xref: /openbmc/qemu/hw/ppc/spapr_pci.c (revision 90ce6e26)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/msi.h"
30 #include "hw/pci/msix.h"
31 #include "hw/pci/pci_host.h"
32 #include "hw/ppc/spapr.h"
33 #include "hw/pci-host/spapr.h"
34 #include "exec/address-spaces.h"
35 #include <libfdt.h>
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qapi/qmp/qerror.h"
39 
40 #include "hw/pci/pci_bridge.h"
41 #include "hw/pci/pci_bus.h"
42 #include "hw/ppc/spapr_drc.h"
43 #include "sysemu/device_tree.h"
44 
45 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
46 #define RTAS_QUERY_FN           0
47 #define RTAS_CHANGE_FN          1
48 #define RTAS_RESET_FN           2
49 #define RTAS_CHANGE_MSI_FN      3
50 #define RTAS_CHANGE_MSIX_FN     4
51 
52 /* Interrupt types to return on RTAS_CHANGE_* */
53 #define RTAS_TYPE_MSI           1
54 #define RTAS_TYPE_MSIX          2
55 
56 #define FDT_NAME_MAX          128
57 
58 #define _FDT(exp) \
59     do { \
60         int ret = (exp);                                           \
61         if (ret < 0) {                                             \
62             return ret;                                            \
63         }                                                          \
64     } while (0)
65 
66 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
67 {
68     sPAPRPHBState *sphb;
69 
70     QLIST_FOREACH(sphb, &spapr->phbs, list) {
71         if (sphb->buid != buid) {
72             continue;
73         }
74         return sphb;
75     }
76 
77     return NULL;
78 }
79 
80 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
81                               uint32_t config_addr)
82 {
83     sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
84     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
85     int bus_num = (config_addr >> 16) & 0xFF;
86     int devfn = (config_addr >> 8) & 0xFF;
87 
88     if (!phb) {
89         return NULL;
90     }
91 
92     return pci_find_device(phb->bus, bus_num, devfn);
93 }
94 
95 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
96 {
97     /* This handles the encoding of extended config space addresses */
98     return ((arg >> 20) & 0xf00) | (arg & 0xff);
99 }
100 
101 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
102                                    uint32_t addr, uint32_t size,
103                                    target_ulong rets)
104 {
105     PCIDevice *pci_dev;
106     uint32_t val;
107 
108     if ((size != 1) && (size != 2) && (size != 4)) {
109         /* access must be 1, 2 or 4 bytes */
110         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
111         return;
112     }
113 
114     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
115     addr = rtas_pci_cfgaddr(addr);
116 
117     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
118         /* Access must be to a valid device, within bounds and
119          * naturally aligned */
120         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
121         return;
122     }
123 
124     val = pci_host_config_read_common(pci_dev, addr,
125                                       pci_config_size(pci_dev), size);
126 
127     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
128     rtas_st(rets, 1, val);
129 }
130 
131 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
132                                      uint32_t token, uint32_t nargs,
133                                      target_ulong args,
134                                      uint32_t nret, target_ulong rets)
135 {
136     uint64_t buid;
137     uint32_t size, addr;
138 
139     if ((nargs != 4) || (nret != 2)) {
140         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
141         return;
142     }
143 
144     buid = rtas_ldq(args, 1);
145     size = rtas_ld(args, 3);
146     addr = rtas_ld(args, 0);
147 
148     finish_read_pci_config(spapr, buid, addr, size, rets);
149 }
150 
151 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
152                                  uint32_t token, uint32_t nargs,
153                                  target_ulong args,
154                                  uint32_t nret, target_ulong rets)
155 {
156     uint32_t size, addr;
157 
158     if ((nargs != 2) || (nret != 2)) {
159         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
160         return;
161     }
162 
163     size = rtas_ld(args, 1);
164     addr = rtas_ld(args, 0);
165 
166     finish_read_pci_config(spapr, 0, addr, size, rets);
167 }
168 
169 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
170                                     uint32_t addr, uint32_t size,
171                                     uint32_t val, target_ulong rets)
172 {
173     PCIDevice *pci_dev;
174 
175     if ((size != 1) && (size != 2) && (size != 4)) {
176         /* access must be 1, 2 or 4 bytes */
177         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
178         return;
179     }
180 
181     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
182     addr = rtas_pci_cfgaddr(addr);
183 
184     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
185         /* Access must be to a valid device, within bounds and
186          * naturally aligned */
187         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
188         return;
189     }
190 
191     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
192                                  val, size);
193 
194     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
195 }
196 
197 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
198                                       uint32_t token, uint32_t nargs,
199                                       target_ulong args,
200                                       uint32_t nret, target_ulong rets)
201 {
202     uint64_t buid;
203     uint32_t val, size, addr;
204 
205     if ((nargs != 5) || (nret != 1)) {
206         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
207         return;
208     }
209 
210     buid = rtas_ldq(args, 1);
211     val = rtas_ld(args, 4);
212     size = rtas_ld(args, 3);
213     addr = rtas_ld(args, 0);
214 
215     finish_write_pci_config(spapr, buid, addr, size, val, rets);
216 }
217 
218 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
219                                   uint32_t token, uint32_t nargs,
220                                   target_ulong args,
221                                   uint32_t nret, target_ulong rets)
222 {
223     uint32_t val, size, addr;
224 
225     if ((nargs != 3) || (nret != 1)) {
226         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
227         return;
228     }
229 
230 
231     val = rtas_ld(args, 2);
232     size = rtas_ld(args, 1);
233     addr = rtas_ld(args, 0);
234 
235     finish_write_pci_config(spapr, 0, addr, size, val, rets);
236 }
237 
238 /*
239  * Set MSI/MSIX message data.
240  * This is required for msi_notify()/msix_notify() which
241  * will write at the addresses via spapr_msi_write().
242  *
243  * If hwaddr == 0, all entries will have .data == first_irq i.e.
244  * table will be reset.
245  */
246 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
247                              unsigned first_irq, unsigned req_num)
248 {
249     unsigned i;
250     MSIMessage msg = { .address = addr, .data = first_irq };
251 
252     if (!msix) {
253         msi_set_message(pdev, msg);
254         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
255         return;
256     }
257 
258     for (i = 0; i < req_num; ++i) {
259         msix_set_message(pdev, i, msg);
260         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
261         if (addr) {
262             ++msg.data;
263         }
264     }
265 }
266 
267 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
268                                 uint32_t token, uint32_t nargs,
269                                 target_ulong args, uint32_t nret,
270                                 target_ulong rets)
271 {
272     uint32_t config_addr = rtas_ld(args, 0);
273     uint64_t buid = rtas_ldq(args, 1);
274     unsigned int func = rtas_ld(args, 3);
275     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
276     unsigned int seq_num = rtas_ld(args, 5);
277     unsigned int ret_intr_type;
278     unsigned int irq, max_irqs = 0, num = 0;
279     sPAPRPHBState *phb = NULL;
280     PCIDevice *pdev = NULL;
281     spapr_pci_msi *msi;
282     int *config_addr_key;
283 
284     switch (func) {
285     case RTAS_CHANGE_MSI_FN:
286     case RTAS_CHANGE_FN:
287         ret_intr_type = RTAS_TYPE_MSI;
288         break;
289     case RTAS_CHANGE_MSIX_FN:
290         ret_intr_type = RTAS_TYPE_MSIX;
291         break;
292     default:
293         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
294         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
295         return;
296     }
297 
298     /* Fins sPAPRPHBState */
299     phb = spapr_pci_find_phb(spapr, buid);
300     if (phb) {
301         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
302     }
303     if (!phb || !pdev) {
304         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
305         return;
306     }
307 
308     /* Releasing MSIs */
309     if (!req_num) {
310         msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
311         if (!msi) {
312             trace_spapr_pci_msi("Releasing wrong config", config_addr);
313             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
314             return;
315         }
316 
317         xics_free(spapr->icp, msi->first_irq, msi->num);
318         if (msi_present(pdev)) {
319             spapr_msi_setmsg(pdev, 0, false, 0, num);
320         }
321         if (msix_present(pdev)) {
322             spapr_msi_setmsg(pdev, 0, true, 0, num);
323         }
324         g_hash_table_remove(phb->msi, &config_addr);
325 
326         trace_spapr_pci_msi("Released MSIs", config_addr);
327         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
328         rtas_st(rets, 1, 0);
329         return;
330     }
331 
332     /* Enabling MSI */
333 
334     /* Check if the device supports as many IRQs as requested */
335     if (ret_intr_type == RTAS_TYPE_MSI) {
336         max_irqs = msi_nr_vectors_allocated(pdev);
337     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
338         max_irqs = pdev->msix_entries_nr;
339     }
340     if (!max_irqs) {
341         error_report("Requested interrupt type %d is not enabled for device %x",
342                      ret_intr_type, config_addr);
343         rtas_st(rets, 0, -1); /* Hardware error */
344         return;
345     }
346     /* Correct the number if the guest asked for too many */
347     if (req_num > max_irqs) {
348         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
349         req_num = max_irqs;
350         irq = 0; /* to avoid misleading trace */
351         goto out;
352     }
353 
354     /* Allocate MSIs */
355     irq = xics_alloc_block(spapr->icp, 0, req_num, false,
356                            ret_intr_type == RTAS_TYPE_MSI);
357     if (!irq) {
358         error_report("Cannot allocate MSIs for device %x", config_addr);
359         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
360         return;
361     }
362 
363     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
364     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
365                      irq, req_num);
366 
367     /* Add MSI device to cache */
368     msi = g_new(spapr_pci_msi, 1);
369     msi->first_irq = irq;
370     msi->num = req_num;
371     config_addr_key = g_new(int, 1);
372     *config_addr_key = config_addr;
373     g_hash_table_insert(phb->msi, config_addr_key, msi);
374 
375 out:
376     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
377     rtas_st(rets, 1, req_num);
378     rtas_st(rets, 2, ++seq_num);
379     if (nret > 3) {
380         rtas_st(rets, 3, ret_intr_type);
381     }
382 
383     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
384 }
385 
386 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
387                                                    sPAPRMachineState *spapr,
388                                                    uint32_t token,
389                                                    uint32_t nargs,
390                                                    target_ulong args,
391                                                    uint32_t nret,
392                                                    target_ulong rets)
393 {
394     uint32_t config_addr = rtas_ld(args, 0);
395     uint64_t buid = rtas_ldq(args, 1);
396     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
397     sPAPRPHBState *phb = NULL;
398     PCIDevice *pdev = NULL;
399     spapr_pci_msi *msi;
400 
401     /* Find sPAPRPHBState */
402     phb = spapr_pci_find_phb(spapr, buid);
403     if (phb) {
404         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
405     }
406     if (!phb || !pdev) {
407         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
408         return;
409     }
410 
411     /* Find device descriptor and start IRQ */
412     msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
413     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
414         trace_spapr_pci_msi("Failed to return vector", config_addr);
415         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
416         return;
417     }
418     intr_src_num = msi->first_irq + ioa_intr_num;
419     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
420                                                            intr_src_num);
421 
422     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
423     rtas_st(rets, 1, intr_src_num);
424     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
425 }
426 
427 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
428                                     sPAPRMachineState *spapr,
429                                     uint32_t token, uint32_t nargs,
430                                     target_ulong args, uint32_t nret,
431                                     target_ulong rets)
432 {
433     sPAPRPHBState *sphb;
434     sPAPRPHBClass *spc;
435     uint32_t addr, option;
436     uint64_t buid;
437     int ret;
438 
439     if ((nargs != 4) || (nret != 1)) {
440         goto param_error_exit;
441     }
442 
443     buid = rtas_ldq(args, 1);
444     addr = rtas_ld(args, 0);
445     option = rtas_ld(args, 3);
446 
447     sphb = spapr_pci_find_phb(spapr, buid);
448     if (!sphb) {
449         goto param_error_exit;
450     }
451 
452     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
453     if (!spc->eeh_set_option) {
454         goto param_error_exit;
455     }
456 
457     ret = spc->eeh_set_option(sphb, addr, option);
458     rtas_st(rets, 0, ret);
459     return;
460 
461 param_error_exit:
462     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
463 }
464 
465 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
466                                            sPAPRMachineState *spapr,
467                                            uint32_t token, uint32_t nargs,
468                                            target_ulong args, uint32_t nret,
469                                            target_ulong rets)
470 {
471     sPAPRPHBState *sphb;
472     sPAPRPHBClass *spc;
473     PCIDevice *pdev;
474     uint32_t addr, option;
475     uint64_t buid;
476 
477     if ((nargs != 4) || (nret != 2)) {
478         goto param_error_exit;
479     }
480 
481     buid = rtas_ldq(args, 1);
482     sphb = spapr_pci_find_phb(spapr, buid);
483     if (!sphb) {
484         goto param_error_exit;
485     }
486 
487     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
488     if (!spc->eeh_set_option) {
489         goto param_error_exit;
490     }
491 
492     /*
493      * We always have PE address of form "00BB0001". "BB"
494      * represents the bus number of PE's primary bus.
495      */
496     option = rtas_ld(args, 3);
497     switch (option) {
498     case RTAS_GET_PE_ADDR:
499         addr = rtas_ld(args, 0);
500         pdev = spapr_pci_find_dev(spapr, buid, addr);
501         if (!pdev) {
502             goto param_error_exit;
503         }
504 
505         rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
506         break;
507     case RTAS_GET_PE_MODE:
508         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
509         break;
510     default:
511         goto param_error_exit;
512     }
513 
514     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
515     return;
516 
517 param_error_exit:
518     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
519 }
520 
521 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
522                                             sPAPRMachineState *spapr,
523                                             uint32_t token, uint32_t nargs,
524                                             target_ulong args, uint32_t nret,
525                                             target_ulong rets)
526 {
527     sPAPRPHBState *sphb;
528     sPAPRPHBClass *spc;
529     uint64_t buid;
530     int state, ret;
531 
532     if ((nargs != 3) || (nret != 4 && nret != 5)) {
533         goto param_error_exit;
534     }
535 
536     buid = rtas_ldq(args, 1);
537     sphb = spapr_pci_find_phb(spapr, buid);
538     if (!sphb) {
539         goto param_error_exit;
540     }
541 
542     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
543     if (!spc->eeh_get_state) {
544         goto param_error_exit;
545     }
546 
547     ret = spc->eeh_get_state(sphb, &state);
548     rtas_st(rets, 0, ret);
549     if (ret != RTAS_OUT_SUCCESS) {
550         return;
551     }
552 
553     rtas_st(rets, 1, state);
554     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
555     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
556     if (nret >= 5) {
557         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
558     }
559     return;
560 
561 param_error_exit:
562     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
563 }
564 
565 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
566                                     sPAPRMachineState *spapr,
567                                     uint32_t token, uint32_t nargs,
568                                     target_ulong args, uint32_t nret,
569                                     target_ulong rets)
570 {
571     sPAPRPHBState *sphb;
572     sPAPRPHBClass *spc;
573     uint32_t option;
574     uint64_t buid;
575     int ret;
576 
577     if ((nargs != 4) || (nret != 1)) {
578         goto param_error_exit;
579     }
580 
581     buid = rtas_ldq(args, 1);
582     option = rtas_ld(args, 3);
583     sphb = spapr_pci_find_phb(spapr, buid);
584     if (!sphb) {
585         goto param_error_exit;
586     }
587 
588     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
589     if (!spc->eeh_reset) {
590         goto param_error_exit;
591     }
592 
593     ret = spc->eeh_reset(sphb, option);
594     rtas_st(rets, 0, ret);
595     return;
596 
597 param_error_exit:
598     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
599 }
600 
601 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
602                                   sPAPRMachineState *spapr,
603                                   uint32_t token, uint32_t nargs,
604                                   target_ulong args, uint32_t nret,
605                                   target_ulong rets)
606 {
607     sPAPRPHBState *sphb;
608     sPAPRPHBClass *spc;
609     uint64_t buid;
610     int ret;
611 
612     if ((nargs != 3) || (nret != 1)) {
613         goto param_error_exit;
614     }
615 
616     buid = rtas_ldq(args, 1);
617     sphb = spapr_pci_find_phb(spapr, buid);
618     if (!sphb) {
619         goto param_error_exit;
620     }
621 
622     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
623     if (!spc->eeh_configure) {
624         goto param_error_exit;
625     }
626 
627     ret = spc->eeh_configure(sphb);
628     rtas_st(rets, 0, ret);
629     return;
630 
631 param_error_exit:
632     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
633 }
634 
635 /* To support it later */
636 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
637                                        sPAPRMachineState *spapr,
638                                        uint32_t token, uint32_t nargs,
639                                        target_ulong args, uint32_t nret,
640                                        target_ulong rets)
641 {
642     sPAPRPHBState *sphb;
643     sPAPRPHBClass *spc;
644     int option;
645     uint64_t buid;
646 
647     if ((nargs != 8) || (nret != 1)) {
648         goto param_error_exit;
649     }
650 
651     buid = rtas_ldq(args, 1);
652     sphb = spapr_pci_find_phb(spapr, buid);
653     if (!sphb) {
654         goto param_error_exit;
655     }
656 
657     spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
658     if (!spc->eeh_set_option) {
659         goto param_error_exit;
660     }
661 
662     option = rtas_ld(args, 7);
663     switch (option) {
664     case RTAS_SLOT_TEMP_ERR_LOG:
665     case RTAS_SLOT_PERM_ERR_LOG:
666         break;
667     default:
668         goto param_error_exit;
669     }
670 
671     /* We don't have error log yet */
672     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
673     return;
674 
675 param_error_exit:
676     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
677 }
678 
679 static int pci_spapr_swizzle(int slot, int pin)
680 {
681     return (slot + pin) % PCI_NUM_PINS;
682 }
683 
684 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
685 {
686     /*
687      * Here we need to convert pci_dev + irq_num to some unique value
688      * which is less than number of IRQs on the specific bus (4).  We
689      * use standard PCI swizzling, that is (slot number + pin number)
690      * % 4.
691      */
692     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
693 }
694 
695 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
696 {
697     /*
698      * Here we use the number returned by pci_spapr_map_irq to find a
699      * corresponding qemu_irq.
700      */
701     sPAPRPHBState *phb = opaque;
702 
703     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
704     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
705 }
706 
707 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
708 {
709     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
710     PCIINTxRoute route;
711 
712     route.mode = PCI_INTX_ENABLED;
713     route.irq = sphb->lsi_table[pin].irq;
714 
715     return route;
716 }
717 
718 /*
719  * MSI/MSIX memory region implementation.
720  * The handler handles both MSI and MSIX.
721  * For MSI-X, the vector number is encoded as a part of the address,
722  * data is set to 0.
723  * For MSI, the vector number is encoded in least bits in data.
724  */
725 static void spapr_msi_write(void *opaque, hwaddr addr,
726                             uint64_t data, unsigned size)
727 {
728     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
729     uint32_t irq = data;
730 
731     trace_spapr_pci_msi_write(addr, data, irq);
732 
733     qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
734 }
735 
736 static const MemoryRegionOps spapr_msi_ops = {
737     /* There is no .read as the read result is undefined by PCI spec */
738     .read = NULL,
739     .write = spapr_msi_write,
740     .endianness = DEVICE_LITTLE_ENDIAN
741 };
742 
743 /*
744  * PHB PCI device
745  */
746 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
747 {
748     sPAPRPHBState *phb = opaque;
749 
750     return &phb->iommu_as;
751 }
752 
753 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb,  PCIDevice *pdev)
754 {
755     char *path = NULL, *buf = NULL, *host = NULL;
756 
757     /* Get the PCI VFIO host id */
758     host = object_property_get_str(OBJECT(pdev), "host", NULL);
759     if (!host) {
760         goto err_out;
761     }
762 
763     /* Construct the path of the file that will give us the DT location */
764     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
765     g_free(host);
766     if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
767         goto err_out;
768     }
769     g_free(path);
770 
771     /* Construct and read from host device tree the loc-code */
772     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
773     g_free(buf);
774     if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
775         goto err_out;
776     }
777     return buf;
778 
779 err_out:
780     g_free(path);
781     return NULL;
782 }
783 
784 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
785 {
786     char *buf;
787     const char *devtype = "qemu";
788     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
789 
790     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
791         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
792         if (buf) {
793             return buf;
794         }
795         devtype = "vfio";
796     }
797     /*
798      * For emulated devices and VFIO-failure case, make up
799      * the loc-code.
800      */
801     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
802                           devtype, pdev->name, sphb->index, busnr,
803                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
804     return buf;
805 }
806 
807 /* Macros to operate with address in OF binding to PCI */
808 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
809 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
810 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
811 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
812 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
813 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
814 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
815 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
816 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
817 
818 /* for 'reg'/'assigned-addresses' OF properties */
819 #define RESOURCE_CELLS_SIZE 2
820 #define RESOURCE_CELLS_ADDRESS 3
821 
822 typedef struct ResourceFields {
823     uint32_t phys_hi;
824     uint32_t phys_mid;
825     uint32_t phys_lo;
826     uint32_t size_hi;
827     uint32_t size_lo;
828 } QEMU_PACKED ResourceFields;
829 
830 typedef struct ResourceProps {
831     ResourceFields reg[8];
832     ResourceFields assigned[7];
833     uint32_t reg_len;
834     uint32_t assigned_len;
835 } ResourceProps;
836 
837 /* fill in the 'reg'/'assigned-resources' OF properties for
838  * a PCI device. 'reg' describes resource requirements for a
839  * device's IO/MEM regions, 'assigned-addresses' describes the
840  * actual resource assignments.
841  *
842  * the properties are arrays of ('phys-addr', 'size') pairs describing
843  * the addressable regions of the PCI device, where 'phys-addr' is a
844  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
845  * (phys.hi, phys.mid, phys.lo), and 'size' is a
846  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
847  *
848  * phys.hi = 0xYYXXXXZZ, where:
849  *   0xYY = npt000ss
850  *          |||   |
851  *          |||   +-- space code
852  *          |||               |
853  *          |||               +  00 if configuration space
854  *          |||               +  01 if IO region,
855  *          |||               +  10 if 32-bit MEM region
856  *          |||               +  11 if 64-bit MEM region
857  *          |||
858  *          ||+------ for non-relocatable IO: 1 if aliased
859  *          ||        for relocatable IO: 1 if below 64KB
860  *          ||        for MEM: 1 if below 1MB
861  *          |+------- 1 if region is prefetchable
862  *          +-------- 1 if region is non-relocatable
863  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
864  *            bits respectively
865  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
866  *          to the region
867  *
868  * phys.mid and phys.lo correspond respectively to the hi/lo portions
869  * of the actual address of the region.
870  *
871  * how the phys-addr/size values are used differ slightly between
872  * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
873  * an additional description for the config space region of the
874  * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
875  * to describe the region as relocatable, with an address-mapping
876  * that corresponds directly to the PHB's address space for the
877  * resource. 'assigned-addresses' always has n=1 set with an absolute
878  * address assigned for the resource. in general, 'assigned-addresses'
879  * won't be populated, since addresses for PCI devices are generally
880  * unmapped initially and left to the guest to assign.
881  *
882  * note also that addresses defined in these properties are, at least
883  * for PAPR guests, relative to the PHBs IO/MEM windows, and
884  * correspond directly to the addresses in the BARs.
885  *
886  * in accordance with PCI Bus Binding to Open Firmware,
887  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
888  * Appendix C.
889  */
890 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
891 {
892     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
893     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
894                        b_ddddd(PCI_SLOT(d->devfn)) |
895                        b_fff(PCI_FUNC(d->devfn)));
896     ResourceFields *reg, *assigned;
897     int i, reg_idx = 0, assigned_idx = 0;
898 
899     /* config space region */
900     reg = &rp->reg[reg_idx++];
901     reg->phys_hi = cpu_to_be32(dev_id);
902     reg->phys_mid = 0;
903     reg->phys_lo = 0;
904     reg->size_hi = 0;
905     reg->size_lo = 0;
906 
907     for (i = 0; i < PCI_NUM_REGIONS; i++) {
908         if (!d->io_regions[i].size) {
909             continue;
910         }
911 
912         reg = &rp->reg[reg_idx++];
913 
914         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
915         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
916             reg->phys_hi |= cpu_to_be32(b_ss(1));
917         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
918             reg->phys_hi |= cpu_to_be32(b_ss(3));
919         } else {
920             reg->phys_hi |= cpu_to_be32(b_ss(2));
921         }
922         reg->phys_mid = 0;
923         reg->phys_lo = 0;
924         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
925         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
926 
927         if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
928             continue;
929         }
930 
931         assigned = &rp->assigned[assigned_idx++];
932         assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
933         assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
934         assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
935         assigned->size_hi = reg->size_hi;
936         assigned->size_lo = reg->size_lo;
937     }
938 
939     rp->reg_len = reg_idx * sizeof(ResourceFields);
940     rp->assigned_len = assigned_idx * sizeof(ResourceFields);
941 }
942 
943 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
944                                             PCIDevice *pdev);
945 
946 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
947                                        sPAPRPHBState *sphb)
948 {
949     ResourceProps rp;
950     bool is_bridge = false;
951     int pci_status, err;
952     char *buf = NULL;
953     uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
954     uint32_t max_msi, max_msix;
955 
956     if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
957         PCI_HEADER_TYPE_BRIDGE) {
958         is_bridge = true;
959     }
960 
961     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
962     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
963                           pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
964     _FDT(fdt_setprop_cell(fdt, offset, "device-id",
965                           pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
966     _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
967                           pci_default_read_config(dev, PCI_REVISION_ID, 1)));
968     _FDT(fdt_setprop_cell(fdt, offset, "class-code",
969                           pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
970     if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
971         _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
972                  pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
973     }
974 
975     if (!is_bridge) {
976         _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
977             pci_default_read_config(dev, PCI_MIN_GNT, 1)));
978         _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
979             pci_default_read_config(dev, PCI_MAX_LAT, 1)));
980     }
981 
982     if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
983         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
984                  pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
985     }
986 
987     if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
988         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
989                  pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
990     }
991 
992     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
993         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
994 
995     /* the following fdt cells are masked off the pci status register */
996     pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
997     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
998                           PCI_STATUS_DEVSEL_MASK & pci_status));
999 
1000     if (pci_status & PCI_STATUS_FAST_BACK) {
1001         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1002     }
1003     if (pci_status & PCI_STATUS_66MHZ) {
1004         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1005     }
1006     if (pci_status & PCI_STATUS_UDF) {
1007         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1008     }
1009 
1010     /* NOTE: this is normally generated by firmware via path/unit name,
1011      * but in our case we must set it manually since it does not get
1012      * processed by OF beforehand
1013      */
1014     _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1015     buf = spapr_phb_get_loc_code(sphb, dev);
1016     if (!buf) {
1017         error_report("Failed setting the ibm,loc-code");
1018         return -1;
1019     }
1020 
1021     err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1022     g_free(buf);
1023     if (err < 0) {
1024         return err;
1025     }
1026 
1027     if (drc_index) {
1028         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1029     }
1030 
1031     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1032                           RESOURCE_CELLS_ADDRESS));
1033     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1034                           RESOURCE_CELLS_SIZE));
1035 
1036     max_msi = msi_nr_vectors_allocated(dev);
1037     if (max_msi) {
1038         _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1039     }
1040     max_msix = dev->msix_entries_nr;
1041     if (max_msix) {
1042         _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1043     }
1044 
1045     populate_resource_props(dev, &rp);
1046     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1047     _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1048                      (uint8_t *)rp.assigned, rp.assigned_len));
1049 
1050     return 0;
1051 }
1052 
1053 /* create OF node for pci device and required OF DT properties */
1054 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1055                                      void *fdt, int node_offset)
1056 {
1057     int offset, ret;
1058     int slot = PCI_SLOT(dev->devfn);
1059     int func = PCI_FUNC(dev->devfn);
1060     char nodename[FDT_NAME_MAX];
1061 
1062     if (func != 0) {
1063         snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1064     } else {
1065         snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1066     }
1067     offset = fdt_add_subnode(fdt, node_offset, nodename);
1068     ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1069 
1070     g_assert(!ret);
1071     if (ret) {
1072         return 0;
1073     }
1074     return offset;
1075 }
1076 
1077 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1078                                      sPAPRPHBState *phb,
1079                                      PCIDevice *pdev,
1080                                      Error **errp)
1081 {
1082     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1083     DeviceState *dev = DEVICE(pdev);
1084     void *fdt = NULL;
1085     int fdt_start_offset = 0, fdt_size;
1086 
1087     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
1088         sPAPRTCETable *tcet = spapr_tce_find_by_liobn(phb->dma_liobn);
1089 
1090         spapr_tce_set_need_vfio(tcet, true);
1091     }
1092 
1093     if (dev->hotplugged) {
1094         fdt = create_device_tree(&fdt_size);
1095         fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1096         if (!fdt_start_offset) {
1097             error_setg(errp, "Failed to create pci child device tree node");
1098             goto out;
1099         }
1100     }
1101 
1102     drck->attach(drc, DEVICE(pdev),
1103                  fdt, fdt_start_offset, !dev->hotplugged, errp);
1104 out:
1105     if (*errp) {
1106         g_free(fdt);
1107     }
1108 }
1109 
1110 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1111 {
1112     /* some version guests do not wait for completion of a device
1113      * cleanup (generally done asynchronously by the kernel) before
1114      * signaling to QEMU that the device is safe, but instead sleep
1115      * for some 'safe' period of time. unfortunately on a busy host
1116      * this sleep isn't guaranteed to be long enough, resulting in
1117      * bad things like IRQ lines being left asserted during final
1118      * device removal. to deal with this we call reset just prior
1119      * to finalizing the device, which will put the device back into
1120      * an 'idle' state, as the device cleanup code expects.
1121      */
1122     pci_device_reset(PCI_DEVICE(dev));
1123     object_unparent(OBJECT(dev));
1124 }
1125 
1126 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1127                                         sPAPRPHBState *phb,
1128                                         PCIDevice *pdev,
1129                                         Error **errp)
1130 {
1131     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1132 
1133     drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1134 }
1135 
1136 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1137                                                PCIDevice *pdev)
1138 {
1139     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1140     return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1141                                     (phb->index << 16) |
1142                                     (busnr << 8) |
1143                                     pdev->devfn);
1144 }
1145 
1146 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1147                                             PCIDevice *pdev)
1148 {
1149     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1150     sPAPRDRConnectorClass *drck;
1151 
1152     if (!drc) {
1153         return 0;
1154     }
1155 
1156     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1157     return drck->get_index(drc);
1158 }
1159 
1160 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1161                                      DeviceState *plugged_dev, Error **errp)
1162 {
1163     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1164     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1165     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1166     Error *local_err = NULL;
1167 
1168     /* if DR is disabled we don't need to do anything in the case of
1169      * hotplug or coldplug callbacks
1170      */
1171     if (!phb->dr_enabled) {
1172         /* if this is a hotplug operation initiated by the user
1173          * we need to let them know it's not enabled
1174          */
1175         if (plugged_dev->hotplugged) {
1176             error_setg(errp, QERR_BUS_NO_HOTPLUG,
1177                        object_get_typename(OBJECT(phb)));
1178         }
1179         return;
1180     }
1181 
1182     g_assert(drc);
1183 
1184     spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1185     if (local_err) {
1186         error_propagate(errp, local_err);
1187         return;
1188     }
1189     if (plugged_dev->hotplugged) {
1190         spapr_hotplug_req_add_by_index(drc);
1191     }
1192 }
1193 
1194 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1195                                        DeviceState *plugged_dev, Error **errp)
1196 {
1197     sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1198     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1199     sPAPRDRConnectorClass *drck;
1200     sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1201     Error *local_err = NULL;
1202 
1203     if (!phb->dr_enabled) {
1204         error_setg(errp, QERR_BUS_NO_HOTPLUG,
1205                    object_get_typename(OBJECT(phb)));
1206         return;
1207     }
1208 
1209     g_assert(drc);
1210 
1211     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1212     if (!drck->release_pending(drc)) {
1213         spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1214         if (local_err) {
1215             error_propagate(errp, local_err);
1216             return;
1217         }
1218         spapr_hotplug_req_remove_by_index(drc);
1219     }
1220 }
1221 
1222 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1223 {
1224     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1225     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1226     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1227     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1228     sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
1229     char *namebuf;
1230     int i;
1231     PCIBus *bus;
1232     uint64_t msi_window_size = 4096;
1233 
1234     if (sphb->index != (uint32_t)-1) {
1235         hwaddr windows_base;
1236 
1237         if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1238             || (sphb->mem_win_addr != (hwaddr)-1)
1239             || (sphb->io_win_addr != (hwaddr)-1)) {
1240             error_setg(errp, "Either \"index\" or other parameters must"
1241                        " be specified for PAPR PHB, not both");
1242             return;
1243         }
1244 
1245         if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1246             error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1247                        SPAPR_PCI_MAX_INDEX);
1248             return;
1249         }
1250 
1251         sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1252         sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1253 
1254         windows_base = SPAPR_PCI_WINDOW_BASE
1255             + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1256         sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1257         sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1258     }
1259 
1260     if (sphb->buid == (uint64_t)-1) {
1261         error_setg(errp, "BUID not specified for PHB");
1262         return;
1263     }
1264 
1265     if (sphb->dma_liobn == (uint32_t)-1) {
1266         error_setg(errp, "LIOBN not specified for PHB");
1267         return;
1268     }
1269 
1270     if (sphb->mem_win_addr == (hwaddr)-1) {
1271         error_setg(errp, "Memory window address not specified for PHB");
1272         return;
1273     }
1274 
1275     if (sphb->io_win_addr == (hwaddr)-1) {
1276         error_setg(errp, "IO window address not specified for PHB");
1277         return;
1278     }
1279 
1280     if (spapr_pci_find_phb(spapr, sphb->buid)) {
1281         error_setg(errp, "PCI host bridges must have unique BUIDs");
1282         return;
1283     }
1284 
1285     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1286 
1287     namebuf = alloca(strlen(sphb->dtbusname) + 32);
1288 
1289     /* Initialize memory regions */
1290     sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1291     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1292 
1293     sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1294     memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1295                              namebuf, &sphb->memspace,
1296                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1297     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1298                                 &sphb->memwindow);
1299 
1300     /* Initialize IO regions */
1301     sprintf(namebuf, "%s.io", sphb->dtbusname);
1302     memory_region_init(&sphb->iospace, OBJECT(sphb),
1303                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
1304 
1305     sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1306     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1307                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1308     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1309                                 &sphb->iowindow);
1310 
1311     bus = pci_register_bus(dev, NULL,
1312                            pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1313                            &sphb->memspace, &sphb->iospace,
1314                            PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1315     phb->bus = bus;
1316     qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1317 
1318     /*
1319      * Initialize PHB address space.
1320      * By default there will be at least one subregion for default
1321      * 32bit DMA window.
1322      * Later the guest might want to create another DMA window
1323      * which will become another memory subregion.
1324      */
1325     sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1326 
1327     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1328                        namebuf, UINT64_MAX);
1329     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1330                        sphb->dtbusname);
1331 
1332     /*
1333      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1334      * we need to allocate some memory to catch those writes coming
1335      * from msi_notify()/msix_notify().
1336      * As MSIMessage:addr is going to be the same and MSIMessage:data
1337      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1338      * be used.
1339      *
1340      * For KVM we want to ensure that this memory is a full page so that
1341      * our memory slot is of page size granularity.
1342      */
1343 #ifdef CONFIG_KVM
1344     if (kvm_enabled()) {
1345         msi_window_size = getpagesize();
1346     }
1347 #endif
1348 
1349     memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1350                           "msi", msi_window_size);
1351     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1352                                 &sphb->msiwindow);
1353 
1354     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1355 
1356     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1357 
1358     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1359 
1360     /* Initialize the LSI table */
1361     for (i = 0; i < PCI_NUM_PINS; i++) {
1362         uint32_t irq;
1363 
1364         irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
1365         if (!irq) {
1366             error_setg(errp, "spapr_allocate_lsi failed");
1367             return;
1368         }
1369 
1370         sphb->lsi_table[i].irq = irq;
1371     }
1372 
1373     /* allocate connectors for child PCI devices */
1374     if (sphb->dr_enabled) {
1375         for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1376             spapr_dr_connector_new(OBJECT(phb),
1377                                    SPAPR_DR_CONNECTOR_TYPE_PCI,
1378                                    (sphb->index << 16) | i);
1379         }
1380     }
1381 
1382     if (!info->finish_realize) {
1383         error_setg(errp, "finish_realize not defined");
1384         return;
1385     }
1386 
1387     info->finish_realize(sphb, errp);
1388 
1389     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1390 }
1391 
1392 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
1393 {
1394     sPAPRTCETable *tcet;
1395     uint32_t nb_table;
1396 
1397     nb_table = sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT;
1398     tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
1399                                0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
1400     if (!tcet) {
1401         error_setg(errp, "Unable to create TCE table for %s",
1402                    sphb->dtbusname);
1403         return ;
1404     }
1405 
1406     /* Register default 32bit DMA window */
1407     memory_region_add_subregion(&sphb->iommu_root, sphb->dma_win_addr,
1408                                 spapr_tce_get_iommu(tcet));
1409 }
1410 
1411 static int spapr_phb_children_reset(Object *child, void *opaque)
1412 {
1413     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1414 
1415     if (dev) {
1416         device_reset(dev);
1417     }
1418 
1419     return 0;
1420 }
1421 
1422 static void spapr_phb_reset(DeviceState *qdev)
1423 {
1424     /* Reset the IOMMU state */
1425     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1426 }
1427 
1428 static Property spapr_phb_properties[] = {
1429     DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1430     DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1431     DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1432     DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1433     DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1434                        SPAPR_PCI_MMIO_WIN_SIZE),
1435     DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1436     DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1437                        SPAPR_PCI_IO_WIN_SIZE),
1438     DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1439                      true),
1440     /* Default DMA window is 0..1GB */
1441     DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1442     DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1443     DEFINE_PROP_END_OF_LIST(),
1444 };
1445 
1446 static const VMStateDescription vmstate_spapr_pci_lsi = {
1447     .name = "spapr_pci/lsi",
1448     .version_id = 1,
1449     .minimum_version_id = 1,
1450     .fields = (VMStateField[]) {
1451         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1452 
1453         VMSTATE_END_OF_LIST()
1454     },
1455 };
1456 
1457 static const VMStateDescription vmstate_spapr_pci_msi = {
1458     .name = "spapr_pci/msi",
1459     .version_id = 1,
1460     .minimum_version_id = 1,
1461     .fields = (VMStateField []) {
1462         VMSTATE_UINT32(key, spapr_pci_msi_mig),
1463         VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1464         VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1465         VMSTATE_END_OF_LIST()
1466     },
1467 };
1468 
1469 static void spapr_pci_pre_save(void *opaque)
1470 {
1471     sPAPRPHBState *sphb = opaque;
1472     GHashTableIter iter;
1473     gpointer key, value;
1474     int i;
1475 
1476     g_free(sphb->msi_devs);
1477     sphb->msi_devs = NULL;
1478     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1479     if (!sphb->msi_devs_num) {
1480         return;
1481     }
1482     sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1483 
1484     g_hash_table_iter_init(&iter, sphb->msi);
1485     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1486         sphb->msi_devs[i].key = *(uint32_t *) key;
1487         sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1488     }
1489 }
1490 
1491 static int spapr_pci_post_load(void *opaque, int version_id)
1492 {
1493     sPAPRPHBState *sphb = opaque;
1494     gpointer key, value;
1495     int i;
1496 
1497     for (i = 0; i < sphb->msi_devs_num; ++i) {
1498         key = g_memdup(&sphb->msi_devs[i].key,
1499                        sizeof(sphb->msi_devs[i].key));
1500         value = g_memdup(&sphb->msi_devs[i].value,
1501                          sizeof(sphb->msi_devs[i].value));
1502         g_hash_table_insert(sphb->msi, key, value);
1503     }
1504     g_free(sphb->msi_devs);
1505     sphb->msi_devs = NULL;
1506     sphb->msi_devs_num = 0;
1507 
1508     return 0;
1509 }
1510 
1511 static const VMStateDescription vmstate_spapr_pci = {
1512     .name = "spapr_pci",
1513     .version_id = 2,
1514     .minimum_version_id = 2,
1515     .pre_save = spapr_pci_pre_save,
1516     .post_load = spapr_pci_post_load,
1517     .fields = (VMStateField[]) {
1518         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1519         VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1520         VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1521         VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1522         VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1523         VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1524         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1525                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1526         VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1527         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1528                                     vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1529         VMSTATE_END_OF_LIST()
1530     },
1531 };
1532 
1533 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1534                                            PCIBus *rootbus)
1535 {
1536     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1537 
1538     return sphb->dtbusname;
1539 }
1540 
1541 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1542 {
1543     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1544     DeviceClass *dc = DEVICE_CLASS(klass);
1545     sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
1546     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1547 
1548     hc->root_bus_path = spapr_phb_root_bus_path;
1549     dc->realize = spapr_phb_realize;
1550     dc->props = spapr_phb_properties;
1551     dc->reset = spapr_phb_reset;
1552     dc->vmsd = &vmstate_spapr_pci;
1553     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1554     dc->cannot_instantiate_with_device_add_yet = false;
1555     spc->finish_realize = spapr_phb_finish_realize;
1556     hp->plug = spapr_phb_hot_plug_child;
1557     hp->unplug = spapr_phb_hot_unplug_child;
1558 }
1559 
1560 static const TypeInfo spapr_phb_info = {
1561     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
1562     .parent        = TYPE_PCI_HOST_BRIDGE,
1563     .instance_size = sizeof(sPAPRPHBState),
1564     .class_init    = spapr_phb_class_init,
1565     .class_size    = sizeof(sPAPRPHBClass),
1566     .interfaces    = (InterfaceInfo[]) {
1567         { TYPE_HOTPLUG_HANDLER },
1568         { }
1569     }
1570 };
1571 
1572 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1573 {
1574     DeviceState *dev;
1575 
1576     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1577     qdev_prop_set_uint32(dev, "index", index);
1578     qdev_init_nofail(dev);
1579 
1580     return PCI_HOST_BRIDGE(dev);
1581 }
1582 
1583 typedef struct sPAPRFDT {
1584     void *fdt;
1585     int node_off;
1586     sPAPRPHBState *sphb;
1587 } sPAPRFDT;
1588 
1589 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1590                                           void *opaque)
1591 {
1592     PCIBus *sec_bus;
1593     sPAPRFDT *p = opaque;
1594     int offset;
1595     sPAPRFDT s_fdt;
1596 
1597     offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1598     if (!offset) {
1599         error_report("Failed to create pci child device tree node");
1600         return;
1601     }
1602 
1603     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1604          PCI_HEADER_TYPE_BRIDGE)) {
1605         return;
1606     }
1607 
1608     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1609     if (!sec_bus) {
1610         return;
1611     }
1612 
1613     s_fdt.fdt = p->fdt;
1614     s_fdt.node_off = offset;
1615     s_fdt.sphb = p->sphb;
1616     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1617                         spapr_populate_pci_devices_dt,
1618                         &s_fdt);
1619 }
1620 
1621 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1622                                            void *opaque)
1623 {
1624     unsigned int *bus_no = opaque;
1625     unsigned int primary = *bus_no;
1626     unsigned int subordinate = 0xff;
1627     PCIBus *sec_bus = NULL;
1628 
1629     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1630          PCI_HEADER_TYPE_BRIDGE)) {
1631         return;
1632     }
1633 
1634     (*bus_no)++;
1635     pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1636     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1637     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1638 
1639     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1640     if (!sec_bus) {
1641         return;
1642     }
1643 
1644     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1645     pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1646                         spapr_phb_pci_enumerate_bridge, bus_no);
1647     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1648 }
1649 
1650 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1651 {
1652     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1653     unsigned int bus_no = 0;
1654 
1655     pci_for_each_device(bus, pci_bus_num(bus),
1656                         spapr_phb_pci_enumerate_bridge,
1657                         &bus_no);
1658 
1659 }
1660 
1661 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1662                           uint32_t xics_phandle,
1663                           void *fdt)
1664 {
1665     int bus_off, i, j, ret;
1666     char nodename[FDT_NAME_MAX];
1667     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1668     const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1669     const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1670     const uint64_t w32size = MIN(w32max, mmiosize);
1671     const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1672     struct {
1673         uint32_t hi;
1674         uint64_t child;
1675         uint64_t parent;
1676         uint64_t size;
1677     } QEMU_PACKED ranges[] = {
1678         {
1679             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1680             cpu_to_be64(phb->io_win_addr),
1681             cpu_to_be64(memory_region_size(&phb->iospace)),
1682         },
1683         {
1684             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1685             cpu_to_be64(phb->mem_win_addr),
1686             cpu_to_be64(w32size),
1687         },
1688         {
1689             cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1690             cpu_to_be64(phb->mem_win_addr + w32size),
1691             cpu_to_be64(w64size)
1692         },
1693     };
1694     const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1695     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1696     uint32_t interrupt_map_mask[] = {
1697         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1698     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1699     sPAPRTCETable *tcet;
1700     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1701     sPAPRFDT s_fdt;
1702 
1703     /* Start populating the FDT */
1704     snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1705     bus_off = fdt_add_subnode(fdt, 0, nodename);
1706     if (bus_off < 0) {
1707         return bus_off;
1708     }
1709 
1710     /* Write PHB properties */
1711     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1712     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1713     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1714     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1715     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1716     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1717     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1718     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1719     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1720     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1721     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1722 
1723     /* Build the interrupt-map, this must matches what is done
1724      * in pci_spapr_map_irq
1725      */
1726     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1727                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
1728     for (i = 0; i < PCI_SLOT_MAX; i++) {
1729         for (j = 0; j < PCI_NUM_PINS; j++) {
1730             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1731             int lsi_num = pci_spapr_swizzle(i, j);
1732 
1733             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1734             irqmap[1] = 0;
1735             irqmap[2] = 0;
1736             irqmap[3] = cpu_to_be32(j+1);
1737             irqmap[4] = cpu_to_be32(xics_phandle);
1738             irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1739             irqmap[6] = cpu_to_be32(0x8);
1740         }
1741     }
1742     /* Write interrupt map */
1743     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1744                      sizeof(interrupt_map)));
1745 
1746     tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
1747     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1748                  tcet->liobn, tcet->bus_offset,
1749                  tcet->nb_table << tcet->page_shift);
1750 
1751     /* Walk the bridges and program the bus numbers*/
1752     spapr_phb_pci_enumerate(phb);
1753     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1754 
1755     /* Populate tree nodes with PCI devices attached */
1756     s_fdt.fdt = fdt;
1757     s_fdt.node_off = bus_off;
1758     s_fdt.sphb = phb;
1759     pci_for_each_device(bus, pci_bus_num(bus),
1760                         spapr_populate_pci_devices_dt,
1761                         &s_fdt);
1762 
1763     ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1764                                 SPAPR_DR_CONNECTOR_TYPE_PCI);
1765     if (ret) {
1766         return ret;
1767     }
1768 
1769     return 0;
1770 }
1771 
1772 void spapr_pci_rtas_init(void)
1773 {
1774     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1775                         rtas_read_pci_config);
1776     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1777                         rtas_write_pci_config);
1778     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1779                         rtas_ibm_read_pci_config);
1780     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1781                         rtas_ibm_write_pci_config);
1782     if (msi_supported) {
1783         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1784                             "ibm,query-interrupt-source-number",
1785                             rtas_ibm_query_interrupt_source_number);
1786         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1787                             rtas_ibm_change_msi);
1788     }
1789 
1790     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1791                         "ibm,set-eeh-option",
1792                         rtas_ibm_set_eeh_option);
1793     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1794                         "ibm,get-config-addr-info2",
1795                         rtas_ibm_get_config_addr_info2);
1796     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1797                         "ibm,read-slot-reset-state2",
1798                         rtas_ibm_read_slot_reset_state2);
1799     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1800                         "ibm,set-slot-reset",
1801                         rtas_ibm_set_slot_reset);
1802     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1803                         "ibm,configure-pe",
1804                         rtas_ibm_configure_pe);
1805     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1806                         "ibm,slot-error-detail",
1807                         rtas_ibm_slot_error_detail);
1808 }
1809 
1810 static void spapr_pci_register_types(void)
1811 {
1812     type_register_static(&spapr_phb_info);
1813 }
1814 
1815 type_init(spapr_pci_register_types)
1816 
1817 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1818 {
1819     bool be = *(bool *)opaque;
1820 
1821     if (object_dynamic_cast(OBJECT(dev), "VGA")
1822         || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1823         object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1824                                  &error_abort);
1825     }
1826     return 0;
1827 }
1828 
1829 void spapr_pci_switch_vga(bool big_endian)
1830 {
1831     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1832     sPAPRPHBState *sphb;
1833 
1834     /*
1835      * For backward compatibility with existing guests, we switch
1836      * the endianness of the VGA controller when changing the guest
1837      * interrupt mode
1838      */
1839     QLIST_FOREACH(sphb, &spapr->phbs, list) {
1840         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1841         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1842                            &big_endian);
1843     }
1844 }
1845