1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "hw/hw.h" 30 #include "hw/sysbus.h" 31 #include "hw/pci/pci.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci_host.h" 35 #include "hw/ppc/spapr.h" 36 #include "hw/pci-host/spapr.h" 37 #include "exec/address-spaces.h" 38 #include "exec/ram_addr.h" 39 #include <libfdt.h> 40 #include "trace.h" 41 #include "qemu/error-report.h" 42 #include "qapi/qmp/qerror.h" 43 #include "hw/ppc/fdt.h" 44 #include "hw/pci/pci_bridge.h" 45 #include "hw/pci/pci_bus.h" 46 #include "hw/pci/pci_ids.h" 47 #include "hw/ppc/spapr_drc.h" 48 #include "sysemu/device_tree.h" 49 #include "sysemu/kvm.h" 50 #include "sysemu/hostmem.h" 51 #include "sysemu/numa.h" 52 53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 54 #define RTAS_QUERY_FN 0 55 #define RTAS_CHANGE_FN 1 56 #define RTAS_RESET_FN 2 57 #define RTAS_CHANGE_MSI_FN 3 58 #define RTAS_CHANGE_MSIX_FN 4 59 60 /* Interrupt types to return on RTAS_CHANGE_* */ 61 #define RTAS_TYPE_MSI 1 62 #define RTAS_TYPE_MSIX 2 63 64 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid) 65 { 66 sPAPRPHBState *sphb; 67 68 QLIST_FOREACH(sphb, &spapr->phbs, list) { 69 if (sphb->buid != buid) { 70 continue; 71 } 72 return sphb; 73 } 74 75 return NULL; 76 } 77 78 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid, 79 uint32_t config_addr) 80 { 81 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid); 82 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 83 int bus_num = (config_addr >> 16) & 0xFF; 84 int devfn = (config_addr >> 8) & 0xFF; 85 86 if (!phb) { 87 return NULL; 88 } 89 90 return pci_find_device(phb->bus, bus_num, devfn); 91 } 92 93 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 94 { 95 /* This handles the encoding of extended config space addresses */ 96 return ((arg >> 20) & 0xf00) | (arg & 0xff); 97 } 98 99 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid, 100 uint32_t addr, uint32_t size, 101 target_ulong rets) 102 { 103 PCIDevice *pci_dev; 104 uint32_t val; 105 106 if ((size != 1) && (size != 2) && (size != 4)) { 107 /* access must be 1, 2 or 4 bytes */ 108 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 109 return; 110 } 111 112 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 113 addr = rtas_pci_cfgaddr(addr); 114 115 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 116 /* Access must be to a valid device, within bounds and 117 * naturally aligned */ 118 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 119 return; 120 } 121 122 val = pci_host_config_read_common(pci_dev, addr, 123 pci_config_size(pci_dev), size); 124 125 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 126 rtas_st(rets, 1, val); 127 } 128 129 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 130 uint32_t token, uint32_t nargs, 131 target_ulong args, 132 uint32_t nret, target_ulong rets) 133 { 134 uint64_t buid; 135 uint32_t size, addr; 136 137 if ((nargs != 4) || (nret != 2)) { 138 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 139 return; 140 } 141 142 buid = rtas_ldq(args, 1); 143 size = rtas_ld(args, 3); 144 addr = rtas_ld(args, 0); 145 146 finish_read_pci_config(spapr, buid, addr, size, rets); 147 } 148 149 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 150 uint32_t token, uint32_t nargs, 151 target_ulong args, 152 uint32_t nret, target_ulong rets) 153 { 154 uint32_t size, addr; 155 156 if ((nargs != 2) || (nret != 2)) { 157 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 158 return; 159 } 160 161 size = rtas_ld(args, 1); 162 addr = rtas_ld(args, 0); 163 164 finish_read_pci_config(spapr, 0, addr, size, rets); 165 } 166 167 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid, 168 uint32_t addr, uint32_t size, 169 uint32_t val, target_ulong rets) 170 { 171 PCIDevice *pci_dev; 172 173 if ((size != 1) && (size != 2) && (size != 4)) { 174 /* access must be 1, 2 or 4 bytes */ 175 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 176 return; 177 } 178 179 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 180 addr = rtas_pci_cfgaddr(addr); 181 182 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 183 /* Access must be to a valid device, within bounds and 184 * naturally aligned */ 185 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 186 return; 187 } 188 189 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 190 val, size); 191 192 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 193 } 194 195 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 196 uint32_t token, uint32_t nargs, 197 target_ulong args, 198 uint32_t nret, target_ulong rets) 199 { 200 uint64_t buid; 201 uint32_t val, size, addr; 202 203 if ((nargs != 5) || (nret != 1)) { 204 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 205 return; 206 } 207 208 buid = rtas_ldq(args, 1); 209 val = rtas_ld(args, 4); 210 size = rtas_ld(args, 3); 211 addr = rtas_ld(args, 0); 212 213 finish_write_pci_config(spapr, buid, addr, size, val, rets); 214 } 215 216 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 217 uint32_t token, uint32_t nargs, 218 target_ulong args, 219 uint32_t nret, target_ulong rets) 220 { 221 uint32_t val, size, addr; 222 223 if ((nargs != 3) || (nret != 1)) { 224 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 225 return; 226 } 227 228 229 val = rtas_ld(args, 2); 230 size = rtas_ld(args, 1); 231 addr = rtas_ld(args, 0); 232 233 finish_write_pci_config(spapr, 0, addr, size, val, rets); 234 } 235 236 /* 237 * Set MSI/MSIX message data. 238 * This is required for msi_notify()/msix_notify() which 239 * will write at the addresses via spapr_msi_write(). 240 * 241 * If hwaddr == 0, all entries will have .data == first_irq i.e. 242 * table will be reset. 243 */ 244 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 245 unsigned first_irq, unsigned req_num) 246 { 247 unsigned i; 248 MSIMessage msg = { .address = addr, .data = first_irq }; 249 250 if (!msix) { 251 msi_set_message(pdev, msg); 252 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 253 return; 254 } 255 256 for (i = 0; i < req_num; ++i) { 257 msix_set_message(pdev, i, msg); 258 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 259 if (addr) { 260 ++msg.data; 261 } 262 } 263 } 264 265 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr, 266 uint32_t token, uint32_t nargs, 267 target_ulong args, uint32_t nret, 268 target_ulong rets) 269 { 270 uint32_t config_addr = rtas_ld(args, 0); 271 uint64_t buid = rtas_ldq(args, 1); 272 unsigned int func = rtas_ld(args, 3); 273 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 274 unsigned int seq_num = rtas_ld(args, 5); 275 unsigned int ret_intr_type; 276 unsigned int irq, max_irqs = 0; 277 sPAPRPHBState *phb = NULL; 278 PCIDevice *pdev = NULL; 279 spapr_pci_msi *msi; 280 int *config_addr_key; 281 Error *err = NULL; 282 283 switch (func) { 284 case RTAS_CHANGE_MSI_FN: 285 case RTAS_CHANGE_FN: 286 ret_intr_type = RTAS_TYPE_MSI; 287 break; 288 case RTAS_CHANGE_MSIX_FN: 289 ret_intr_type = RTAS_TYPE_MSIX; 290 break; 291 default: 292 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 293 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 294 return; 295 } 296 297 /* Fins sPAPRPHBState */ 298 phb = spapr_pci_find_phb(spapr, buid); 299 if (phb) { 300 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 301 } 302 if (!phb || !pdev) { 303 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 304 return; 305 } 306 307 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 308 309 /* Releasing MSIs */ 310 if (!req_num) { 311 if (!msi) { 312 trace_spapr_pci_msi("Releasing wrong config", config_addr); 313 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 314 return; 315 } 316 317 spapr_ics_free(spapr->ics, msi->first_irq, msi->num); 318 if (msi_present(pdev)) { 319 spapr_msi_setmsg(pdev, 0, false, 0, 0); 320 } 321 if (msix_present(pdev)) { 322 spapr_msi_setmsg(pdev, 0, true, 0, 0); 323 } 324 g_hash_table_remove(phb->msi, &config_addr); 325 326 trace_spapr_pci_msi("Released MSIs", config_addr); 327 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 328 rtas_st(rets, 1, 0); 329 return; 330 } 331 332 /* Enabling MSI */ 333 334 /* Check if the device supports as many IRQs as requested */ 335 if (ret_intr_type == RTAS_TYPE_MSI) { 336 max_irqs = msi_nr_vectors_allocated(pdev); 337 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 338 max_irqs = pdev->msix_entries_nr; 339 } 340 if (!max_irqs) { 341 error_report("Requested interrupt type %d is not enabled for device %x", 342 ret_intr_type, config_addr); 343 rtas_st(rets, 0, -1); /* Hardware error */ 344 return; 345 } 346 /* Correct the number if the guest asked for too many */ 347 if (req_num > max_irqs) { 348 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 349 req_num = max_irqs; 350 irq = 0; /* to avoid misleading trace */ 351 goto out; 352 } 353 354 /* Allocate MSIs */ 355 irq = spapr_ics_alloc_block(spapr->ics, req_num, false, 356 ret_intr_type == RTAS_TYPE_MSI, &err); 357 if (err) { 358 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 359 config_addr); 360 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 361 return; 362 } 363 364 /* Release previous MSIs */ 365 if (msi) { 366 spapr_ics_free(spapr->ics, msi->first_irq, msi->num); 367 g_hash_table_remove(phb->msi, &config_addr); 368 } 369 370 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 371 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 372 irq, req_num); 373 374 /* Add MSI device to cache */ 375 msi = g_new(spapr_pci_msi, 1); 376 msi->first_irq = irq; 377 msi->num = req_num; 378 config_addr_key = g_new(int, 1); 379 *config_addr_key = config_addr; 380 g_hash_table_insert(phb->msi, config_addr_key, msi); 381 382 out: 383 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 384 rtas_st(rets, 1, req_num); 385 rtas_st(rets, 2, ++seq_num); 386 if (nret > 3) { 387 rtas_st(rets, 3, ret_intr_type); 388 } 389 390 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 391 } 392 393 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 394 sPAPRMachineState *spapr, 395 uint32_t token, 396 uint32_t nargs, 397 target_ulong args, 398 uint32_t nret, 399 target_ulong rets) 400 { 401 uint32_t config_addr = rtas_ld(args, 0); 402 uint64_t buid = rtas_ldq(args, 1); 403 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 404 sPAPRPHBState *phb = NULL; 405 PCIDevice *pdev = NULL; 406 spapr_pci_msi *msi; 407 408 /* Find sPAPRPHBState */ 409 phb = spapr_pci_find_phb(spapr, buid); 410 if (phb) { 411 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 412 } 413 if (!phb || !pdev) { 414 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 415 return; 416 } 417 418 /* Find device descriptor and start IRQ */ 419 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 420 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 421 trace_spapr_pci_msi("Failed to return vector", config_addr); 422 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 423 return; 424 } 425 intr_src_num = msi->first_irq + ioa_intr_num; 426 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 427 intr_src_num); 428 429 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 430 rtas_st(rets, 1, intr_src_num); 431 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 432 } 433 434 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 435 sPAPRMachineState *spapr, 436 uint32_t token, uint32_t nargs, 437 target_ulong args, uint32_t nret, 438 target_ulong rets) 439 { 440 sPAPRPHBState *sphb; 441 uint32_t addr, option; 442 uint64_t buid; 443 int ret; 444 445 if ((nargs != 4) || (nret != 1)) { 446 goto param_error_exit; 447 } 448 449 buid = rtas_ldq(args, 1); 450 addr = rtas_ld(args, 0); 451 option = rtas_ld(args, 3); 452 453 sphb = spapr_pci_find_phb(spapr, buid); 454 if (!sphb) { 455 goto param_error_exit; 456 } 457 458 if (!spapr_phb_eeh_available(sphb)) { 459 goto param_error_exit; 460 } 461 462 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 463 rtas_st(rets, 0, ret); 464 return; 465 466 param_error_exit: 467 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 468 } 469 470 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 471 sPAPRMachineState *spapr, 472 uint32_t token, uint32_t nargs, 473 target_ulong args, uint32_t nret, 474 target_ulong rets) 475 { 476 sPAPRPHBState *sphb; 477 PCIDevice *pdev; 478 uint32_t addr, option; 479 uint64_t buid; 480 481 if ((nargs != 4) || (nret != 2)) { 482 goto param_error_exit; 483 } 484 485 buid = rtas_ldq(args, 1); 486 sphb = spapr_pci_find_phb(spapr, buid); 487 if (!sphb) { 488 goto param_error_exit; 489 } 490 491 if (!spapr_phb_eeh_available(sphb)) { 492 goto param_error_exit; 493 } 494 495 /* 496 * We always have PE address of form "00BB0001". "BB" 497 * represents the bus number of PE's primary bus. 498 */ 499 option = rtas_ld(args, 3); 500 switch (option) { 501 case RTAS_GET_PE_ADDR: 502 addr = rtas_ld(args, 0); 503 pdev = spapr_pci_find_dev(spapr, buid, addr); 504 if (!pdev) { 505 goto param_error_exit; 506 } 507 508 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1); 509 break; 510 case RTAS_GET_PE_MODE: 511 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 512 break; 513 default: 514 goto param_error_exit; 515 } 516 517 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 518 return; 519 520 param_error_exit: 521 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 522 } 523 524 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 525 sPAPRMachineState *spapr, 526 uint32_t token, uint32_t nargs, 527 target_ulong args, uint32_t nret, 528 target_ulong rets) 529 { 530 sPAPRPHBState *sphb; 531 uint64_t buid; 532 int state, ret; 533 534 if ((nargs != 3) || (nret != 4 && nret != 5)) { 535 goto param_error_exit; 536 } 537 538 buid = rtas_ldq(args, 1); 539 sphb = spapr_pci_find_phb(spapr, buid); 540 if (!sphb) { 541 goto param_error_exit; 542 } 543 544 if (!spapr_phb_eeh_available(sphb)) { 545 goto param_error_exit; 546 } 547 548 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 549 rtas_st(rets, 0, ret); 550 if (ret != RTAS_OUT_SUCCESS) { 551 return; 552 } 553 554 rtas_st(rets, 1, state); 555 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 556 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 557 if (nret >= 5) { 558 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 559 } 560 return; 561 562 param_error_exit: 563 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 564 } 565 566 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 567 sPAPRMachineState *spapr, 568 uint32_t token, uint32_t nargs, 569 target_ulong args, uint32_t nret, 570 target_ulong rets) 571 { 572 sPAPRPHBState *sphb; 573 uint32_t option; 574 uint64_t buid; 575 int ret; 576 577 if ((nargs != 4) || (nret != 1)) { 578 goto param_error_exit; 579 } 580 581 buid = rtas_ldq(args, 1); 582 option = rtas_ld(args, 3); 583 sphb = spapr_pci_find_phb(spapr, buid); 584 if (!sphb) { 585 goto param_error_exit; 586 } 587 588 if (!spapr_phb_eeh_available(sphb)) { 589 goto param_error_exit; 590 } 591 592 ret = spapr_phb_vfio_eeh_reset(sphb, option); 593 rtas_st(rets, 0, ret); 594 return; 595 596 param_error_exit: 597 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 598 } 599 600 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 601 sPAPRMachineState *spapr, 602 uint32_t token, uint32_t nargs, 603 target_ulong args, uint32_t nret, 604 target_ulong rets) 605 { 606 sPAPRPHBState *sphb; 607 uint64_t buid; 608 int ret; 609 610 if ((nargs != 3) || (nret != 1)) { 611 goto param_error_exit; 612 } 613 614 buid = rtas_ldq(args, 1); 615 sphb = spapr_pci_find_phb(spapr, buid); 616 if (!sphb) { 617 goto param_error_exit; 618 } 619 620 if (!spapr_phb_eeh_available(sphb)) { 621 goto param_error_exit; 622 } 623 624 ret = spapr_phb_vfio_eeh_configure(sphb); 625 rtas_st(rets, 0, ret); 626 return; 627 628 param_error_exit: 629 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 630 } 631 632 /* To support it later */ 633 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 634 sPAPRMachineState *spapr, 635 uint32_t token, uint32_t nargs, 636 target_ulong args, uint32_t nret, 637 target_ulong rets) 638 { 639 sPAPRPHBState *sphb; 640 int option; 641 uint64_t buid; 642 643 if ((nargs != 8) || (nret != 1)) { 644 goto param_error_exit; 645 } 646 647 buid = rtas_ldq(args, 1); 648 sphb = spapr_pci_find_phb(spapr, buid); 649 if (!sphb) { 650 goto param_error_exit; 651 } 652 653 if (!spapr_phb_eeh_available(sphb)) { 654 goto param_error_exit; 655 } 656 657 option = rtas_ld(args, 7); 658 switch (option) { 659 case RTAS_SLOT_TEMP_ERR_LOG: 660 case RTAS_SLOT_PERM_ERR_LOG: 661 break; 662 default: 663 goto param_error_exit; 664 } 665 666 /* We don't have error log yet */ 667 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 668 return; 669 670 param_error_exit: 671 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 672 } 673 674 static int pci_spapr_swizzle(int slot, int pin) 675 { 676 return (slot + pin) % PCI_NUM_PINS; 677 } 678 679 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) 680 { 681 /* 682 * Here we need to convert pci_dev + irq_num to some unique value 683 * which is less than number of IRQs on the specific bus (4). We 684 * use standard PCI swizzling, that is (slot number + pin number) 685 * % 4. 686 */ 687 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); 688 } 689 690 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 691 { 692 /* 693 * Here we use the number returned by pci_spapr_map_irq to find a 694 * corresponding qemu_irq. 695 */ 696 sPAPRPHBState *phb = opaque; 697 698 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 699 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); 700 } 701 702 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 703 { 704 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 705 PCIINTxRoute route; 706 707 route.mode = PCI_INTX_ENABLED; 708 route.irq = sphb->lsi_table[pin].irq; 709 710 return route; 711 } 712 713 /* 714 * MSI/MSIX memory region implementation. 715 * The handler handles both MSI and MSIX. 716 * The vector number is encoded in least bits in data. 717 */ 718 static void spapr_msi_write(void *opaque, hwaddr addr, 719 uint64_t data, unsigned size) 720 { 721 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 722 uint32_t irq = data; 723 724 trace_spapr_pci_msi_write(addr, data, irq); 725 726 qemu_irq_pulse(xics_get_qirq(XICS_FABRIC(spapr), irq)); 727 } 728 729 static const MemoryRegionOps spapr_msi_ops = { 730 /* There is no .read as the read result is undefined by PCI spec */ 731 .read = NULL, 732 .write = spapr_msi_write, 733 .endianness = DEVICE_LITTLE_ENDIAN 734 }; 735 736 /* 737 * PHB PCI device 738 */ 739 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 740 { 741 sPAPRPHBState *phb = opaque; 742 743 return &phb->iommu_as; 744 } 745 746 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 747 { 748 char *path = NULL, *buf = NULL, *host = NULL; 749 750 /* Get the PCI VFIO host id */ 751 host = object_property_get_str(OBJECT(pdev), "host", NULL); 752 if (!host) { 753 goto err_out; 754 } 755 756 /* Construct the path of the file that will give us the DT location */ 757 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 758 g_free(host); 759 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 760 goto err_out; 761 } 762 g_free(path); 763 764 /* Construct and read from host device tree the loc-code */ 765 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); 766 g_free(buf); 767 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 768 goto err_out; 769 } 770 return buf; 771 772 err_out: 773 g_free(path); 774 return NULL; 775 } 776 777 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 778 { 779 char *buf; 780 const char *devtype = "qemu"; 781 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 782 783 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 784 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 785 if (buf) { 786 return buf; 787 } 788 devtype = "vfio"; 789 } 790 /* 791 * For emulated devices and VFIO-failure case, make up 792 * the loc-code. 793 */ 794 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 795 devtype, pdev->name, sphb->index, busnr, 796 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 797 return buf; 798 } 799 800 /* Macros to operate with address in OF binding to PCI */ 801 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 802 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 803 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 804 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 805 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 806 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 807 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 808 #define b_fff(x) b_x((x), 8, 3) /* function number */ 809 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 810 811 /* for 'reg'/'assigned-addresses' OF properties */ 812 #define RESOURCE_CELLS_SIZE 2 813 #define RESOURCE_CELLS_ADDRESS 3 814 815 typedef struct ResourceFields { 816 uint32_t phys_hi; 817 uint32_t phys_mid; 818 uint32_t phys_lo; 819 uint32_t size_hi; 820 uint32_t size_lo; 821 } QEMU_PACKED ResourceFields; 822 823 typedef struct ResourceProps { 824 ResourceFields reg[8]; 825 ResourceFields assigned[7]; 826 uint32_t reg_len; 827 uint32_t assigned_len; 828 } ResourceProps; 829 830 /* fill in the 'reg'/'assigned-resources' OF properties for 831 * a PCI device. 'reg' describes resource requirements for a 832 * device's IO/MEM regions, 'assigned-addresses' describes the 833 * actual resource assignments. 834 * 835 * the properties are arrays of ('phys-addr', 'size') pairs describing 836 * the addressable regions of the PCI device, where 'phys-addr' is a 837 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 838 * (phys.hi, phys.mid, phys.lo), and 'size' is a 839 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 840 * 841 * phys.hi = 0xYYXXXXZZ, where: 842 * 0xYY = npt000ss 843 * ||| | 844 * ||| +-- space code 845 * ||| | 846 * ||| + 00 if configuration space 847 * ||| + 01 if IO region, 848 * ||| + 10 if 32-bit MEM region 849 * ||| + 11 if 64-bit MEM region 850 * ||| 851 * ||+------ for non-relocatable IO: 1 if aliased 852 * || for relocatable IO: 1 if below 64KB 853 * || for MEM: 1 if below 1MB 854 * |+------- 1 if region is prefetchable 855 * +-------- 1 if region is non-relocatable 856 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 857 * bits respectively 858 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 859 * to the region 860 * 861 * phys.mid and phys.lo correspond respectively to the hi/lo portions 862 * of the actual address of the region. 863 * 864 * how the phys-addr/size values are used differ slightly between 865 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has 866 * an additional description for the config space region of the 867 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0 868 * to describe the region as relocatable, with an address-mapping 869 * that corresponds directly to the PHB's address space for the 870 * resource. 'assigned-addresses' always has n=1 set with an absolute 871 * address assigned for the resource. in general, 'assigned-addresses' 872 * won't be populated, since addresses for PCI devices are generally 873 * unmapped initially and left to the guest to assign. 874 * 875 * note also that addresses defined in these properties are, at least 876 * for PAPR guests, relative to the PHBs IO/MEM windows, and 877 * correspond directly to the addresses in the BARs. 878 * 879 * in accordance with PCI Bus Binding to Open Firmware, 880 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 881 * Appendix C. 882 */ 883 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 884 { 885 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 886 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 887 b_ddddd(PCI_SLOT(d->devfn)) | 888 b_fff(PCI_FUNC(d->devfn))); 889 ResourceFields *reg, *assigned; 890 int i, reg_idx = 0, assigned_idx = 0; 891 892 /* config space region */ 893 reg = &rp->reg[reg_idx++]; 894 reg->phys_hi = cpu_to_be32(dev_id); 895 reg->phys_mid = 0; 896 reg->phys_lo = 0; 897 reg->size_hi = 0; 898 reg->size_lo = 0; 899 900 for (i = 0; i < PCI_NUM_REGIONS; i++) { 901 if (!d->io_regions[i].size) { 902 continue; 903 } 904 905 reg = &rp->reg[reg_idx++]; 906 907 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 908 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 909 reg->phys_hi |= cpu_to_be32(b_ss(1)); 910 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 911 reg->phys_hi |= cpu_to_be32(b_ss(3)); 912 } else { 913 reg->phys_hi |= cpu_to_be32(b_ss(2)); 914 } 915 reg->phys_mid = 0; 916 reg->phys_lo = 0; 917 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 918 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 919 920 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) { 921 continue; 922 } 923 924 assigned = &rp->assigned[assigned_idx++]; 925 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1)); 926 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32); 927 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr); 928 assigned->size_hi = reg->size_hi; 929 assigned->size_lo = reg->size_lo; 930 } 931 932 rp->reg_len = reg_idx * sizeof(ResourceFields); 933 rp->assigned_len = assigned_idx * sizeof(ResourceFields); 934 } 935 936 typedef struct PCIClass PCIClass; 937 typedef struct PCISubClass PCISubClass; 938 typedef struct PCIIFace PCIIFace; 939 940 struct PCIIFace { 941 int iface; 942 const char *name; 943 }; 944 945 struct PCISubClass { 946 int subclass; 947 const char *name; 948 const PCIIFace *iface; 949 }; 950 951 struct PCIClass { 952 const char *name; 953 const PCISubClass *subc; 954 }; 955 956 static const PCISubClass undef_subclass[] = { 957 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, 958 { 0xFF, NULL, NULL }, 959 }; 960 961 static const PCISubClass mass_subclass[] = { 962 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, 963 { PCI_CLASS_STORAGE_IDE, "ide", NULL }, 964 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, 965 { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, 966 { PCI_CLASS_STORAGE_RAID, "raid", NULL }, 967 { PCI_CLASS_STORAGE_ATA, "ata", NULL }, 968 { PCI_CLASS_STORAGE_SATA, "sata", NULL }, 969 { PCI_CLASS_STORAGE_SAS, "sas", NULL }, 970 { 0xFF, NULL, NULL }, 971 }; 972 973 static const PCISubClass net_subclass[] = { 974 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, 975 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, 976 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, 977 { PCI_CLASS_NETWORK_ATM, "atm", NULL }, 978 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, 979 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, 980 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, 981 { 0xFF, NULL, NULL }, 982 }; 983 984 static const PCISubClass displ_subclass[] = { 985 { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, 986 { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, 987 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, 988 { 0xFF, NULL, NULL }, 989 }; 990 991 static const PCISubClass media_subclass[] = { 992 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, 993 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, 994 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, 995 { 0xFF, NULL, NULL }, 996 }; 997 998 static const PCISubClass mem_subclass[] = { 999 { PCI_CLASS_MEMORY_RAM, "memory", NULL }, 1000 { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, 1001 { 0xFF, NULL, NULL }, 1002 }; 1003 1004 static const PCISubClass bridg_subclass[] = { 1005 { PCI_CLASS_BRIDGE_HOST, "host", NULL }, 1006 { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, 1007 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, 1008 { PCI_CLASS_BRIDGE_MC, "mca", NULL }, 1009 { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, 1010 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, 1011 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, 1012 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, 1013 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, 1014 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, 1015 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, 1016 { 0xFF, NULL, NULL }, 1017 }; 1018 1019 static const PCISubClass comm_subclass[] = { 1020 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, 1021 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, 1022 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, 1023 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, 1024 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, 1025 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, 1026 { 0xFF, NULL, NULL, }, 1027 }; 1028 1029 static const PCIIFace pic_iface[] = { 1030 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, 1031 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, 1032 { 0xFF, NULL }, 1033 }; 1034 1035 static const PCISubClass sys_subclass[] = { 1036 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, 1037 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, 1038 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, 1039 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, 1040 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, 1041 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, 1042 { 0xFF, NULL, NULL }, 1043 }; 1044 1045 static const PCISubClass inp_subclass[] = { 1046 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, 1047 { PCI_CLASS_INPUT_PEN, "pen", NULL }, 1048 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, 1049 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, 1050 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, 1051 { 0xFF, NULL, NULL }, 1052 }; 1053 1054 static const PCISubClass dock_subclass[] = { 1055 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, 1056 { 0xFF, NULL, NULL }, 1057 }; 1058 1059 static const PCISubClass cpu_subclass[] = { 1060 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, 1061 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, 1062 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, 1063 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, 1064 { 0xFF, NULL, NULL }, 1065 }; 1066 1067 static const PCIIFace usb_iface[] = { 1068 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, 1069 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, 1070 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, 1071 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, 1072 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, 1073 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, 1074 { 0xFF, NULL }, 1075 }; 1076 1077 static const PCISubClass ser_subclass[] = { 1078 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, 1079 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, 1080 { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, 1081 { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, 1082 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, 1083 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, 1084 { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, 1085 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, 1086 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, 1087 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, 1088 { 0xFF, NULL, NULL }, 1089 }; 1090 1091 static const PCISubClass wrl_subclass[] = { 1092 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, 1093 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, 1094 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, 1095 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, 1096 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, 1097 { 0xFF, NULL, NULL }, 1098 }; 1099 1100 static const PCISubClass sat_subclass[] = { 1101 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, 1102 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, 1103 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, 1104 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, 1105 { 0xFF, NULL, NULL }, 1106 }; 1107 1108 static const PCISubClass crypt_subclass[] = { 1109 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, 1110 { PCI_CLASS_CRYPT_ENTERTAINMENT, 1111 "entertainment-encryption", NULL }, 1112 { 0xFF, NULL, NULL }, 1113 }; 1114 1115 static const PCISubClass spc_subclass[] = { 1116 { PCI_CLASS_SP_DPIO, "dpio", NULL }, 1117 { PCI_CLASS_SP_PERF, "counter", NULL }, 1118 { PCI_CLASS_SP_SYNCH, "measurement", NULL }, 1119 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, 1120 { 0xFF, NULL, NULL }, 1121 }; 1122 1123 static const PCIClass pci_classes[] = { 1124 { "legacy-device", undef_subclass }, 1125 { "mass-storage", mass_subclass }, 1126 { "network", net_subclass }, 1127 { "display", displ_subclass, }, 1128 { "multimedia-device", media_subclass }, 1129 { "memory-controller", mem_subclass }, 1130 { "unknown-bridge", bridg_subclass }, 1131 { "communication-controller", comm_subclass}, 1132 { "system-peripheral", sys_subclass }, 1133 { "input-controller", inp_subclass }, 1134 { "docking-station", dock_subclass }, 1135 { "cpu", cpu_subclass }, 1136 { "serial-bus", ser_subclass }, 1137 { "wireless-controller", wrl_subclass }, 1138 { "intelligent-io", NULL }, 1139 { "satellite-device", sat_subclass }, 1140 { "encryption", crypt_subclass }, 1141 { "data-processing-controller", spc_subclass }, 1142 }; 1143 1144 static const char *pci_find_device_name(uint8_t class, uint8_t subclass, 1145 uint8_t iface) 1146 { 1147 const PCIClass *pclass; 1148 const PCISubClass *psubclass; 1149 const PCIIFace *piface; 1150 const char *name; 1151 1152 if (class >= ARRAY_SIZE(pci_classes)) { 1153 return "pci"; 1154 } 1155 1156 pclass = pci_classes + class; 1157 name = pclass->name; 1158 1159 if (pclass->subc == NULL) { 1160 return name; 1161 } 1162 1163 psubclass = pclass->subc; 1164 while ((psubclass->subclass & 0xff) != 0xff) { 1165 if ((psubclass->subclass & 0xff) == subclass) { 1166 name = psubclass->name; 1167 break; 1168 } 1169 psubclass++; 1170 } 1171 1172 piface = psubclass->iface; 1173 if (piface == NULL) { 1174 return name; 1175 } 1176 while ((piface->iface & 0xff) != 0xff) { 1177 if ((piface->iface & 0xff) == iface) { 1178 name = piface->name; 1179 break; 1180 } 1181 piface++; 1182 } 1183 1184 return name; 1185 } 1186 1187 static gchar *pci_get_node_name(PCIDevice *dev) 1188 { 1189 int slot = PCI_SLOT(dev->devfn); 1190 int func = PCI_FUNC(dev->devfn); 1191 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1192 const char *name; 1193 1194 name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, 1195 ccode & 0xff); 1196 1197 if (func != 0) { 1198 return g_strdup_printf("%s@%x,%x", name, slot, func); 1199 } else { 1200 return g_strdup_printf("%s@%x", name, slot); 1201 } 1202 } 1203 1204 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 1205 PCIDevice *pdev); 1206 1207 static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset, 1208 sPAPRPHBState *sphb) 1209 { 1210 ResourceProps rp; 1211 bool is_bridge = false; 1212 int pci_status; 1213 char *buf = NULL; 1214 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev); 1215 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1216 uint32_t max_msi, max_msix; 1217 1218 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) == 1219 PCI_HEADER_TYPE_BRIDGE) { 1220 is_bridge = true; 1221 } 1222 1223 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 1224 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", 1225 pci_default_read_config(dev, PCI_VENDOR_ID, 2))); 1226 _FDT(fdt_setprop_cell(fdt, offset, "device-id", 1227 pci_default_read_config(dev, PCI_DEVICE_ID, 2))); 1228 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", 1229 pci_default_read_config(dev, PCI_REVISION_ID, 1))); 1230 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); 1231 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) { 1232 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", 1233 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1))); 1234 } 1235 1236 if (!is_bridge) { 1237 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", 1238 pci_default_read_config(dev, PCI_MIN_GNT, 1))); 1239 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", 1240 pci_default_read_config(dev, PCI_MAX_LAT, 1))); 1241 } 1242 1243 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) { 1244 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", 1245 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2))); 1246 } 1247 1248 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) { 1249 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 1250 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2))); 1251 } 1252 1253 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", 1254 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1))); 1255 1256 /* the following fdt cells are masked off the pci status register */ 1257 pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1258 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1259 PCI_STATUS_DEVSEL_MASK & pci_status)); 1260 1261 if (pci_status & PCI_STATUS_FAST_BACK) { 1262 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1263 } 1264 if (pci_status & PCI_STATUS_66MHZ) { 1265 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1266 } 1267 if (pci_status & PCI_STATUS_UDF) { 1268 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1269 } 1270 1271 _FDT(fdt_setprop_string(fdt, offset, "name", 1272 pci_find_device_name((ccode >> 16) & 0xff, 1273 (ccode >> 8) & 0xff, 1274 ccode & 0xff))); 1275 1276 buf = spapr_phb_get_loc_code(sphb, dev); 1277 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf)); 1278 g_free(buf); 1279 1280 if (drc_index) { 1281 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)); 1282 } 1283 1284 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1285 RESOURCE_CELLS_ADDRESS)); 1286 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1287 RESOURCE_CELLS_SIZE)); 1288 1289 max_msi = msi_nr_vectors_allocated(dev); 1290 if (max_msi) { 1291 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1292 } 1293 max_msix = dev->msix_entries_nr; 1294 if (max_msix) { 1295 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1296 } 1297 1298 populate_resource_props(dev, &rp); 1299 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1300 _FDT(fdt_setprop(fdt, offset, "assigned-addresses", 1301 (uint8_t *)rp.assigned, rp.assigned_len)); 1302 1303 if (sphb->pcie_ecs && pci_is_express(dev)) { 1304 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); 1305 } 1306 } 1307 1308 /* create OF node for pci device and required OF DT properties */ 1309 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev, 1310 void *fdt, int node_offset) 1311 { 1312 int offset; 1313 gchar *nodename; 1314 1315 nodename = pci_get_node_name(dev); 1316 _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename)); 1317 g_free(nodename); 1318 1319 spapr_populate_pci_child_dt(dev, fdt, offset, phb); 1320 1321 return offset; 1322 } 1323 1324 /* Callback to be called during DRC release. */ 1325 void spapr_phb_remove_pci_device_cb(DeviceState *dev) 1326 { 1327 /* some version guests do not wait for completion of a device 1328 * cleanup (generally done asynchronously by the kernel) before 1329 * signaling to QEMU that the device is safe, but instead sleep 1330 * for some 'safe' period of time. unfortunately on a busy host 1331 * this sleep isn't guaranteed to be long enough, resulting in 1332 * bad things like IRQ lines being left asserted during final 1333 * device removal. to deal with this we call reset just prior 1334 * to finalizing the device, which will put the device back into 1335 * an 'idle' state, as the device cleanup code expects. 1336 */ 1337 pci_device_reset(PCI_DEVICE(dev)); 1338 object_unparent(OBJECT(dev)); 1339 } 1340 1341 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb, 1342 uint32_t busnr, 1343 int32_t devfn) 1344 { 1345 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1346 (phb->index << 16) | (busnr << 8) | devfn); 1347 } 1348 1349 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb, 1350 PCIDevice *pdev) 1351 { 1352 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 1353 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn); 1354 } 1355 1356 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 1357 PCIDevice *pdev) 1358 { 1359 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1360 1361 if (!drc) { 1362 return 0; 1363 } 1364 1365 return spapr_drc_index(drc); 1366 } 1367 1368 static void spapr_pci_plug(HotplugHandler *plug_handler, 1369 DeviceState *plugged_dev, Error **errp) 1370 { 1371 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1372 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1373 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1374 Error *local_err = NULL; 1375 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1376 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1377 void *fdt = NULL; 1378 int fdt_start_offset, fdt_size; 1379 1380 /* if DR is disabled we don't need to do anything in the case of 1381 * hotplug or coldplug callbacks 1382 */ 1383 if (!phb->dr_enabled) { 1384 /* if this is a hotplug operation initiated by the user 1385 * we need to let them know it's not enabled 1386 */ 1387 if (plugged_dev->hotplugged) { 1388 error_setg(&local_err, QERR_BUS_NO_HOTPLUG, 1389 object_get_typename(OBJECT(phb))); 1390 } 1391 goto out; 1392 } 1393 1394 g_assert(drc); 1395 1396 /* Following the QEMU convention used for PCIe multifunction 1397 * hotplug, we do not allow functions to be hotplugged to a 1398 * slot that already has function 0 present 1399 */ 1400 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1401 PCI_FUNC(pdev->devfn) != 0) { 1402 error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s," 1403 " additional functions can no longer be exposed to guest.", 1404 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1405 goto out; 1406 } 1407 1408 fdt = create_device_tree(&fdt_size); 1409 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0); 1410 1411 spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err); 1412 if (local_err) { 1413 goto out; 1414 } 1415 1416 /* If this is function 0, signal hotplug for all the device functions. 1417 * Otherwise defer sending the hotplug event. 1418 */ 1419 if (!spapr_drc_hotplugged(plugged_dev)) { 1420 spapr_drc_reset(drc); 1421 } else if (PCI_FUNC(pdev->devfn) == 0) { 1422 int i; 1423 1424 for (i = 0; i < 8; i++) { 1425 sPAPRDRConnector *func_drc; 1426 sPAPRDRConnectorClass *func_drck; 1427 sPAPRDREntitySense state; 1428 1429 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1430 PCI_DEVFN(slotnr, i)); 1431 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1432 state = func_drck->dr_entity_sense(func_drc); 1433 1434 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1435 spapr_hotplug_req_add_by_index(func_drc); 1436 } 1437 } 1438 } 1439 1440 out: 1441 if (local_err) { 1442 error_propagate(errp, local_err); 1443 g_free(fdt); 1444 } 1445 } 1446 1447 static void spapr_pci_unplug_request(HotplugHandler *plug_handler, 1448 DeviceState *plugged_dev, Error **errp) 1449 { 1450 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1451 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1452 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1453 1454 if (!phb->dr_enabled) { 1455 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1456 object_get_typename(OBJECT(phb))); 1457 return; 1458 } 1459 1460 g_assert(drc); 1461 g_assert(drc->dev == plugged_dev); 1462 1463 if (!spapr_drc_unplug_requested(drc)) { 1464 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1465 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1466 sPAPRDRConnector *func_drc; 1467 sPAPRDRConnectorClass *func_drck; 1468 sPAPRDREntitySense state; 1469 int i; 1470 1471 /* ensure any other present functions are pending unplug */ 1472 if (PCI_FUNC(pdev->devfn) == 0) { 1473 for (i = 1; i < 8; i++) { 1474 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1475 PCI_DEVFN(slotnr, i)); 1476 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1477 state = func_drck->dr_entity_sense(func_drc); 1478 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1479 && !spapr_drc_unplug_requested(func_drc)) { 1480 error_setg(errp, 1481 "PCI: slot %d, function %d still present. " 1482 "Must unplug all non-0 functions first.", 1483 slotnr, i); 1484 return; 1485 } 1486 } 1487 } 1488 1489 spapr_drc_detach(drc); 1490 1491 /* if this isn't func 0, defer unplug event. otherwise signal removal 1492 * for all present functions 1493 */ 1494 if (PCI_FUNC(pdev->devfn) == 0) { 1495 for (i = 7; i >= 0; i--) { 1496 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1497 PCI_DEVFN(slotnr, i)); 1498 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1499 state = func_drck->dr_entity_sense(func_drc); 1500 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1501 spapr_hotplug_req_remove_by_index(func_drc); 1502 } 1503 } 1504 } 1505 } 1506 } 1507 1508 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1509 { 1510 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1511 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1512 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 1513 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1514 char *namebuf; 1515 int i; 1516 PCIBus *bus; 1517 uint64_t msi_window_size = 4096; 1518 sPAPRTCETable *tcet; 1519 const unsigned windows_supported = 1520 sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1; 1521 1522 if (sphb->index != (uint32_t)-1) { 1523 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1524 Error *local_err = NULL; 1525 1526 smc->phb_placement(spapr, sphb->index, 1527 &sphb->buid, &sphb->io_win_addr, 1528 &sphb->mem_win_addr, &sphb->mem64_win_addr, 1529 windows_supported, sphb->dma_liobn, &local_err); 1530 if (local_err) { 1531 error_propagate(errp, local_err); 1532 return; 1533 } 1534 } else { 1535 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 1536 return; 1537 } 1538 1539 if (sphb->mem64_win_size != 0) { 1540 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1541 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1542 " (max 2 GiB)", sphb->mem_win_size); 1543 return; 1544 } 1545 1546 /* 64-bit window defaults to identity mapping */ 1547 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1548 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1549 /* 1550 * For compatibility with old configuration, if no 64-bit MMIO 1551 * window is specified, but the ordinary (32-bit) memory 1552 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1553 * window, with a 64-bit MMIO window following on immediately 1554 * afterwards 1555 */ 1556 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1557 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1558 sphb->mem64_win_pciaddr = 1559 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1560 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1561 } 1562 1563 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1564 error_setg(errp, "PCI host bridges must have unique BUIDs"); 1565 return; 1566 } 1567 1568 if (sphb->numa_node != -1 && 1569 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) { 1570 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1571 return; 1572 } 1573 1574 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1575 1576 /* Initialize memory regions */ 1577 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname); 1578 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1579 g_free(namebuf); 1580 1581 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname); 1582 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1583 namebuf, &sphb->memspace, 1584 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1585 g_free(namebuf); 1586 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1587 &sphb->mem32window); 1588 1589 if (sphb->mem64_win_size != 0) { 1590 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname); 1591 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1592 namebuf, &sphb->memspace, 1593 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1594 g_free(namebuf); 1595 1596 memory_region_add_subregion(get_system_memory(), 1597 sphb->mem64_win_addr, 1598 &sphb->mem64window); 1599 } 1600 1601 /* Initialize IO regions */ 1602 namebuf = g_strdup_printf("%s.io", sphb->dtbusname); 1603 memory_region_init(&sphb->iospace, OBJECT(sphb), 1604 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1605 g_free(namebuf); 1606 1607 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname); 1608 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1609 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1610 g_free(namebuf); 1611 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1612 &sphb->iowindow); 1613 1614 bus = pci_register_bus(dev, NULL, 1615 pci_spapr_set_irq, pci_spapr_map_irq, sphb, 1616 &sphb->memspace, &sphb->iospace, 1617 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); 1618 phb->bus = bus; 1619 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL); 1620 1621 /* 1622 * Initialize PHB address space. 1623 * By default there will be at least one subregion for default 1624 * 32bit DMA window. 1625 * Later the guest might want to create another DMA window 1626 * which will become another memory subregion. 1627 */ 1628 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname); 1629 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1630 namebuf, UINT64_MAX); 1631 g_free(namebuf); 1632 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1633 sphb->dtbusname); 1634 1635 /* 1636 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1637 * we need to allocate some memory to catch those writes coming 1638 * from msi_notify()/msix_notify(). 1639 * As MSIMessage:addr is going to be the same and MSIMessage:data 1640 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1641 * be used. 1642 * 1643 * For KVM we want to ensure that this memory is a full page so that 1644 * our memory slot is of page size granularity. 1645 */ 1646 #ifdef CONFIG_KVM 1647 if (kvm_enabled()) { 1648 msi_window_size = getpagesize(); 1649 } 1650 #endif 1651 1652 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, 1653 "msi", msi_window_size); 1654 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1655 &sphb->msiwindow); 1656 1657 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1658 1659 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1660 1661 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1662 1663 /* Initialize the LSI table */ 1664 for (i = 0; i < PCI_NUM_PINS; i++) { 1665 uint32_t irq; 1666 Error *local_err = NULL; 1667 1668 irq = spapr_ics_alloc_block(spapr->ics, 1, true, false, &local_err); 1669 if (local_err) { 1670 error_propagate(errp, local_err); 1671 error_prepend(errp, "can't allocate LSIs: "); 1672 return; 1673 } 1674 1675 sphb->lsi_table[i].irq = irq; 1676 } 1677 1678 /* allocate connectors for child PCI devices */ 1679 if (sphb->dr_enabled) { 1680 for (i = 0; i < PCI_SLOT_MAX * 8; i++) { 1681 spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI, 1682 (sphb->index << 16) | i); 1683 } 1684 } 1685 1686 /* DMA setup */ 1687 if (((sphb->page_size_mask & qemu_getrampagesize()) == 0) 1688 && kvm_enabled()) { 1689 error_report("System page size 0x%lx is not enabled in page_size_mask " 1690 "(0x%"PRIx64"). Performance may be slow", 1691 qemu_getrampagesize(), sphb->page_size_mask); 1692 } 1693 1694 for (i = 0; i < windows_supported; ++i) { 1695 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 1696 if (!tcet) { 1697 error_setg(errp, "Creating window#%d failed for %s", 1698 i, sphb->dtbusname); 1699 return; 1700 } 1701 memory_region_add_subregion(&sphb->iommu_root, 0, 1702 spapr_tce_get_iommu(tcet)); 1703 } 1704 1705 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); 1706 } 1707 1708 static int spapr_phb_children_reset(Object *child, void *opaque) 1709 { 1710 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 1711 1712 if (dev) { 1713 device_reset(dev); 1714 } 1715 1716 return 0; 1717 } 1718 1719 void spapr_phb_dma_reset(sPAPRPHBState *sphb) 1720 { 1721 int i; 1722 sPAPRTCETable *tcet; 1723 1724 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 1725 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1726 1727 if (tcet && tcet->nb_table) { 1728 spapr_tce_table_disable(tcet); 1729 } 1730 } 1731 1732 /* Register default 32bit DMA window */ 1733 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 1734 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 1735 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 1736 } 1737 1738 static void spapr_phb_reset(DeviceState *qdev) 1739 { 1740 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 1741 1742 spapr_phb_dma_reset(sphb); 1743 1744 /* Reset the IOMMU state */ 1745 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 1746 1747 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 1748 spapr_phb_vfio_reset(qdev); 1749 } 1750 } 1751 1752 static Property spapr_phb_properties[] = { 1753 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1), 1754 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, 1755 SPAPR_PCI_MEM32_WIN_SIZE), 1756 DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size, 1757 SPAPR_PCI_MEM64_WIN_SIZE), 1758 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, 1759 SPAPR_PCI_IO_WIN_SIZE), 1760 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled, 1761 true), 1762 /* Default DMA window is 0..1GB */ 1763 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0), 1764 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000), 1765 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr, 1766 0x800000000000000ULL), 1767 DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true), 1768 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask, 1769 (1ULL << 12) | (1ULL << 16)), 1770 DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1), 1771 DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState, 1772 pre_2_8_migration, false), 1773 DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState, 1774 pcie_ecs, true), 1775 DEFINE_PROP_END_OF_LIST(), 1776 }; 1777 1778 static const VMStateDescription vmstate_spapr_pci_lsi = { 1779 .name = "spapr_pci/lsi", 1780 .version_id = 1, 1781 .minimum_version_id = 1, 1782 .fields = (VMStateField[]) { 1783 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL), 1784 1785 VMSTATE_END_OF_LIST() 1786 }, 1787 }; 1788 1789 static const VMStateDescription vmstate_spapr_pci_msi = { 1790 .name = "spapr_pci/msi", 1791 .version_id = 1, 1792 .minimum_version_id = 1, 1793 .fields = (VMStateField []) { 1794 VMSTATE_UINT32(key, spapr_pci_msi_mig), 1795 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), 1796 VMSTATE_UINT32(value.num, spapr_pci_msi_mig), 1797 VMSTATE_END_OF_LIST() 1798 }, 1799 }; 1800 1801 static int spapr_pci_pre_save(void *opaque) 1802 { 1803 sPAPRPHBState *sphb = opaque; 1804 GHashTableIter iter; 1805 gpointer key, value; 1806 int i; 1807 1808 if (sphb->pre_2_8_migration) { 1809 sphb->mig_liobn = sphb->dma_liobn[0]; 1810 sphb->mig_mem_win_addr = sphb->mem_win_addr; 1811 sphb->mig_mem_win_size = sphb->mem_win_size; 1812 sphb->mig_io_win_addr = sphb->io_win_addr; 1813 sphb->mig_io_win_size = sphb->io_win_size; 1814 1815 if ((sphb->mem64_win_size != 0) 1816 && (sphb->mem64_win_addr 1817 == (sphb->mem_win_addr + sphb->mem_win_size))) { 1818 sphb->mig_mem_win_size += sphb->mem64_win_size; 1819 } 1820 } 1821 1822 g_free(sphb->msi_devs); 1823 sphb->msi_devs = NULL; 1824 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 1825 if (!sphb->msi_devs_num) { 1826 return 0; 1827 } 1828 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig)); 1829 1830 g_hash_table_iter_init(&iter, sphb->msi); 1831 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 1832 sphb->msi_devs[i].key = *(uint32_t *) key; 1833 sphb->msi_devs[i].value = *(spapr_pci_msi *) value; 1834 } 1835 1836 return 0; 1837 } 1838 1839 static int spapr_pci_post_load(void *opaque, int version_id) 1840 { 1841 sPAPRPHBState *sphb = opaque; 1842 gpointer key, value; 1843 int i; 1844 1845 for (i = 0; i < sphb->msi_devs_num; ++i) { 1846 key = g_memdup(&sphb->msi_devs[i].key, 1847 sizeof(sphb->msi_devs[i].key)); 1848 value = g_memdup(&sphb->msi_devs[i].value, 1849 sizeof(sphb->msi_devs[i].value)); 1850 g_hash_table_insert(sphb->msi, key, value); 1851 } 1852 g_free(sphb->msi_devs); 1853 sphb->msi_devs = NULL; 1854 sphb->msi_devs_num = 0; 1855 1856 return 0; 1857 } 1858 1859 static bool pre_2_8_migration(void *opaque, int version_id) 1860 { 1861 sPAPRPHBState *sphb = opaque; 1862 1863 return sphb->pre_2_8_migration; 1864 } 1865 1866 static const VMStateDescription vmstate_spapr_pci = { 1867 .name = "spapr_pci", 1868 .version_id = 2, 1869 .minimum_version_id = 2, 1870 .pre_save = spapr_pci_pre_save, 1871 .post_load = spapr_pci_post_load, 1872 .fields = (VMStateField[]) { 1873 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL), 1874 VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration), 1875 VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration), 1876 VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration), 1877 VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration), 1878 VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration), 1879 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, 1880 vmstate_spapr_pci_lsi, struct spapr_pci_lsi), 1881 VMSTATE_INT32(msi_devs_num, sPAPRPHBState), 1882 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0, 1883 vmstate_spapr_pci_msi, spapr_pci_msi_mig), 1884 VMSTATE_END_OF_LIST() 1885 }, 1886 }; 1887 1888 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 1889 PCIBus *rootbus) 1890 { 1891 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 1892 1893 return sphb->dtbusname; 1894 } 1895 1896 static void spapr_phb_class_init(ObjectClass *klass, void *data) 1897 { 1898 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 1899 DeviceClass *dc = DEVICE_CLASS(klass); 1900 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 1901 1902 hc->root_bus_path = spapr_phb_root_bus_path; 1903 dc->realize = spapr_phb_realize; 1904 dc->props = spapr_phb_properties; 1905 dc->reset = spapr_phb_reset; 1906 dc->vmsd = &vmstate_spapr_pci; 1907 /* Supported by TYPE_SPAPR_MACHINE */ 1908 dc->user_creatable = true; 1909 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1910 hp->plug = spapr_pci_plug; 1911 hp->unplug_request = spapr_pci_unplug_request; 1912 } 1913 1914 static const TypeInfo spapr_phb_info = { 1915 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 1916 .parent = TYPE_PCI_HOST_BRIDGE, 1917 .instance_size = sizeof(sPAPRPHBState), 1918 .class_init = spapr_phb_class_init, 1919 .interfaces = (InterfaceInfo[]) { 1920 { TYPE_HOTPLUG_HANDLER }, 1921 { } 1922 } 1923 }; 1924 1925 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index) 1926 { 1927 DeviceState *dev; 1928 1929 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 1930 qdev_prop_set_uint32(dev, "index", index); 1931 qdev_init_nofail(dev); 1932 1933 return PCI_HOST_BRIDGE(dev); 1934 } 1935 1936 typedef struct sPAPRFDT { 1937 void *fdt; 1938 int node_off; 1939 sPAPRPHBState *sphb; 1940 } sPAPRFDT; 1941 1942 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev, 1943 void *opaque) 1944 { 1945 PCIBus *sec_bus; 1946 sPAPRFDT *p = opaque; 1947 int offset; 1948 sPAPRFDT s_fdt; 1949 1950 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off); 1951 if (!offset) { 1952 error_report("Failed to create pci child device tree node"); 1953 return; 1954 } 1955 1956 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 1957 PCI_HEADER_TYPE_BRIDGE)) { 1958 return; 1959 } 1960 1961 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 1962 if (!sec_bus) { 1963 return; 1964 } 1965 1966 s_fdt.fdt = p->fdt; 1967 s_fdt.node_off = offset; 1968 s_fdt.sphb = p->sphb; 1969 pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus), 1970 spapr_populate_pci_devices_dt, 1971 &s_fdt); 1972 } 1973 1974 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 1975 void *opaque) 1976 { 1977 unsigned int *bus_no = opaque; 1978 unsigned int primary = *bus_no; 1979 unsigned int subordinate = 0xff; 1980 PCIBus *sec_bus = NULL; 1981 1982 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 1983 PCI_HEADER_TYPE_BRIDGE)) { 1984 return; 1985 } 1986 1987 (*bus_no)++; 1988 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1); 1989 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 1990 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 1991 1992 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 1993 if (!sec_bus) { 1994 return; 1995 } 1996 1997 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1); 1998 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 1999 spapr_phb_pci_enumerate_bridge, bus_no); 2000 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2001 } 2002 2003 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb) 2004 { 2005 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2006 unsigned int bus_no = 0; 2007 2008 pci_for_each_device(bus, pci_bus_num(bus), 2009 spapr_phb_pci_enumerate_bridge, 2010 &bus_no); 2011 2012 } 2013 2014 int spapr_populate_pci_dt(sPAPRPHBState *phb, 2015 uint32_t xics_phandle, 2016 void *fdt) 2017 { 2018 int bus_off, i, j, ret; 2019 gchar *nodename; 2020 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 2021 struct { 2022 uint32_t hi; 2023 uint64_t child; 2024 uint64_t parent; 2025 uint64_t size; 2026 } QEMU_PACKED ranges[] = { 2027 { 2028 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 2029 cpu_to_be64(phb->io_win_addr), 2030 cpu_to_be64(memory_region_size(&phb->iospace)), 2031 }, 2032 { 2033 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 2034 cpu_to_be64(phb->mem_win_addr), 2035 cpu_to_be64(phb->mem_win_size), 2036 }, 2037 { 2038 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 2039 cpu_to_be64(phb->mem64_win_addr), 2040 cpu_to_be64(phb->mem64_win_size), 2041 }, 2042 }; 2043 const unsigned sizeof_ranges = 2044 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 2045 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 2046 uint32_t interrupt_map_mask[] = { 2047 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 2048 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 2049 uint32_t ddw_applicable[] = { 2050 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 2051 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 2052 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 2053 }; 2054 uint32_t ddw_extensions[] = { 2055 cpu_to_be32(1), 2056 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) 2057 }; 2058 uint32_t associativity[] = {cpu_to_be32(0x4), 2059 cpu_to_be32(0x0), 2060 cpu_to_be32(0x0), 2061 cpu_to_be32(0x0), 2062 cpu_to_be32(phb->numa_node)}; 2063 sPAPRTCETable *tcet; 2064 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2065 sPAPRFDT s_fdt; 2066 2067 /* Start populating the FDT */ 2068 nodename = g_strdup_printf("pci@%" PRIx64, phb->buid); 2069 _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename)); 2070 g_free(nodename); 2071 2072 /* Write PHB properties */ 2073 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 2074 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 2075 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); 2076 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); 2077 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 2078 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 2079 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 2080 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 2081 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 2082 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 2083 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR)); 2084 2085 /* Dynamic DMA window */ 2086 if (phb->ddw_enabled) { 2087 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 2088 sizeof(ddw_applicable))); 2089 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 2090 &ddw_extensions, sizeof(ddw_extensions))); 2091 } 2092 2093 /* Advertise NUMA via ibm,associativity */ 2094 if (phb->numa_node != -1) { 2095 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity, 2096 sizeof(associativity))); 2097 } 2098 2099 /* Build the interrupt-map, this must matches what is done 2100 * in pci_spapr_map_irq 2101 */ 2102 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 2103 &interrupt_map_mask, sizeof(interrupt_map_mask))); 2104 for (i = 0; i < PCI_SLOT_MAX; i++) { 2105 for (j = 0; j < PCI_NUM_PINS; j++) { 2106 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 2107 int lsi_num = pci_spapr_swizzle(i, j); 2108 2109 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 2110 irqmap[1] = 0; 2111 irqmap[2] = 0; 2112 irqmap[3] = cpu_to_be32(j+1); 2113 irqmap[4] = cpu_to_be32(xics_phandle); 2114 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); 2115 irqmap[6] = cpu_to_be32(0x8); 2116 } 2117 } 2118 /* Write interrupt map */ 2119 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 2120 sizeof(interrupt_map))); 2121 2122 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 2123 if (!tcet) { 2124 return -1; 2125 } 2126 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 2127 tcet->liobn, tcet->bus_offset, 2128 tcet->nb_table << tcet->page_shift); 2129 2130 /* Walk the bridges and program the bus numbers*/ 2131 spapr_phb_pci_enumerate(phb); 2132 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 2133 2134 /* Populate tree nodes with PCI devices attached */ 2135 s_fdt.fdt = fdt; 2136 s_fdt.node_off = bus_off; 2137 s_fdt.sphb = phb; 2138 pci_for_each_device_reverse(bus, pci_bus_num(bus), 2139 spapr_populate_pci_devices_dt, 2140 &s_fdt); 2141 2142 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb), 2143 SPAPR_DR_CONNECTOR_TYPE_PCI); 2144 if (ret) { 2145 return ret; 2146 } 2147 2148 return 0; 2149 } 2150 2151 void spapr_pci_rtas_init(void) 2152 { 2153 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 2154 rtas_read_pci_config); 2155 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 2156 rtas_write_pci_config); 2157 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 2158 rtas_ibm_read_pci_config); 2159 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 2160 rtas_ibm_write_pci_config); 2161 if (msi_nonbroken) { 2162 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 2163 "ibm,query-interrupt-source-number", 2164 rtas_ibm_query_interrupt_source_number); 2165 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 2166 rtas_ibm_change_msi); 2167 } 2168 2169 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 2170 "ibm,set-eeh-option", 2171 rtas_ibm_set_eeh_option); 2172 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 2173 "ibm,get-config-addr-info2", 2174 rtas_ibm_get_config_addr_info2); 2175 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 2176 "ibm,read-slot-reset-state2", 2177 rtas_ibm_read_slot_reset_state2); 2178 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 2179 "ibm,set-slot-reset", 2180 rtas_ibm_set_slot_reset); 2181 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 2182 "ibm,configure-pe", 2183 rtas_ibm_configure_pe); 2184 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 2185 "ibm,slot-error-detail", 2186 rtas_ibm_slot_error_detail); 2187 } 2188 2189 static void spapr_pci_register_types(void) 2190 { 2191 type_register_static(&spapr_phb_info); 2192 } 2193 2194 type_init(spapr_pci_register_types) 2195 2196 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 2197 { 2198 bool be = *(bool *)opaque; 2199 2200 if (object_dynamic_cast(OBJECT(dev), "VGA") 2201 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) { 2202 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer", 2203 &error_abort); 2204 } 2205 return 0; 2206 } 2207 2208 void spapr_pci_switch_vga(bool big_endian) 2209 { 2210 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 2211 sPAPRPHBState *sphb; 2212 2213 /* 2214 * For backward compatibility with existing guests, we switch 2215 * the endianness of the VGA controller when changing the guest 2216 * interrupt mode 2217 */ 2218 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2219 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2220 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2221 &big_endian); 2222 } 2223 } 2224