xref: /openbmc/qemu/hw/ppc/spapr_pci.c (revision 91bfcdb0)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "hw/hw.h"
26 #include "hw/sysbus.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/pci/pci_host.h"
31 #include "hw/ppc/spapr.h"
32 #include "hw/pci-host/spapr.h"
33 #include "exec/address-spaces.h"
34 #include <libfdt.h>
35 #include "trace.h"
36 #include "qemu/error-report.h"
37 #include "qapi/qmp/qerror.h"
38 
39 #include "hw/pci/pci_bridge.h"
40 #include "hw/pci/pci_bus.h"
41 #include "hw/ppc/spapr_drc.h"
42 #include "sysemu/device_tree.h"
43 
44 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
45 #define RTAS_QUERY_FN           0
46 #define RTAS_CHANGE_FN          1
47 #define RTAS_RESET_FN           2
48 #define RTAS_CHANGE_MSI_FN      3
49 #define RTAS_CHANGE_MSIX_FN     4
50 
51 /* Interrupt types to return on RTAS_CHANGE_* */
52 #define RTAS_TYPE_MSI           1
53 #define RTAS_TYPE_MSIX          2
54 
55 #define FDT_NAME_MAX          128
56 
57 #define _FDT(exp) \
58     do { \
59         int ret = (exp);                                           \
60         if (ret < 0) {                                             \
61             return ret;                                            \
62         }                                                          \
63     } while (0)
64 
65 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
66 {
67     sPAPRPHBState *sphb;
68 
69     QLIST_FOREACH(sphb, &spapr->phbs, list) {
70         if (sphb->buid != buid) {
71             continue;
72         }
73         return sphb;
74     }
75 
76     return NULL;
77 }
78 
79 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
80                               uint32_t config_addr)
81 {
82     sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
83     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
84     int bus_num = (config_addr >> 16) & 0xFF;
85     int devfn = (config_addr >> 8) & 0xFF;
86 
87     if (!phb) {
88         return NULL;
89     }
90 
91     return pci_find_device(phb->bus, bus_num, devfn);
92 }
93 
94 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
95 {
96     /* This handles the encoding of extended config space addresses */
97     return ((arg >> 20) & 0xf00) | (arg & 0xff);
98 }
99 
100 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
101                                    uint32_t addr, uint32_t size,
102                                    target_ulong rets)
103 {
104     PCIDevice *pci_dev;
105     uint32_t val;
106 
107     if ((size != 1) && (size != 2) && (size != 4)) {
108         /* access must be 1, 2 or 4 bytes */
109         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
110         return;
111     }
112 
113     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
114     addr = rtas_pci_cfgaddr(addr);
115 
116     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
117         /* Access must be to a valid device, within bounds and
118          * naturally aligned */
119         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
120         return;
121     }
122 
123     val = pci_host_config_read_common(pci_dev, addr,
124                                       pci_config_size(pci_dev), size);
125 
126     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
127     rtas_st(rets, 1, val);
128 }
129 
130 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
131                                      uint32_t token, uint32_t nargs,
132                                      target_ulong args,
133                                      uint32_t nret, target_ulong rets)
134 {
135     uint64_t buid;
136     uint32_t size, addr;
137 
138     if ((nargs != 4) || (nret != 2)) {
139         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
140         return;
141     }
142 
143     buid = rtas_ldq(args, 1);
144     size = rtas_ld(args, 3);
145     addr = rtas_ld(args, 0);
146 
147     finish_read_pci_config(spapr, buid, addr, size, rets);
148 }
149 
150 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
151                                  uint32_t token, uint32_t nargs,
152                                  target_ulong args,
153                                  uint32_t nret, target_ulong rets)
154 {
155     uint32_t size, addr;
156 
157     if ((nargs != 2) || (nret != 2)) {
158         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
159         return;
160     }
161 
162     size = rtas_ld(args, 1);
163     addr = rtas_ld(args, 0);
164 
165     finish_read_pci_config(spapr, 0, addr, size, rets);
166 }
167 
168 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
169                                     uint32_t addr, uint32_t size,
170                                     uint32_t val, target_ulong rets)
171 {
172     PCIDevice *pci_dev;
173 
174     if ((size != 1) && (size != 2) && (size != 4)) {
175         /* access must be 1, 2 or 4 bytes */
176         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
177         return;
178     }
179 
180     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
181     addr = rtas_pci_cfgaddr(addr);
182 
183     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
184         /* Access must be to a valid device, within bounds and
185          * naturally aligned */
186         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
187         return;
188     }
189 
190     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
191                                  val, size);
192 
193     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
194 }
195 
196 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
197                                       uint32_t token, uint32_t nargs,
198                                       target_ulong args,
199                                       uint32_t nret, target_ulong rets)
200 {
201     uint64_t buid;
202     uint32_t val, size, addr;
203 
204     if ((nargs != 5) || (nret != 1)) {
205         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
206         return;
207     }
208 
209     buid = rtas_ldq(args, 1);
210     val = rtas_ld(args, 4);
211     size = rtas_ld(args, 3);
212     addr = rtas_ld(args, 0);
213 
214     finish_write_pci_config(spapr, buid, addr, size, val, rets);
215 }
216 
217 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
218                                   uint32_t token, uint32_t nargs,
219                                   target_ulong args,
220                                   uint32_t nret, target_ulong rets)
221 {
222     uint32_t val, size, addr;
223 
224     if ((nargs != 3) || (nret != 1)) {
225         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
226         return;
227     }
228 
229 
230     val = rtas_ld(args, 2);
231     size = rtas_ld(args, 1);
232     addr = rtas_ld(args, 0);
233 
234     finish_write_pci_config(spapr, 0, addr, size, val, rets);
235 }
236 
237 /*
238  * Set MSI/MSIX message data.
239  * This is required for msi_notify()/msix_notify() which
240  * will write at the addresses via spapr_msi_write().
241  *
242  * If hwaddr == 0, all entries will have .data == first_irq i.e.
243  * table will be reset.
244  */
245 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
246                              unsigned first_irq, unsigned req_num)
247 {
248     unsigned i;
249     MSIMessage msg = { .address = addr, .data = first_irq };
250 
251     if (!msix) {
252         msi_set_message(pdev, msg);
253         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
254         return;
255     }
256 
257     for (i = 0; i < req_num; ++i) {
258         msix_set_message(pdev, i, msg);
259         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
260         if (addr) {
261             ++msg.data;
262         }
263     }
264 }
265 
266 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
267                                 uint32_t token, uint32_t nargs,
268                                 target_ulong args, uint32_t nret,
269                                 target_ulong rets)
270 {
271     uint32_t config_addr = rtas_ld(args, 0);
272     uint64_t buid = rtas_ldq(args, 1);
273     unsigned int func = rtas_ld(args, 3);
274     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
275     unsigned int seq_num = rtas_ld(args, 5);
276     unsigned int ret_intr_type;
277     unsigned int irq, max_irqs = 0, num = 0;
278     sPAPRPHBState *phb = NULL;
279     PCIDevice *pdev = NULL;
280     spapr_pci_msi *msi;
281     int *config_addr_key;
282 
283     switch (func) {
284     case RTAS_CHANGE_MSI_FN:
285     case RTAS_CHANGE_FN:
286         ret_intr_type = RTAS_TYPE_MSI;
287         break;
288     case RTAS_CHANGE_MSIX_FN:
289         ret_intr_type = RTAS_TYPE_MSIX;
290         break;
291     default:
292         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
293         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
294         return;
295     }
296 
297     /* Fins sPAPRPHBState */
298     phb = spapr_pci_find_phb(spapr, buid);
299     if (phb) {
300         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
301     }
302     if (!phb || !pdev) {
303         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
304         return;
305     }
306 
307     /* Releasing MSIs */
308     if (!req_num) {
309         msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
310         if (!msi) {
311             trace_spapr_pci_msi("Releasing wrong config", config_addr);
312             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
313             return;
314         }
315 
316         xics_free(spapr->icp, msi->first_irq, msi->num);
317         if (msi_present(pdev)) {
318             spapr_msi_setmsg(pdev, 0, false, 0, num);
319         }
320         if (msix_present(pdev)) {
321             spapr_msi_setmsg(pdev, 0, true, 0, num);
322         }
323         g_hash_table_remove(phb->msi, &config_addr);
324 
325         trace_spapr_pci_msi("Released MSIs", config_addr);
326         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
327         rtas_st(rets, 1, 0);
328         return;
329     }
330 
331     /* Enabling MSI */
332 
333     /* Check if the device supports as many IRQs as requested */
334     if (ret_intr_type == RTAS_TYPE_MSI) {
335         max_irqs = msi_nr_vectors_allocated(pdev);
336     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
337         max_irqs = pdev->msix_entries_nr;
338     }
339     if (!max_irqs) {
340         error_report("Requested interrupt type %d is not enabled for device %x",
341                      ret_intr_type, config_addr);
342         rtas_st(rets, 0, -1); /* Hardware error */
343         return;
344     }
345     /* Correct the number if the guest asked for too many */
346     if (req_num > max_irqs) {
347         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
348         req_num = max_irqs;
349         irq = 0; /* to avoid misleading trace */
350         goto out;
351     }
352 
353     /* Allocate MSIs */
354     irq = xics_alloc_block(spapr->icp, 0, req_num, false,
355                            ret_intr_type == RTAS_TYPE_MSI);
356     if (!irq) {
357         error_report("Cannot allocate MSIs for device %x", config_addr);
358         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
359         return;
360     }
361 
362     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
363     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
364                      irq, req_num);
365 
366     /* Add MSI device to cache */
367     msi = g_new(spapr_pci_msi, 1);
368     msi->first_irq = irq;
369     msi->num = req_num;
370     config_addr_key = g_new(int, 1);
371     *config_addr_key = config_addr;
372     g_hash_table_insert(phb->msi, config_addr_key, msi);
373 
374 out:
375     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
376     rtas_st(rets, 1, req_num);
377     rtas_st(rets, 2, ++seq_num);
378     if (nret > 3) {
379         rtas_st(rets, 3, ret_intr_type);
380     }
381 
382     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
383 }
384 
385 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
386                                                    sPAPRMachineState *spapr,
387                                                    uint32_t token,
388                                                    uint32_t nargs,
389                                                    target_ulong args,
390                                                    uint32_t nret,
391                                                    target_ulong rets)
392 {
393     uint32_t config_addr = rtas_ld(args, 0);
394     uint64_t buid = rtas_ldq(args, 1);
395     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
396     sPAPRPHBState *phb = NULL;
397     PCIDevice *pdev = NULL;
398     spapr_pci_msi *msi;
399 
400     /* Find sPAPRPHBState */
401     phb = spapr_pci_find_phb(spapr, buid);
402     if (phb) {
403         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
404     }
405     if (!phb || !pdev) {
406         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
407         return;
408     }
409 
410     /* Find device descriptor and start IRQ */
411     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
412     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
413         trace_spapr_pci_msi("Failed to return vector", config_addr);
414         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
415         return;
416     }
417     intr_src_num = msi->first_irq + ioa_intr_num;
418     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
419                                                            intr_src_num);
420 
421     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
422     rtas_st(rets, 1, intr_src_num);
423     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
424 }
425 
426 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
427                                     sPAPRMachineState *spapr,
428                                     uint32_t token, uint32_t nargs,
429                                     target_ulong args, uint32_t nret,
430                                     target_ulong rets)
431 {
432     sPAPRPHBState *sphb;
433     sPAPRPHBClass *spc;
434     uint32_t addr, option;
435     uint64_t buid;
436     int ret;
437 
438     if ((nargs != 4) || (nret != 1)) {
439         goto param_error_exit;
440     }
441 
442     buid = rtas_ldq(args, 1);
443     addr = rtas_ld(args, 0);
444     option = rtas_ld(args, 3);
445 
446     sphb = spapr_pci_find_phb(spapr, buid);
447     if (!sphb) {
448         goto param_error_exit;
449     }
450 
451     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
452     if (!spc->eeh_set_option) {
453         goto param_error_exit;
454     }
455 
456     ret = spc->eeh_set_option(sphb, addr, option);
457     rtas_st(rets, 0, ret);
458     return;
459 
460 param_error_exit:
461     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
462 }
463 
464 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
465                                            sPAPRMachineState *spapr,
466                                            uint32_t token, uint32_t nargs,
467                                            target_ulong args, uint32_t nret,
468                                            target_ulong rets)
469 {
470     sPAPRPHBState *sphb;
471     sPAPRPHBClass *spc;
472     PCIDevice *pdev;
473     uint32_t addr, option;
474     uint64_t buid;
475 
476     if ((nargs != 4) || (nret != 2)) {
477         goto param_error_exit;
478     }
479 
480     buid = rtas_ldq(args, 1);
481     sphb = spapr_pci_find_phb(spapr, buid);
482     if (!sphb) {
483         goto param_error_exit;
484     }
485 
486     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
487     if (!spc->eeh_set_option) {
488         goto param_error_exit;
489     }
490 
491     /*
492      * We always have PE address of form "00BB0001". "BB"
493      * represents the bus number of PE's primary bus.
494      */
495     option = rtas_ld(args, 3);
496     switch (option) {
497     case RTAS_GET_PE_ADDR:
498         addr = rtas_ld(args, 0);
499         pdev = spapr_pci_find_dev(spapr, buid, addr);
500         if (!pdev) {
501             goto param_error_exit;
502         }
503 
504         rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
505         break;
506     case RTAS_GET_PE_MODE:
507         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
508         break;
509     default:
510         goto param_error_exit;
511     }
512 
513     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
514     return;
515 
516 param_error_exit:
517     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
518 }
519 
520 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
521                                             sPAPRMachineState *spapr,
522                                             uint32_t token, uint32_t nargs,
523                                             target_ulong args, uint32_t nret,
524                                             target_ulong rets)
525 {
526     sPAPRPHBState *sphb;
527     sPAPRPHBClass *spc;
528     uint64_t buid;
529     int state, ret;
530 
531     if ((nargs != 3) || (nret != 4 && nret != 5)) {
532         goto param_error_exit;
533     }
534 
535     buid = rtas_ldq(args, 1);
536     sphb = spapr_pci_find_phb(spapr, buid);
537     if (!sphb) {
538         goto param_error_exit;
539     }
540 
541     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
542     if (!spc->eeh_get_state) {
543         goto param_error_exit;
544     }
545 
546     ret = spc->eeh_get_state(sphb, &state);
547     rtas_st(rets, 0, ret);
548     if (ret != RTAS_OUT_SUCCESS) {
549         return;
550     }
551 
552     rtas_st(rets, 1, state);
553     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
554     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
555     if (nret >= 5) {
556         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
557     }
558     return;
559 
560 param_error_exit:
561     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
562 }
563 
564 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
565                                     sPAPRMachineState *spapr,
566                                     uint32_t token, uint32_t nargs,
567                                     target_ulong args, uint32_t nret,
568                                     target_ulong rets)
569 {
570     sPAPRPHBState *sphb;
571     sPAPRPHBClass *spc;
572     uint32_t option;
573     uint64_t buid;
574     int ret;
575 
576     if ((nargs != 4) || (nret != 1)) {
577         goto param_error_exit;
578     }
579 
580     buid = rtas_ldq(args, 1);
581     option = rtas_ld(args, 3);
582     sphb = spapr_pci_find_phb(spapr, buid);
583     if (!sphb) {
584         goto param_error_exit;
585     }
586 
587     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
588     if (!spc->eeh_reset) {
589         goto param_error_exit;
590     }
591 
592     ret = spc->eeh_reset(sphb, option);
593     rtas_st(rets, 0, ret);
594     return;
595 
596 param_error_exit:
597     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
598 }
599 
600 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
601                                   sPAPRMachineState *spapr,
602                                   uint32_t token, uint32_t nargs,
603                                   target_ulong args, uint32_t nret,
604                                   target_ulong rets)
605 {
606     sPAPRPHBState *sphb;
607     sPAPRPHBClass *spc;
608     uint64_t buid;
609     int ret;
610 
611     if ((nargs != 3) || (nret != 1)) {
612         goto param_error_exit;
613     }
614 
615     buid = rtas_ldq(args, 1);
616     sphb = spapr_pci_find_phb(spapr, buid);
617     if (!sphb) {
618         goto param_error_exit;
619     }
620 
621     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
622     if (!spc->eeh_configure) {
623         goto param_error_exit;
624     }
625 
626     ret = spc->eeh_configure(sphb);
627     rtas_st(rets, 0, ret);
628     return;
629 
630 param_error_exit:
631     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
632 }
633 
634 /* To support it later */
635 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
636                                        sPAPRMachineState *spapr,
637                                        uint32_t token, uint32_t nargs,
638                                        target_ulong args, uint32_t nret,
639                                        target_ulong rets)
640 {
641     sPAPRPHBState *sphb;
642     sPAPRPHBClass *spc;
643     int option;
644     uint64_t buid;
645 
646     if ((nargs != 8) || (nret != 1)) {
647         goto param_error_exit;
648     }
649 
650     buid = rtas_ldq(args, 1);
651     sphb = spapr_pci_find_phb(spapr, buid);
652     if (!sphb) {
653         goto param_error_exit;
654     }
655 
656     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
657     if (!spc->eeh_set_option) {
658         goto param_error_exit;
659     }
660 
661     option = rtas_ld(args, 7);
662     switch (option) {
663     case RTAS_SLOT_TEMP_ERR_LOG:
664     case RTAS_SLOT_PERM_ERR_LOG:
665         break;
666     default:
667         goto param_error_exit;
668     }
669 
670     /* We don't have error log yet */
671     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
672     return;
673 
674 param_error_exit:
675     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
676 }
677 
678 static int pci_spapr_swizzle(int slot, int pin)
679 {
680     return (slot + pin) % PCI_NUM_PINS;
681 }
682 
683 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
684 {
685     /*
686      * Here we need to convert pci_dev + irq_num to some unique value
687      * which is less than number of IRQs on the specific bus (4).  We
688      * use standard PCI swizzling, that is (slot number + pin number)
689      * % 4.
690      */
691     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
692 }
693 
694 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
695 {
696     /*
697      * Here we use the number returned by pci_spapr_map_irq to find a
698      * corresponding qemu_irq.
699      */
700     sPAPRPHBState *phb = opaque;
701 
702     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
703     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
704 }
705 
706 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
707 {
708     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
709     PCIINTxRoute route;
710 
711     route.mode = PCI_INTX_ENABLED;
712     route.irq = sphb->lsi_table[pin].irq;
713 
714     return route;
715 }
716 
717 /*
718  * MSI/MSIX memory region implementation.
719  * The handler handles both MSI and MSIX.
720  * For MSI-X, the vector number is encoded as a part of the address,
721  * data is set to 0.
722  * For MSI, the vector number is encoded in least bits in data.
723  */
724 static void spapr_msi_write(void *opaque, hwaddr addr,
725                             uint64_t data, unsigned size)
726 {
727     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
728     uint32_t irq = data;
729 
730     trace_spapr_pci_msi_write(addr, data, irq);
731 
732     qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
733 }
734 
735 static const MemoryRegionOps spapr_msi_ops = {
736     /* There is no .read as the read result is undefined by PCI spec */
737     .read = NULL,
738     .write = spapr_msi_write,
739     .endianness = DEVICE_LITTLE_ENDIAN
740 };
741 
742 /*
743  * PHB PCI device
744  */
745 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
746 {
747     sPAPRPHBState *phb = opaque;
748 
749     return &phb->iommu_as;
750 }
751 
752 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
753 {
754     char *path = NULL, *buf = NULL, *host = NULL;
755 
756     /* Get the PCI VFIO host id */
757     host = object_property_get_str(OBJECT(pdev), "host", NULL);
758     if (!host) {
759         goto err_out;
760     }
761 
762     /* Construct the path of the file that will give us the DT location */
763     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
764     g_free(host);
765     if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
766         goto err_out;
767     }
768     g_free(path);
769 
770     /* Construct and read from host device tree the loc-code */
771     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
772     g_free(buf);
773     if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
774         goto err_out;
775     }
776     return buf;
777 
778 err_out:
779     g_free(path);
780     return NULL;
781 }
782 
783 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
784 {
785     char *buf;
786     const char *devtype = "qemu";
787     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
788 
789     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
790         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
791         if (buf) {
792             return buf;
793         }
794         devtype = "vfio";
795     }
796     /*
797      * For emulated devices and VFIO-failure case, make up
798      * the loc-code.
799      */
800     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
801                           devtype, pdev->name, sphb->index, busnr,
802                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
803     return buf;
804 }
805 
806 /* Macros to operate with address in OF binding to PCI */
807 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
808 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
809 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
810 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
811 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
812 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
813 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
814 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
815 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
816 
817 /* for 'reg'/'assigned-addresses' OF properties */
818 #define RESOURCE_CELLS_SIZE 2
819 #define RESOURCE_CELLS_ADDRESS 3
820 
821 typedef struct ResourceFields {
822     uint32_t phys_hi;
823     uint32_t phys_mid;
824     uint32_t phys_lo;
825     uint32_t size_hi;
826     uint32_t size_lo;
827 } QEMU_PACKED ResourceFields;
828 
829 typedef struct ResourceProps {
830     ResourceFields reg[8];
831     ResourceFields assigned[7];
832     uint32_t reg_len;
833     uint32_t assigned_len;
834 } ResourceProps;
835 
836 /* fill in the 'reg'/'assigned-resources' OF properties for
837  * a PCI device. 'reg' describes resource requirements for a
838  * device's IO/MEM regions, 'assigned-addresses' describes the
839  * actual resource assignments.
840  *
841  * the properties are arrays of ('phys-addr', 'size') pairs describing
842  * the addressable regions of the PCI device, where 'phys-addr' is a
843  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
844  * (phys.hi, phys.mid, phys.lo), and 'size' is a
845  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
846  *
847  * phys.hi = 0xYYXXXXZZ, where:
848  *   0xYY = npt000ss
849  *          |||   |
850  *          |||   +-- space code
851  *          |||               |
852  *          |||               +  00 if configuration space
853  *          |||               +  01 if IO region,
854  *          |||               +  10 if 32-bit MEM region
855  *          |||               +  11 if 64-bit MEM region
856  *          |||
857  *          ||+------ for non-relocatable IO: 1 if aliased
858  *          ||        for relocatable IO: 1 if below 64KB
859  *          ||        for MEM: 1 if below 1MB
860  *          |+------- 1 if region is prefetchable
861  *          +-------- 1 if region is non-relocatable
862  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
863  *            bits respectively
864  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
865  *          to the region
866  *
867  * phys.mid and phys.lo correspond respectively to the hi/lo portions
868  * of the actual address of the region.
869  *
870  * how the phys-addr/size values are used differ slightly between
871  * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
872  * an additional description for the config space region of the
873  * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
874  * to describe the region as relocatable, with an address-mapping
875  * that corresponds directly to the PHB's address space for the
876  * resource. 'assigned-addresses' always has n=1 set with an absolute
877  * address assigned for the resource. in general, 'assigned-addresses'
878  * won't be populated, since addresses for PCI devices are generally
879  * unmapped initially and left to the guest to assign.
880  *
881  * note also that addresses defined in these properties are, at least
882  * for PAPR guests, relative to the PHBs IO/MEM windows, and
883  * correspond directly to the addresses in the BARs.
884  *
885  * in accordance with PCI Bus Binding to Open Firmware,
886  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
887  * Appendix C.
888  */
889 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
890 {
891     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
892     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
893                        b_ddddd(PCI_SLOT(d->devfn)) |
894                        b_fff(PCI_FUNC(d->devfn)));
895     ResourceFields *reg, *assigned;
896     int i, reg_idx = 0, assigned_idx = 0;
897 
898     /* config space region */
899     reg = &rp->reg[reg_idx++];
900     reg->phys_hi = cpu_to_be32(dev_id);
901     reg->phys_mid = 0;
902     reg->phys_lo = 0;
903     reg->size_hi = 0;
904     reg->size_lo = 0;
905 
906     for (i = 0; i < PCI_NUM_REGIONS; i++) {
907         if (!d->io_regions[i].size) {
908             continue;
909         }
910 
911         reg = &rp->reg[reg_idx++];
912 
913         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
914         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
915             reg->phys_hi |= cpu_to_be32(b_ss(1));
916         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
917             reg->phys_hi |= cpu_to_be32(b_ss(3));
918         } else {
919             reg->phys_hi |= cpu_to_be32(b_ss(2));
920         }
921         reg->phys_mid = 0;
922         reg->phys_lo = 0;
923         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
924         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
925 
926         if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
927             continue;
928         }
929 
930         assigned = &rp->assigned[assigned_idx++];
931         assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
932         assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
933         assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
934         assigned->size_hi = reg->size_hi;
935         assigned->size_lo = reg->size_lo;
936     }
937 
938     rp->reg_len = reg_idx * sizeof(ResourceFields);
939     rp->assigned_len = assigned_idx * sizeof(ResourceFields);
940 }
941 
942 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
943                                             PCIDevice *pdev);
944 
945 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
946                                        sPAPRPHBState *sphb)
947 {
948     ResourceProps rp;
949     bool is_bridge = false;
950     int pci_status, err;
951     char *buf = NULL;
952     uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
953     uint32_t max_msi, max_msix;
954 
955     if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
956         PCI_HEADER_TYPE_BRIDGE) {
957         is_bridge = true;
958     }
959 
960     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
961     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
962                           pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
963     _FDT(fdt_setprop_cell(fdt, offset, "device-id",
964                           pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
965     _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
966                           pci_default_read_config(dev, PCI_REVISION_ID, 1)));
967     _FDT(fdt_setprop_cell(fdt, offset, "class-code",
968                           pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
969     if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
970         _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
971                  pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
972     }
973 
974     if (!is_bridge) {
975         _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
976             pci_default_read_config(dev, PCI_MIN_GNT, 1)));
977         _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
978             pci_default_read_config(dev, PCI_MAX_LAT, 1)));
979     }
980 
981     if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
982         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
983                  pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
984     }
985 
986     if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
987         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
988                  pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
989     }
990 
991     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
992         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
993 
994     /* the following fdt cells are masked off the pci status register */
995     pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
996     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
997                           PCI_STATUS_DEVSEL_MASK & pci_status));
998 
999     if (pci_status & PCI_STATUS_FAST_BACK) {
1000         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1001     }
1002     if (pci_status & PCI_STATUS_66MHZ) {
1003         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1004     }
1005     if (pci_status & PCI_STATUS_UDF) {
1006         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1007     }
1008 
1009     /* NOTE: this is normally generated by firmware via path/unit name,
1010      * but in our case we must set it manually since it does not get
1011      * processed by OF beforehand
1012      */
1013     _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1014     buf = spapr_phb_get_loc_code(sphb, dev);
1015     if (!buf) {
1016         error_report("Failed setting the ibm,loc-code");
1017         return -1;
1018     }
1019 
1020     err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1021     g_free(buf);
1022     if (err < 0) {
1023         return err;
1024     }
1025 
1026     if (drc_index) {
1027         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1028     }
1029 
1030     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1031                           RESOURCE_CELLS_ADDRESS));
1032     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1033                           RESOURCE_CELLS_SIZE));
1034 
1035     max_msi = msi_nr_vectors_allocated(dev);
1036     if (max_msi) {
1037         _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1038     }
1039     max_msix = dev->msix_entries_nr;
1040     if (max_msix) {
1041         _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1042     }
1043 
1044     populate_resource_props(dev, &rp);
1045     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1046     _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1047                      (uint8_t *)rp.assigned, rp.assigned_len));
1048 
1049     return 0;
1050 }
1051 
1052 /* create OF node for pci device and required OF DT properties */
1053 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1054                                      void *fdt, int node_offset)
1055 {
1056     int offset, ret;
1057     int slot = PCI_SLOT(dev->devfn);
1058     int func = PCI_FUNC(dev->devfn);
1059     char nodename[FDT_NAME_MAX];
1060 
1061     if (func != 0) {
1062         snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1063     } else {
1064         snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1065     }
1066     offset = fdt_add_subnode(fdt, node_offset, nodename);
1067     ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1068 
1069     g_assert(!ret);
1070     if (ret) {
1071         return 0;
1072     }
1073     return offset;
1074 }
1075 
1076 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1077                                      sPAPRPHBState *phb,
1078                                      PCIDevice *pdev,
1079                                      Error **errp)
1080 {
1081     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1082     DeviceState *dev = DEVICE(pdev);
1083     void *fdt = NULL;
1084     int fdt_start_offset = 0, fdt_size;
1085 
1086     if (dev->hotplugged) {
1087         fdt = create_device_tree(&fdt_size);
1088         fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1089         if (!fdt_start_offset) {
1090             error_setg(errp, "Failed to create pci child device tree node");
1091             goto out;
1092         }
1093     }
1094 
1095     drck->attach(drc, DEVICE(pdev),
1096                  fdt, fdt_start_offset, !dev->hotplugged, errp);
1097 out:
1098     if (*errp) {
1099         g_free(fdt);
1100     }
1101 }
1102 
1103 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1104 {
1105     /* some version guests do not wait for completion of a device
1106      * cleanup (generally done asynchronously by the kernel) before
1107      * signaling to QEMU that the device is safe, but instead sleep
1108      * for some 'safe' period of time. unfortunately on a busy host
1109      * this sleep isn't guaranteed to be long enough, resulting in
1110      * bad things like IRQ lines being left asserted during final
1111      * device removal. to deal with this we call reset just prior
1112      * to finalizing the device, which will put the device back into
1113      * an 'idle' state, as the device cleanup code expects.
1114      */
1115     pci_device_reset(PCI_DEVICE(dev));
1116     object_unparent(OBJECT(dev));
1117 }
1118 
1119 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1120                                         sPAPRPHBState *phb,
1121                                         PCIDevice *pdev,
1122                                         Error **errp)
1123 {
1124     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1125 
1126     drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1127 }
1128 
1129 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1130                                                PCIDevice *pdev)
1131 {
1132     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1133     return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1134                                     (phb->index << 16) |
1135                                     (busnr << 8) |
1136                                     pdev->devfn);
1137 }
1138 
1139 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1140                                             PCIDevice *pdev)
1141 {
1142     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1143     sPAPRDRConnectorClass *drck;
1144 
1145     if (!drc) {
1146         return 0;
1147     }
1148 
1149     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1150     return drck->get_index(drc);
1151 }
1152 
1153 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1154                                      DeviceState *plugged_dev, Error **errp)
1155 {
1156     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1157     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1158     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1159     Error *local_err = NULL;
1160 
1161     /* if DR is disabled we don't need to do anything in the case of
1162      * hotplug or coldplug callbacks
1163      */
1164     if (!phb->dr_enabled) {
1165         /* if this is a hotplug operation initiated by the user
1166          * we need to let them know it's not enabled
1167          */
1168         if (plugged_dev->hotplugged) {
1169             error_setg(errp, QERR_BUS_NO_HOTPLUG,
1170                        object_get_typename(OBJECT(phb)));
1171         }
1172         return;
1173     }
1174 
1175     g_assert(drc);
1176 
1177     spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1178     if (local_err) {
1179         error_propagate(errp, local_err);
1180         return;
1181     }
1182     if (plugged_dev->hotplugged) {
1183         spapr_hotplug_req_add_by_index(drc);
1184     }
1185 }
1186 
1187 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1188                                        DeviceState *plugged_dev, Error **errp)
1189 {
1190     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1191     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1192     sPAPRDRConnectorClass *drck;
1193     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1194     Error *local_err = NULL;
1195 
1196     if (!phb->dr_enabled) {
1197         error_setg(errp, QERR_BUS_NO_HOTPLUG,
1198                    object_get_typename(OBJECT(phb)));
1199         return;
1200     }
1201 
1202     g_assert(drc);
1203 
1204     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1205     if (!drck->release_pending(drc)) {
1206         spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1207         if (local_err) {
1208             error_propagate(errp, local_err);
1209             return;
1210         }
1211         spapr_hotplug_req_remove_by_index(drc);
1212     }
1213 }
1214 
1215 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1216 {
1217     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1218     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1219     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1220     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1221     sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
1222     char *namebuf;
1223     int i;
1224     PCIBus *bus;
1225     uint64_t msi_window_size = 4096;
1226 
1227     if (sphb->index != (uint32_t)-1) {
1228         hwaddr windows_base;
1229 
1230         if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1231             || (sphb->mem_win_addr != (hwaddr)-1)
1232             || (sphb->io_win_addr != (hwaddr)-1)) {
1233             error_setg(errp, "Either \"index\" or other parameters must"
1234                        " be specified for PAPR PHB, not both");
1235             return;
1236         }
1237 
1238         if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1239             error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1240                        SPAPR_PCI_MAX_INDEX);
1241             return;
1242         }
1243 
1244         sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1245         sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1246 
1247         windows_base = SPAPR_PCI_WINDOW_BASE
1248             + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1249         sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1250         sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1251     }
1252 
1253     if (sphb->buid == (uint64_t)-1) {
1254         error_setg(errp, "BUID not specified for PHB");
1255         return;
1256     }
1257 
1258     if (sphb->dma_liobn == (uint32_t)-1) {
1259         error_setg(errp, "LIOBN not specified for PHB");
1260         return;
1261     }
1262 
1263     if (sphb->mem_win_addr == (hwaddr)-1) {
1264         error_setg(errp, "Memory window address not specified for PHB");
1265         return;
1266     }
1267 
1268     if (sphb->io_win_addr == (hwaddr)-1) {
1269         error_setg(errp, "IO window address not specified for PHB");
1270         return;
1271     }
1272 
1273     if (spapr_pci_find_phb(spapr, sphb->buid)) {
1274         error_setg(errp, "PCI host bridges must have unique BUIDs");
1275         return;
1276     }
1277 
1278     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1279 
1280     namebuf = alloca(strlen(sphb->dtbusname) + 32);
1281 
1282     /* Initialize memory regions */
1283     sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1284     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1285 
1286     sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1287     memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1288                              namebuf, &sphb->memspace,
1289                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1290     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1291                                 &sphb->memwindow);
1292 
1293     /* Initialize IO regions */
1294     sprintf(namebuf, "%s.io", sphb->dtbusname);
1295     memory_region_init(&sphb->iospace, OBJECT(sphb),
1296                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
1297 
1298     sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1299     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1300                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1301     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1302                                 &sphb->iowindow);
1303 
1304     bus = pci_register_bus(dev, NULL,
1305                            pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1306                            &sphb->memspace, &sphb->iospace,
1307                            PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1308     phb->bus = bus;
1309     qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1310 
1311     /*
1312      * Initialize PHB address space.
1313      * By default there will be at least one subregion for default
1314      * 32bit DMA window.
1315      * Later the guest might want to create another DMA window
1316      * which will become another memory subregion.
1317      */
1318     sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1319 
1320     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1321                        namebuf, UINT64_MAX);
1322     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1323                        sphb->dtbusname);
1324 
1325     /*
1326      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1327      * we need to allocate some memory to catch those writes coming
1328      * from msi_notify()/msix_notify().
1329      * As MSIMessage:addr is going to be the same and MSIMessage:data
1330      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1331      * be used.
1332      *
1333      * For KVM we want to ensure that this memory is a full page so that
1334      * our memory slot is of page size granularity.
1335      */
1336 #ifdef CONFIG_KVM
1337     if (kvm_enabled()) {
1338         msi_window_size = getpagesize();
1339     }
1340 #endif
1341 
1342     memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1343                           "msi", msi_window_size);
1344     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1345                                 &sphb->msiwindow);
1346 
1347     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1348 
1349     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1350 
1351     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1352 
1353     /* Initialize the LSI table */
1354     for (i = 0; i < PCI_NUM_PINS; i++) {
1355         uint32_t irq;
1356 
1357         irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
1358         if (!irq) {
1359             error_setg(errp, "spapr_allocate_lsi failed");
1360             return;
1361         }
1362 
1363         sphb->lsi_table[i].irq = irq;
1364     }
1365 
1366     /* allocate connectors for child PCI devices */
1367     if (sphb->dr_enabled) {
1368         for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1369             spapr_dr_connector_new(OBJECT(phb),
1370                                    SPAPR_DR_CONNECTOR_TYPE_PCI,
1371                                    (sphb->index << 16) | i);
1372         }
1373     }
1374 
1375     if (!info->finish_realize) {
1376         error_setg(errp, "finish_realize not defined");
1377         return;
1378     }
1379 
1380     info->finish_realize(sphb, errp);
1381 
1382     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1383 }
1384 
1385 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
1386 {
1387     sPAPRTCETable *tcet;
1388     uint32_t nb_table;
1389 
1390     nb_table = SPAPR_PCI_DMA32_SIZE >> SPAPR_TCE_PAGE_SHIFT;
1391     tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
1392                                0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
1393     if (!tcet) {
1394         error_setg(errp, "Unable to create TCE table for %s",
1395                    sphb->dtbusname);
1396         return ;
1397     }
1398 
1399     /* Register default 32bit DMA window */
1400     memory_region_add_subregion(&sphb->iommu_root, 0,
1401                                 spapr_tce_get_iommu(tcet));
1402 }
1403 
1404 static int spapr_phb_children_reset(Object *child, void *opaque)
1405 {
1406     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1407 
1408     if (dev) {
1409         device_reset(dev);
1410     }
1411 
1412     return 0;
1413 }
1414 
1415 static void spapr_phb_reset(DeviceState *qdev)
1416 {
1417     /* Reset the IOMMU state */
1418     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1419 }
1420 
1421 static Property spapr_phb_properties[] = {
1422     DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1423     DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1424     DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1425     DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1426     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1427                        SPAPR_PCI_MMIO_WIN_SIZE),
1428     DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1429     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1430                        SPAPR_PCI_IO_WIN_SIZE),
1431     DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1432                      true),
1433     DEFINE_PROP_END_OF_LIST(),
1434 };
1435 
1436 static const VMStateDescription vmstate_spapr_pci_lsi = {
1437     .name = "spapr_pci/lsi",
1438     .version_id = 1,
1439     .minimum_version_id = 1,
1440     .fields = (VMStateField[]) {
1441         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1442 
1443         VMSTATE_END_OF_LIST()
1444     },
1445 };
1446 
1447 static const VMStateDescription vmstate_spapr_pci_msi = {
1448     .name = "spapr_pci/msi",
1449     .version_id = 1,
1450     .minimum_version_id = 1,
1451     .fields = (VMStateField []) {
1452         VMSTATE_UINT32(key, spapr_pci_msi_mig),
1453         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1454         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1455         VMSTATE_END_OF_LIST()
1456     },
1457 };
1458 
1459 static void spapr_pci_pre_save(void *opaque)
1460 {
1461     sPAPRPHBState *sphb = opaque;
1462     GHashTableIter iter;
1463     gpointer key, value;
1464     int i;
1465 
1466     g_free(sphb->msi_devs);
1467     sphb->msi_devs = NULL;
1468     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1469     if (!sphb->msi_devs_num) {
1470         return;
1471     }
1472     sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1473 
1474     g_hash_table_iter_init(&iter, sphb->msi);
1475     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1476         sphb->msi_devs[i].key = *(uint32_t *) key;
1477         sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1478     }
1479 }
1480 
1481 static int spapr_pci_post_load(void *opaque, int version_id)
1482 {
1483     sPAPRPHBState *sphb = opaque;
1484     gpointer key, value;
1485     int i;
1486 
1487     for (i = 0; i < sphb->msi_devs_num; ++i) {
1488         key = g_memdup(&sphb->msi_devs[i].key,
1489                        sizeof(sphb->msi_devs[i].key));
1490         value = g_memdup(&sphb->msi_devs[i].value,
1491                          sizeof(sphb->msi_devs[i].value));
1492         g_hash_table_insert(sphb->msi, key, value);
1493     }
1494     g_free(sphb->msi_devs);
1495     sphb->msi_devs = NULL;
1496     sphb->msi_devs_num = 0;
1497 
1498     return 0;
1499 }
1500 
1501 static const VMStateDescription vmstate_spapr_pci = {
1502     .name = "spapr_pci",
1503     .version_id = 2,
1504     .minimum_version_id = 2,
1505     .pre_save = spapr_pci_pre_save,
1506     .post_load = spapr_pci_post_load,
1507     .fields = (VMStateField[]) {
1508         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1509         VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1510         VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1511         VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1512         VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1513         VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1514         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1515                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1516         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1517         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1518                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1519         VMSTATE_END_OF_LIST()
1520     },
1521 };
1522 
1523 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1524                                            PCIBus *rootbus)
1525 {
1526     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1527 
1528     return sphb->dtbusname;
1529 }
1530 
1531 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1532 {
1533     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1534     DeviceClass *dc = DEVICE_CLASS(klass);
1535     sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
1536     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1537 
1538     hc->root_bus_path = spapr_phb_root_bus_path;
1539     dc->realize = spapr_phb_realize;
1540     dc->props = spapr_phb_properties;
1541     dc->reset = spapr_phb_reset;
1542     dc->vmsd = &vmstate_spapr_pci;
1543     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1544     dc->cannot_instantiate_with_device_add_yet = false;
1545     spc->finish_realize = spapr_phb_finish_realize;
1546     hp->plug = spapr_phb_hot_plug_child;
1547     hp->unplug = spapr_phb_hot_unplug_child;
1548 }
1549 
1550 static const TypeInfo spapr_phb_info = {
1551     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1552     .parent        = TYPE_PCI_HOST_BRIDGE,
1553     .instance_size = sizeof(sPAPRPHBState),
1554     .class_init    = spapr_phb_class_init,
1555     .class_size    = sizeof(sPAPRPHBClass),
1556     .interfaces    = (InterfaceInfo[]) {
1557         { TYPE_HOTPLUG_HANDLER },
1558         { }
1559     }
1560 };
1561 
1562 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1563 {
1564     DeviceState *dev;
1565 
1566     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1567     qdev_prop_set_uint32(dev, "index", index);
1568     qdev_init_nofail(dev);
1569 
1570     return PCI_HOST_BRIDGE(dev);
1571 }
1572 
1573 typedef struct sPAPRFDT {
1574     void *fdt;
1575     int node_off;
1576     sPAPRPHBState *sphb;
1577 } sPAPRFDT;
1578 
1579 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1580                                           void *opaque)
1581 {
1582     PCIBus *sec_bus;
1583     sPAPRFDT *p = opaque;
1584     int offset;
1585     sPAPRFDT s_fdt;
1586 
1587     offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1588     if (!offset) {
1589         error_report("Failed to create pci child device tree node");
1590         return;
1591     }
1592 
1593     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1594          PCI_HEADER_TYPE_BRIDGE)) {
1595         return;
1596     }
1597 
1598     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1599     if (!sec_bus) {
1600         return;
1601     }
1602 
1603     s_fdt.fdt = p->fdt;
1604     s_fdt.node_off = offset;
1605     s_fdt.sphb = p->sphb;
1606     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1607                         spapr_populate_pci_devices_dt,
1608                         &s_fdt);
1609 }
1610 
1611 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1612                                            void *opaque)
1613 {
1614     unsigned int *bus_no = opaque;
1615     unsigned int primary = *bus_no;
1616     unsigned int subordinate = 0xff;
1617     PCIBus *sec_bus = NULL;
1618 
1619     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1620          PCI_HEADER_TYPE_BRIDGE)) {
1621         return;
1622     }
1623 
1624     (*bus_no)++;
1625     pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1626     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1627     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1628 
1629     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1630     if (!sec_bus) {
1631         return;
1632     }
1633 
1634     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1635     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1636                         spapr_phb_pci_enumerate_bridge, bus_no);
1637     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1638 }
1639 
1640 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1641 {
1642     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1643     unsigned int bus_no = 0;
1644 
1645     pci_for_each_device(bus, pci_bus_num(bus),
1646                         spapr_phb_pci_enumerate_bridge,
1647                         &bus_no);
1648 
1649 }
1650 
1651 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1652                           uint32_t xics_phandle,
1653                           void *fdt)
1654 {
1655     int bus_off, i, j, ret;
1656     char nodename[FDT_NAME_MAX];
1657     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1658     const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1659     const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1660     const uint64_t w32size = MIN(w32max, mmiosize);
1661     const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1662     struct {
1663         uint32_t hi;
1664         uint64_t child;
1665         uint64_t parent;
1666         uint64_t size;
1667     } QEMU_PACKED ranges[] = {
1668         {
1669             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1670             cpu_to_be64(phb->io_win_addr),
1671             cpu_to_be64(memory_region_size(&phb->iospace)),
1672         },
1673         {
1674             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1675             cpu_to_be64(phb->mem_win_addr),
1676             cpu_to_be64(w32size),
1677         },
1678         {
1679             cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1680             cpu_to_be64(phb->mem_win_addr + w32size),
1681             cpu_to_be64(w64size)
1682         },
1683     };
1684     const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1685     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1686     uint32_t interrupt_map_mask[] = {
1687         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1688     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1689     sPAPRTCETable *tcet;
1690     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1691     sPAPRFDT s_fdt;
1692 
1693     /* Start populating the FDT */
1694     snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1695     bus_off = fdt_add_subnode(fdt, 0, nodename);
1696     if (bus_off < 0) {
1697         return bus_off;
1698     }
1699 
1700     /* Write PHB properties */
1701     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1702     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1703     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1704     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1705     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1706     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1707     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1708     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1709     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1710     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1711     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1712 
1713     /* Build the interrupt-map, this must matches what is done
1714      * in pci_spapr_map_irq
1715      */
1716     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1717                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
1718     for (i = 0; i < PCI_SLOT_MAX; i++) {
1719         for (j = 0; j < PCI_NUM_PINS; j++) {
1720             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1721             int lsi_num = pci_spapr_swizzle(i, j);
1722 
1723             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1724             irqmap[1] = 0;
1725             irqmap[2] = 0;
1726             irqmap[3] = cpu_to_be32(j+1);
1727             irqmap[4] = cpu_to_be32(xics_phandle);
1728             irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1729             irqmap[6] = cpu_to_be32(0x8);
1730         }
1731     }
1732     /* Write interrupt map */
1733     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1734                      sizeof(interrupt_map)));
1735 
1736     tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
1737     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1738                  tcet->liobn, tcet->bus_offset,
1739                  tcet->nb_table << tcet->page_shift);
1740 
1741     /* Walk the bridges and program the bus numbers*/
1742     spapr_phb_pci_enumerate(phb);
1743     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1744 
1745     /* Populate tree nodes with PCI devices attached */
1746     s_fdt.fdt = fdt;
1747     s_fdt.node_off = bus_off;
1748     s_fdt.sphb = phb;
1749     pci_for_each_device(bus, pci_bus_num(bus),
1750                         spapr_populate_pci_devices_dt,
1751                         &s_fdt);
1752 
1753     ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1754                                 SPAPR_DR_CONNECTOR_TYPE_PCI);
1755     if (ret) {
1756         return ret;
1757     }
1758 
1759     return 0;
1760 }
1761 
1762 void spapr_pci_rtas_init(void)
1763 {
1764     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1765                         rtas_read_pci_config);
1766     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1767                         rtas_write_pci_config);
1768     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1769                         rtas_ibm_read_pci_config);
1770     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1771                         rtas_ibm_write_pci_config);
1772     if (msi_supported) {
1773         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1774                             "ibm,query-interrupt-source-number",
1775                             rtas_ibm_query_interrupt_source_number);
1776         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1777                             rtas_ibm_change_msi);
1778     }
1779 
1780     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1781                         "ibm,set-eeh-option",
1782                         rtas_ibm_set_eeh_option);
1783     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1784                         "ibm,get-config-addr-info2",
1785                         rtas_ibm_get_config_addr_info2);
1786     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1787                         "ibm,read-slot-reset-state2",
1788                         rtas_ibm_read_slot_reset_state2);
1789     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1790                         "ibm,set-slot-reset",
1791                         rtas_ibm_set_slot_reset);
1792     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1793                         "ibm,configure-pe",
1794                         rtas_ibm_configure_pe);
1795     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1796                         "ibm,slot-error-detail",
1797                         rtas_ibm_slot_error_detail);
1798 }
1799 
1800 static void spapr_pci_register_types(void)
1801 {
1802     type_register_static(&spapr_phb_info);
1803 }
1804 
1805 type_init(spapr_pci_register_types)
1806 
1807 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1808 {
1809     bool be = *(bool *)opaque;
1810 
1811     if (object_dynamic_cast(OBJECT(dev), "VGA")
1812         || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1813         object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1814                                  &error_abort);
1815     }
1816     return 0;
1817 }
1818 
1819 void spapr_pci_switch_vga(bool big_endian)
1820 {
1821     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1822     sPAPRPHBState *sphb;
1823 
1824     /*
1825      * For backward compatibility with existing guests, we switch
1826      * the endianness of the VGA controller when changing the guest
1827      * interrupt mode
1828      */
1829     QLIST_FOREACH(sphb, &spapr->phbs, list) {
1830         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1831         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1832                            &big_endian);
1833     }
1834 }
1835