHB_ROOT_BUS "pci" 1644 1645 static const TypeInfo spapr_phb_root_bus_info = { 1646 .name = TYPE_SPAPR_PHB_ROOT_BUS, 1647 .parent = TYPE_PCI_BUS, 1648 .class_init = spapr_phb_root_bus_class_init, 1649 }; 1650 1651 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1652 { 1653 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 1654 * tries to add a sPAPR PHB to a non-pseries machine. 1655 */ 1656 SpaprMachineState *spapr = 1657 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(), 1658 TYPE_SPAPR_MACHINE); 1659 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL; 1660 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1661 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 1662 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1663 char *namebuf; 1664 int i; 1665 PCIBus *bus; 1666 uint64_t msi_window_size = 4096; 1667 SpaprTceTable *tcet; 1668 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1669 1670 if (!spapr) { 1671 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine"); 1672 return; 1673 } 1674 1675 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */ 1676 1677 if (sphb->mem64_win_size != 0) { 1678 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1679 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1680 " (max 2 GiB)", sphb->mem_win_size); 1681 return; 1682 } 1683 1684 /* 64-bit window defaults to identity mapping */ 1685 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1686 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1687 /* 1688 * For compatibility with old configuration, if no 64-bit MMIO 1689 * window is specified, but the ordinary (32-bit) memory 1690 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1691 * window, with a 64-bit MMIO window following on immediately 1692 * afterwards 1693 */ 1694 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1695 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1696 sphb->mem64_win_pciaddr = 1697 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1698 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1699 } 1700 1701 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1702 error_setg(errp, "PCI host bridges must have unique BUIDs"); 1703 return; 1704 } 1705 1706 if (sphb->numa_node != -1 && 1707 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) { 1708 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1709 return; 1710 } 1711 1712 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1713 1714 /* Initialize memory regions */ 1715 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname); 1716 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1717 g_free(namebuf); 1718 1719 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname); 1720 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1721 namebuf, &sphb->memspace, 1722 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1723 g_free(namebuf); 1724 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1725 &sphb->mem32window); 1726 1727 if (sphb->mem64_win_size != 0) { 1728 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname); 1729 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1730 namebuf, &sphb->memspace, 1731 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1732 g_free(namebuf); 1733 1734 memory_region_add_subregion(get_system_memory(), 1735 sphb->mem64_win_addr, 1736 &sphb->mem64window); 1737 } 1738 1739 /* Initialize IO regions */ 1740 namebuf = g_strdup_printf("%s.io", sphb->dtbusname); 1741 memory_region_init(&sphb->iospace, OBJECT(sphb), 1742 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1743 g_free(namebuf); 1744 1745 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname); 1746 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1747 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1748 g_free(namebuf); 1749 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1750 &sphb->iowindow); 1751 1752 bus = pci_register_root_bus(dev, NULL, 1753 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb, 1754 &sphb->memspace, &sphb->iospace, 1755 PCI_DEVFN(0, 0), PCI_NUM_PINS, 1756 TYPE_SPAPR_PHB_ROOT_BUS); 1757 phb->bus = bus; 1758 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb), NULL); 1759 1760 /* 1761 * Initialize PHB address space. 1762 * By default there will be at least one subregion for default 1763 * 32bit DMA window. 1764 * Later the guest might want to create another DMA window 1765 * which will become another memory subregion. 1766 */ 1767 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname); 1768 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1769 namebuf, UINT64_MAX); 1770 g_free(namebuf); 1771 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1772 sphb->dtbusname); 1773 1774 /* 1775 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1776 * we need to allocate some memory to catch those writes coming 1777 * from msi_notify()/msix_notify(). 1778 * As MSIMessage:addr is going to be the same and MSIMessage:data 1779 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1780 * be used. 1781 * 1782 * For KVM we want to ensure that this memory is a full page so that 1783 * our memory slot is of page size granularity. 1784 */ 1785 #ifdef CONFIG_KVM 1786 if (kvm_enabled()) { 1787 msi_window_size = getpagesize(); 1788 } 1789 #endif 1790 1791 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, 1792 "msi", msi_window_size); 1793 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1794 &sphb->msiwindow); 1795 1796 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1797 1798 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1799 1800 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1801 1802 /* Initialize the LSI table */ 1803 for (i = 0; i < PCI_NUM_PINS; i++) { 1804 uint32_t irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i; 1805 Error *local_err = NULL; 1806 1807 if (smc->legacy_irq_allocation) { 1808 irq = spapr_irq_findone(spapr, &local_err); 1809 if (local_err) { 1810 error_propagate_prepend(errp, local_err, 1811 "can't allocate LSIs: "); 1812 /* 1813 * Older machines will never support PHB hotplug, ie, this is an 1814 * init only path and QEMU will terminate. No need to rollback. 1815 */ 1816 return; 1817 } 1818 } 1819 1820 spapr_irq_claim(spapr, irq, true, &local_err); 1821 if (local_err) { 1822 error_propagate_prepend(errp, local_err, "can't allocate LSIs: "); 1823 goto unrealize; 1824 } 1825 1826 sphb->lsi_table[i].irq = irq; 1827 } 1828 1829 /* allocate connectors for child PCI devices */ 1830 if (sphb->dr_enabled) { 1831 for (i = 0; i < PCI_SLOT_MAX * 8; i++) { 1832 spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI, 1833 (sphb->index << 16) | i); 1834 } 1835 } 1836 1837 /* DMA setup */ 1838 for (i = 0; i < windows_supported; ++i) { 1839 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 1840 if (!tcet) { 1841 error_setg(errp, "Creating window#%d failed for %s", 1842 i, sphb->dtbusname); 1843 goto unrealize; 1844 } 1845 memory_region_add_subregion(&sphb->iommu_root, 0, 1846 spapr_tce_get_iommu(tcet)); 1847 } 1848 1849 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); 1850 return; 1851 1852 unrealize: 1853 spapr_phb_unrealize(dev, NULL); 1854 } 1855 1856 static int spapr_phb_children_reset(Object *child, void *opaque) 1857 { 1858 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 1859 1860 if (dev) { 1861 device_reset(dev); 1862 } 1863 1864 return 0; 1865 } 1866 1867 void spapr_phb_dma_reset(SpaprPhbState *sphb) 1868 { 1869 int i; 1870 SpaprTceTable *tcet; 1871 1872 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 1873 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1874 1875 if (tcet && tcet->nb_table) { 1876 spapr_tce_table_disable(tcet); 1877 } 1878 } 1879 1880 /* Register default 32bit DMA window */ 1881 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 1882 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 1883 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 1884 } 1885 1886 static void spapr_phb_reset(DeviceState *qdev) 1887 { 1888 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 1889 Error *errp = NULL; 1890 1891 spapr_phb_dma_reset(sphb); 1892 spapr_phb_nvgpu_free(sphb); 1893 spapr_phb_nvgpu_setup(sphb, &errp); 1894 if (errp) { 1895 error_report_err(errp); 1896 } 1897 1898 /* Reset the IOMMU state */ 1899 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 1900 1901 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 1902 spapr_phb_vfio_reset(qdev); 1903 } 1904 } 1905 1906 static Property spapr_phb_properties[] = { 1907 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1), 1908 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size, 1909 SPAPR_PCI_MEM32_WIN_SIZE), 1910 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size, 1911 SPAPR_PCI_MEM64_WIN_SIZE), 1912 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size, 1913 SPAPR_PCI_IO_WIN_SIZE), 1914 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled, 1915 true), 1916 /* Default DMA window is 0..1GB */ 1917 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0), 1918 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000), 1919 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr, 1920 0x800000000000000ULL), 1921 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true), 1922 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask, 1923 (1ULL << 12) | (1ULL << 16)), 1924 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1), 1925 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState, 1926 pre_2_8_migration, false), 1927 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState, 1928 pcie_ecs, true), 1929 DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0), 1930 DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0), 1931 DEFINE_PROP_END_OF_LIST(), 1932 }; 1933 1934 static const VMStateDescription vmstate_spapr_pci_lsi = { 1935 .name = "spapr_pci/lsi", 1936 .version_id = 1, 1937 .minimum_version_id = 1, 1938 .fields = (VMStateField[]) { 1939 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL), 1940 1941 VMSTATE_END_OF_LIST() 1942 }, 1943 }; 1944 1945 static const VMStateDescription vmstate_spapr_pci_msi = { 1946 .name = "spapr_pci/msi", 1947 .version_id = 1, 1948 .minimum_version_id = 1, 1949 .fields = (VMStateField []) { 1950 VMSTATE_UINT32(key, spapr_pci_msi_mig), 1951 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), 1952 VMSTATE_UINT32(value.num, spapr_pci_msi_mig), 1953 VMSTATE_END_OF_LIST() 1954 }, 1955 }; 1956 1957 static int spapr_pci_pre_save(void *opaque) 1958 { 1959 SpaprPhbState *sphb = opaque; 1960 GHashTableIter iter; 1961 gpointer key, value; 1962 int i; 1963 1964 if (sphb->pre_2_8_migration) { 1965 sphb->mig_liobn = sphb->dma_liobn[0]; 1966 sphb->mig_mem_win_addr = sphb->mem_win_addr; 1967 sphb->mig_mem_win_size = sphb->mem_win_size; 1968 sphb->mig_io_win_addr = sphb->io_win_addr; 1969 sphb->mig_io_win_size = sphb->io_win_size; 1970 1971 if ((sphb->mem64_win_size != 0) 1972 && (sphb->mem64_win_addr 1973 == (sphb->mem_win_addr + sphb->mem_win_size))) { 1974 sphb->mig_mem_win_size += sphb->mem64_win_size; 1975 } 1976 } 1977 1978 g_free(sphb->msi_devs); 1979 sphb->msi_devs = NULL; 1980 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 1981 if (!sphb->msi_devs_num) { 1982 return 0; 1983 } 1984 sphb->msi_devs = g_new(spapr_pci_msi_mig, sphb->msi_devs_num); 1985 1986 g_hash_table_iter_init(&iter, sphb->msi); 1987 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 1988 sphb->msi_devs[i].key = *(uint32_t *) key; 1989 sphb->msi_devs[i].value = *(spapr_pci_msi *) value; 1990 } 1991 1992 return 0; 1993 } 1994 1995 static int spapr_pci_post_load(void *opaque, int version_id) 1996 { 1997 SpaprPhbState *sphb = opaque; 1998 gpointer key, value; 1999 int i; 2000 2001 for (i = 0; i < sphb->msi_devs_num; ++i) { 2002 key = g_memdup(&sphb->msi_devs[i].key, 2003 sizeof(sphb->msi_devs[i].key)); 2004 value = g_memdup(&sphb->msi_devs[i].value, 2005 sizeof(sphb->msi_devs[i].value)); 2006 g_hash_table_insert(sphb->msi, key, value); 2007 } 2008 g_free(sphb->msi_devs); 2009 sphb->msi_devs = NULL; 2010 sphb->msi_devs_num = 0; 2011 2012 return 0; 2013 } 2014 2015 static bool pre_2_8_migration(void *opaque, int version_id) 2016 { 2017 SpaprPhbState *sphb = opaque; 2018 2019 return sphb->pre_2_8_migration; 2020 } 2021 2022 static const VMStateDescription vmstate_spapr_pci = { 2023 .name = "spapr_pci", 2024 .version_id = 2, 2025 .minimum_version_id = 2, 2026 .pre_save = spapr_pci_pre_save, 2027 .post_load = spapr_pci_post_load, 2028 .fields = (VMStateField[]) { 2029 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL), 2030 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration), 2031 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration), 2032 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration), 2033 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration), 2034 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration), 2035 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0, 2036 vmstate_spapr_pci_lsi, struct spapr_pci_lsi), 2037 VMSTATE_INT32(msi_devs_num, SpaprPhbState), 2038 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0, 2039 vmstate_spapr_pci_msi, spapr_pci_msi_mig), 2040 VMSTATE_END_OF_LIST() 2041 }, 2042 }; 2043 2044 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 2045 PCIBus *rootbus) 2046 { 2047 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 2048 2049 return sphb->dtbusname; 2050 } 2051 2052 static void spapr_phb_class_init(ObjectClass *klass, void *data) 2053 { 2054 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 2055 DeviceClass *dc = DEVICE_CLASS(klass); 2056 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 2057 2058 hc->root_bus_path = spapr_phb_root_bus_path; 2059 dc->realize = spapr_phb_realize; 2060 dc->unrealize = spapr_phb_unrealize; 2061 dc->props = spapr_phb_properties; 2062 dc->reset = spapr_phb_reset; 2063 dc->vmsd = &vmstate_spapr_pci; 2064 /* Supported by TYPE_SPAPR_MACHINE */ 2065 dc->user_creatable = true; 2066 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 2067 hp->plug = spapr_pci_plug; 2068 hp->unplug = spapr_pci_unplug; 2069 hp->unplug_request = spapr_pci_unplug_request; 2070 } 2071 2072 static const TypeInfo spapr_phb_info = { 2073 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 2074 .parent = TYPE_PCI_HOST_BRIDGE, 2075 .instance_size = sizeof(SpaprPhbState), 2076 .instance_finalize = spapr_phb_finalizefn, 2077 .class_init = spapr_phb_class_init, 2078 .interfaces = (InterfaceInfo[]) { 2079 { TYPE_HOTPLUG_HANDLER }, 2080 { } 2081 } 2082 }; 2083 2084 typedef struct SpaprFdt { 2085 void *fdt; 2086 int node_off; 2087 SpaprPhbState *sphb; 2088 } SpaprFdt; 2089 2090 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev, 2091 void *opaque) 2092 { 2093 PCIBus *sec_bus; 2094 SpaprFdt *p = opaque; 2095 int offset; 2096 SpaprFdt s_fdt; 2097 2098 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off); 2099 if (!offset) { 2100 error_report("Failed to create pci child device tree node"); 2101 return; 2102 } 2103 2104 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2105 PCI_HEADER_TYPE_BRIDGE)) { 2106 return; 2107 } 2108 2109 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2110 if (!sec_bus) { 2111 return; 2112 } 2113 2114 s_fdt.fdt = p->fdt; 2115 s_fdt.node_off = offset; 2116 s_fdt.sphb = p->sphb; 2117 pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus), 2118 spapr_populate_pci_devices_dt, 2119 &s_fdt); 2120 } 2121 2122 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 2123 void *opaque) 2124 { 2125 unsigned int *bus_no = opaque; 2126 PCIBus *sec_bus = NULL; 2127 2128 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2129 PCI_HEADER_TYPE_BRIDGE)) { 2130 return; 2131 } 2132 2133 (*bus_no)++; 2134 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1); 2135 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 2136 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2137 2138 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2139 if (!sec_bus) { 2140 return; 2141 } 2142 2143 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 2144 spapr_phb_pci_enumerate_bridge, bus_no); 2145 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2146 } 2147 2148 static void spapr_phb_pci_enumerate(SpaprPhbState *phb) 2149 { 2150 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2151 unsigned int bus_no = 0; 2152 2153 pci_for_each_device(bus, pci_bus_num(bus), 2154 spapr_phb_pci_enumerate_bridge, 2155 &bus_no); 2156 2157 } 2158 2159 int spapr_populate_pci_dt(SpaprPhbState *phb, uint32_t intc_phandle, void *fdt, 2160 uint32_t nr_msis, int *node_offset) 2161 { 2162 int bus_off, i, j, ret; 2163 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 2164 struct { 2165 uint32_t hi; 2166 uint64_t child; 2167 uint64_t parent; 2168 uint64_t size; 2169 } QEMU_PACKED ranges[] = { 2170 { 2171 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 2172 cpu_to_be64(phb->io_win_addr), 2173 cpu_to_be64(memory_region_size(&phb->iospace)), 2174 }, 2175 { 2176 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 2177 cpu_to_be64(phb->mem_win_addr), 2178 cpu_to_be64(phb->mem_win_size), 2179 }, 2180 { 2181 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 2182 cpu_to_be64(phb->mem64_win_addr), 2183 cpu_to_be64(phb->mem64_win_size), 2184 }, 2185 }; 2186 const unsigned sizeof_ranges = 2187 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 2188 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 2189 uint32_t interrupt_map_mask[] = { 2190 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 2191 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 2192 uint32_t ddw_applicable[] = { 2193 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 2194 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 2195 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 2196 }; 2197 uint32_t ddw_extensions[] = { 2198 cpu_to_be32(1), 2199 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) 2200 }; 2201 uint32_t associativity[] = {cpu_to_be32(0x4), 2202 cpu_to_be32(0x0), 2203 cpu_to_be32(0x0), 2204 cpu_to_be32(0x0), 2205 cpu_to_be32(phb->numa_node)}; 2206 SpaprTceTable *tcet; 2207 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2208 SpaprFdt s_fdt; 2209 SpaprDrc *drc; 2210 Error *errp = NULL; 2211 2212 /* Start populating the FDT */ 2213 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname)); 2214 if (node_offset) { 2215 *node_offset = bus_off; 2216 } 2217 2218 /* Write PHB properties */ 2219 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 2220 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 2221 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); 2222 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); 2223 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 2224 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 2225 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 2226 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 2227 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 2228 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 2229 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", nr_msis)); 2230 2231 /* Dynamic DMA window */ 2232 if (phb->ddw_enabled) { 2233 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 2234 sizeof(ddw_applicable))); 2235 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 2236 &ddw_extensions, sizeof(ddw_extensions))); 2237 } 2238 2239 /* Advertise NUMA via ibm,associativity */ 2240 if (phb->numa_node != -1) { 2241 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity, 2242 sizeof(associativity))); 2243 } 2244 2245 /* Build the interrupt-map, this must matches what is done 2246 * in pci_swizzle_map_irq_fn 2247 */ 2248 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 2249 &interrupt_map_mask, sizeof(interrupt_map_mask))); 2250 for (i = 0; i < PCI_SLOT_MAX; i++) { 2251 for (j = 0; j < PCI_NUM_PINS; j++) { 2252 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 2253 int lsi_num = pci_swizzle(i, j); 2254 2255 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 2256 irqmap[1] = 0; 2257 irqmap[2] = 0; 2258 irqmap[3] = cpu_to_be32(j+1); 2259 irqmap[4] = cpu_to_be32(intc_phandle); 2260 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true); 2261 } 2262 } 2263 /* Write interrupt map */ 2264 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 2265 sizeof(interrupt_map))); 2266 2267 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 2268 if (!tcet) { 2269 return -1; 2270 } 2271 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 2272 tcet->liobn, tcet->bus_offset, 2273 tcet->nb_table << tcet->page_shift); 2274 2275 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index); 2276 if (drc) { 2277 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc)); 2278 2279 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index, 2280 sizeof(drc_index))); 2281 } 2282 2283 /* Walk the bridges and program the bus numbers*/ 2284 spapr_phb_pci_enumerate(phb); 2285 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 2286 2287 /* Populate tree nodes with PCI devices attached */ 2288 s_fdt.fdt = fdt; 2289 s_fdt.node_off = bus_off; 2290 s_fdt.sphb = phb; 2291 pci_for_each_device_reverse(bus, pci_bus_num(bus), 2292 spapr_populate_pci_devices_dt, 2293 &s_fdt); 2294 2295 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb), 2296 SPAPR_DR_CONNECTOR_TYPE_PCI); 2297 if (ret) { 2298 return ret; 2299 } 2300 2301 spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &errp); 2302 if (errp) { 2303 error_report_err(errp); 2304 } 2305 spapr_phb_nvgpu_ram_populate_dt(phb, fdt); 2306 2307 return 0; 2308 } 2309 2310 void spapr_pci_rtas_init(void) 2311 { 2312 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 2313 rtas_read_pci_config); 2314 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 2315 rtas_write_pci_config); 2316 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 2317 rtas_ibm_read_pci_config); 2318 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 2319 rtas_ibm_write_pci_config); 2320 if (msi_nonbroken) { 2321 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 2322 "ibm,query-interrupt-source-number", 2323 rtas_ibm_query_interrupt_source_number); 2324 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 2325 rtas_ibm_change_msi); 2326 } 2327 2328 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 2329 "ibm,set-eeh-option", 2330 rtas_ibm_set_eeh_option); 2331 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 2332 "ibm,get-config-addr-info2", 2333 rtas_ibm_get_config_addr_info2); 2334 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 2335 "ibm,read-slot-reset-state2", 2336 rtas_ibm_read_slot_reset_state2); 2337 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 2338 "ibm,set-slot-reset", 2339 rtas_ibm_set_slot_reset); 2340 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 2341 "ibm,configure-pe", 2342 rtas_ibm_configure_pe); 2343 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 2344 "ibm,slot-error-detail", 2345 rtas_ibm_slot_error_detail); 2346 } 2347 2348 static void spapr_pci_register_types(void) 2349 { 2350 type_register_static(&spapr_phb_info); 2351 type_register_static(&spapr_phb_root_bus_info); 2352 } 2353 2354 type_init(spapr_pci_register_types) 2355 2356 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 2357 { 2358 bool be = *(bool *)opaque; 2359 2360 if (object_dynamic_cast(OBJECT(dev), "VGA") 2361 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) { 2362 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer", 2363 &error_abort); 2364 } 2365 return 0; 2366 } 2367 2368 void spapr_pci_switch_vga(bool big_endian) 2369 { 2370 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 2371 SpaprPhbState *sphb; 2372 2373 /* 2374 * For backward compatibility with existing guests, we switch 2375 * the endianness of the VGA controller when changing the guest 2376 * interrupt mode 2377 */ 2378 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2379 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2380 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2381 &big_endian); 2382 } 2383 } 2384