1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qapi/error.h" 28 #include "cpu.h" 29 #include "hw/irq.h" 30 #include "hw/sysbus.h" 31 #include "migration/vmstate.h" 32 #include "hw/pci/pci.h" 33 #include "hw/pci/msi.h" 34 #include "hw/pci/msix.h" 35 #include "hw/pci/pci_host.h" 36 #include "hw/ppc/spapr.h" 37 #include "hw/pci-host/spapr.h" 38 #include "exec/address-spaces.h" 39 #include "exec/ram_addr.h" 40 #include <libfdt.h> 41 #include "trace.h" 42 #include "qemu/error-report.h" 43 #include "qemu/module.h" 44 #include "qapi/qmp/qerror.h" 45 #include "hw/ppc/fdt.h" 46 #include "hw/pci/pci_bridge.h" 47 #include "hw/pci/pci_bus.h" 48 #include "hw/pci/pci_ids.h" 49 #include "hw/ppc/spapr_drc.h" 50 #include "hw/qdev-properties.h" 51 #include "sysemu/device_tree.h" 52 #include "sysemu/kvm.h" 53 #include "sysemu/hostmem.h" 54 #include "sysemu/numa.h" 55 #include "hw/ppc/spapr_numa.h" 56 #include "qemu/log.h" 57 58 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 59 #define RTAS_QUERY_FN 0 60 #define RTAS_CHANGE_FN 1 61 #define RTAS_RESET_FN 2 62 #define RTAS_CHANGE_MSI_FN 3 63 #define RTAS_CHANGE_MSIX_FN 4 64 65 /* Interrupt types to return on RTAS_CHANGE_* */ 66 #define RTAS_TYPE_MSI 1 67 #define RTAS_TYPE_MSIX 2 68 69 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid) 70 { 71 SpaprPhbState *sphb; 72 73 QLIST_FOREACH(sphb, &spapr->phbs, list) { 74 if (sphb->buid != buid) { 75 continue; 76 } 77 return sphb; 78 } 79 80 return NULL; 81 } 82 83 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid, 84 uint32_t config_addr) 85 { 86 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid); 87 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 88 int bus_num = (config_addr >> 16) & 0xFF; 89 int devfn = (config_addr >> 8) & 0xFF; 90 91 if (!phb) { 92 return NULL; 93 } 94 95 return pci_find_device(phb->bus, bus_num, devfn); 96 } 97 98 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 99 { 100 /* This handles the encoding of extended config space addresses */ 101 return ((arg >> 20) & 0xf00) | (arg & 0xff); 102 } 103 104 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid, 105 uint32_t addr, uint32_t size, 106 target_ulong rets) 107 { 108 PCIDevice *pci_dev; 109 uint32_t val; 110 111 if ((size != 1) && (size != 2) && (size != 4)) { 112 /* access must be 1, 2 or 4 bytes */ 113 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 114 return; 115 } 116 117 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 118 addr = rtas_pci_cfgaddr(addr); 119 120 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 121 /* Access must be to a valid device, within bounds and 122 * naturally aligned */ 123 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 124 return; 125 } 126 127 val = pci_host_config_read_common(pci_dev, addr, 128 pci_config_size(pci_dev), size); 129 130 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 131 rtas_st(rets, 1, val); 132 } 133 134 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 135 uint32_t token, uint32_t nargs, 136 target_ulong args, 137 uint32_t nret, target_ulong rets) 138 { 139 uint64_t buid; 140 uint32_t size, addr; 141 142 if ((nargs != 4) || (nret != 2)) { 143 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 144 return; 145 } 146 147 buid = rtas_ldq(args, 1); 148 size = rtas_ld(args, 3); 149 addr = rtas_ld(args, 0); 150 151 finish_read_pci_config(spapr, buid, addr, size, rets); 152 } 153 154 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 155 uint32_t token, uint32_t nargs, 156 target_ulong args, 157 uint32_t nret, target_ulong rets) 158 { 159 uint32_t size, addr; 160 161 if ((nargs != 2) || (nret != 2)) { 162 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 163 return; 164 } 165 166 size = rtas_ld(args, 1); 167 addr = rtas_ld(args, 0); 168 169 finish_read_pci_config(spapr, 0, addr, size, rets); 170 } 171 172 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid, 173 uint32_t addr, uint32_t size, 174 uint32_t val, target_ulong rets) 175 { 176 PCIDevice *pci_dev; 177 178 if ((size != 1) && (size != 2) && (size != 4)) { 179 /* access must be 1, 2 or 4 bytes */ 180 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 181 return; 182 } 183 184 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 185 addr = rtas_pci_cfgaddr(addr); 186 187 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 188 /* Access must be to a valid device, within bounds and 189 * naturally aligned */ 190 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 191 return; 192 } 193 194 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 195 val, size); 196 197 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 198 } 199 200 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 201 uint32_t token, uint32_t nargs, 202 target_ulong args, 203 uint32_t nret, target_ulong rets) 204 { 205 uint64_t buid; 206 uint32_t val, size, addr; 207 208 if ((nargs != 5) || (nret != 1)) { 209 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 210 return; 211 } 212 213 buid = rtas_ldq(args, 1); 214 val = rtas_ld(args, 4); 215 size = rtas_ld(args, 3); 216 addr = rtas_ld(args, 0); 217 218 finish_write_pci_config(spapr, buid, addr, size, val, rets); 219 } 220 221 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr, 222 uint32_t token, uint32_t nargs, 223 target_ulong args, 224 uint32_t nret, target_ulong rets) 225 { 226 uint32_t val, size, addr; 227 228 if ((nargs != 3) || (nret != 1)) { 229 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 230 return; 231 } 232 233 234 val = rtas_ld(args, 2); 235 size = rtas_ld(args, 1); 236 addr = rtas_ld(args, 0); 237 238 finish_write_pci_config(spapr, 0, addr, size, val, rets); 239 } 240 241 /* 242 * Set MSI/MSIX message data. 243 * This is required for msi_notify()/msix_notify() which 244 * will write at the addresses via spapr_msi_write(). 245 * 246 * If hwaddr == 0, all entries will have .data == first_irq i.e. 247 * table will be reset. 248 */ 249 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 250 unsigned first_irq, unsigned req_num) 251 { 252 unsigned i; 253 MSIMessage msg = { .address = addr, .data = first_irq }; 254 255 if (!msix) { 256 msi_set_message(pdev, msg); 257 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 258 return; 259 } 260 261 for (i = 0; i < req_num; ++i) { 262 msix_set_message(pdev, i, msg); 263 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 264 if (addr) { 265 ++msg.data; 266 } 267 } 268 } 269 270 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr, 271 uint32_t token, uint32_t nargs, 272 target_ulong args, uint32_t nret, 273 target_ulong rets) 274 { 275 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 276 uint32_t config_addr = rtas_ld(args, 0); 277 uint64_t buid = rtas_ldq(args, 1); 278 unsigned int func = rtas_ld(args, 3); 279 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 280 unsigned int seq_num = rtas_ld(args, 5); 281 unsigned int ret_intr_type; 282 unsigned int irq, max_irqs = 0; 283 SpaprPhbState *phb = NULL; 284 PCIDevice *pdev = NULL; 285 SpaprPciMsi *msi; 286 int *config_addr_key; 287 Error *err = NULL; 288 int i; 289 290 /* Fins SpaprPhbState */ 291 phb = spapr_pci_find_phb(spapr, buid); 292 if (phb) { 293 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 294 } 295 if (!phb || !pdev) { 296 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 297 return; 298 } 299 300 switch (func) { 301 case RTAS_CHANGE_FN: 302 if (msi_present(pdev)) { 303 ret_intr_type = RTAS_TYPE_MSI; 304 } else if (msix_present(pdev)) { 305 ret_intr_type = RTAS_TYPE_MSIX; 306 } else { 307 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 308 return; 309 } 310 break; 311 case RTAS_CHANGE_MSI_FN: 312 if (msi_present(pdev)) { 313 ret_intr_type = RTAS_TYPE_MSI; 314 } else { 315 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 316 return; 317 } 318 break; 319 case RTAS_CHANGE_MSIX_FN: 320 if (msix_present(pdev)) { 321 ret_intr_type = RTAS_TYPE_MSIX; 322 } else { 323 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 324 return; 325 } 326 break; 327 default: 328 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 329 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 330 return; 331 } 332 333 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr); 334 335 /* Releasing MSIs */ 336 if (!req_num) { 337 if (!msi) { 338 trace_spapr_pci_msi("Releasing wrong config", config_addr); 339 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 340 return; 341 } 342 343 if (msi_present(pdev)) { 344 spapr_msi_setmsg(pdev, 0, false, 0, 0); 345 } 346 if (msix_present(pdev)) { 347 spapr_msi_setmsg(pdev, 0, true, 0, 0); 348 } 349 g_hash_table_remove(phb->msi, &config_addr); 350 351 trace_spapr_pci_msi("Released MSIs", config_addr); 352 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 353 rtas_st(rets, 1, 0); 354 return; 355 } 356 357 /* Enabling MSI */ 358 359 /* Check if the device supports as many IRQs as requested */ 360 if (ret_intr_type == RTAS_TYPE_MSI) { 361 max_irqs = msi_nr_vectors_allocated(pdev); 362 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 363 max_irqs = pdev->msix_entries_nr; 364 } 365 if (!max_irqs) { 366 error_report("Requested interrupt type %d is not enabled for device %x", 367 ret_intr_type, config_addr); 368 rtas_st(rets, 0, -1); /* Hardware error */ 369 return; 370 } 371 /* Correct the number if the guest asked for too many */ 372 if (req_num > max_irqs) { 373 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 374 req_num = max_irqs; 375 irq = 0; /* to avoid misleading trace */ 376 goto out; 377 } 378 379 /* Allocate MSIs */ 380 if (smc->legacy_irq_allocation) { 381 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI, 382 &err); 383 } else { 384 irq = spapr_irq_msi_alloc(spapr, req_num, 385 ret_intr_type == RTAS_TYPE_MSI, &err); 386 } 387 if (err) { 388 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 389 config_addr); 390 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 391 return; 392 } 393 394 for (i = 0; i < req_num; i++) { 395 spapr_irq_claim(spapr, irq + i, false, &err); 396 if (err) { 397 if (i) { 398 spapr_irq_free(spapr, irq, i); 399 } 400 if (!smc->legacy_irq_allocation) { 401 spapr_irq_msi_free(spapr, irq, req_num); 402 } 403 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 404 config_addr); 405 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 406 return; 407 } 408 } 409 410 /* Release previous MSIs */ 411 if (msi) { 412 g_hash_table_remove(phb->msi, &config_addr); 413 } 414 415 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 416 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 417 irq, req_num); 418 419 /* Add MSI device to cache */ 420 msi = g_new(SpaprPciMsi, 1); 421 msi->first_irq = irq; 422 msi->num = req_num; 423 config_addr_key = g_new(int, 1); 424 *config_addr_key = config_addr; 425 g_hash_table_insert(phb->msi, config_addr_key, msi); 426 427 out: 428 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 429 rtas_st(rets, 1, req_num); 430 rtas_st(rets, 2, ++seq_num); 431 if (nret > 3) { 432 rtas_st(rets, 3, ret_intr_type); 433 } 434 435 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 436 } 437 438 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 439 SpaprMachineState *spapr, 440 uint32_t token, 441 uint32_t nargs, 442 target_ulong args, 443 uint32_t nret, 444 target_ulong rets) 445 { 446 uint32_t config_addr = rtas_ld(args, 0); 447 uint64_t buid = rtas_ldq(args, 1); 448 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 449 SpaprPhbState *phb = NULL; 450 PCIDevice *pdev = NULL; 451 SpaprPciMsi *msi; 452 453 /* Find SpaprPhbState */ 454 phb = spapr_pci_find_phb(spapr, buid); 455 if (phb) { 456 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 457 } 458 if (!phb || !pdev) { 459 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 460 return; 461 } 462 463 /* Find device descriptor and start IRQ */ 464 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr); 465 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 466 trace_spapr_pci_msi("Failed to return vector", config_addr); 467 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 468 return; 469 } 470 intr_src_num = msi->first_irq + ioa_intr_num; 471 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 472 intr_src_num); 473 474 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 475 rtas_st(rets, 1, intr_src_num); 476 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 477 } 478 479 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 480 SpaprMachineState *spapr, 481 uint32_t token, uint32_t nargs, 482 target_ulong args, uint32_t nret, 483 target_ulong rets) 484 { 485 SpaprPhbState *sphb; 486 uint32_t addr, option; 487 uint64_t buid; 488 int ret; 489 490 if ((nargs != 4) || (nret != 1)) { 491 goto param_error_exit; 492 } 493 494 buid = rtas_ldq(args, 1); 495 addr = rtas_ld(args, 0); 496 option = rtas_ld(args, 3); 497 498 sphb = spapr_pci_find_phb(spapr, buid); 499 if (!sphb) { 500 goto param_error_exit; 501 } 502 503 if (!spapr_phb_eeh_available(sphb)) { 504 goto param_error_exit; 505 } 506 507 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 508 rtas_st(rets, 0, ret); 509 return; 510 511 param_error_exit: 512 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 513 } 514 515 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 516 SpaprMachineState *spapr, 517 uint32_t token, uint32_t nargs, 518 target_ulong args, uint32_t nret, 519 target_ulong rets) 520 { 521 SpaprPhbState *sphb; 522 PCIDevice *pdev; 523 uint32_t addr, option; 524 uint64_t buid; 525 526 if ((nargs != 4) || (nret != 2)) { 527 goto param_error_exit; 528 } 529 530 buid = rtas_ldq(args, 1); 531 sphb = spapr_pci_find_phb(spapr, buid); 532 if (!sphb) { 533 goto param_error_exit; 534 } 535 536 if (!spapr_phb_eeh_available(sphb)) { 537 goto param_error_exit; 538 } 539 540 /* 541 * We always have PE address of form "00BB0001". "BB" 542 * represents the bus number of PE's primary bus. 543 */ 544 option = rtas_ld(args, 3); 545 switch (option) { 546 case RTAS_GET_PE_ADDR: 547 addr = rtas_ld(args, 0); 548 pdev = spapr_pci_find_dev(spapr, buid, addr); 549 if (!pdev) { 550 goto param_error_exit; 551 } 552 553 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1); 554 break; 555 case RTAS_GET_PE_MODE: 556 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 557 break; 558 default: 559 goto param_error_exit; 560 } 561 562 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 563 return; 564 565 param_error_exit: 566 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 567 } 568 569 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 570 SpaprMachineState *spapr, 571 uint32_t token, uint32_t nargs, 572 target_ulong args, uint32_t nret, 573 target_ulong rets) 574 { 575 SpaprPhbState *sphb; 576 uint64_t buid; 577 int state, ret; 578 579 if ((nargs != 3) || (nret != 4 && nret != 5)) { 580 goto param_error_exit; 581 } 582 583 buid = rtas_ldq(args, 1); 584 sphb = spapr_pci_find_phb(spapr, buid); 585 if (!sphb) { 586 goto param_error_exit; 587 } 588 589 if (!spapr_phb_eeh_available(sphb)) { 590 goto param_error_exit; 591 } 592 593 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 594 rtas_st(rets, 0, ret); 595 if (ret != RTAS_OUT_SUCCESS) { 596 return; 597 } 598 599 rtas_st(rets, 1, state); 600 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 601 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 602 if (nret >= 5) { 603 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 604 } 605 return; 606 607 param_error_exit: 608 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 609 } 610 611 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 612 SpaprMachineState *spapr, 613 uint32_t token, uint32_t nargs, 614 target_ulong args, uint32_t nret, 615 target_ulong rets) 616 { 617 SpaprPhbState *sphb; 618 uint32_t option; 619 uint64_t buid; 620 int ret; 621 622 if ((nargs != 4) || (nret != 1)) { 623 goto param_error_exit; 624 } 625 626 buid = rtas_ldq(args, 1); 627 option = rtas_ld(args, 3); 628 sphb = spapr_pci_find_phb(spapr, buid); 629 if (!sphb) { 630 goto param_error_exit; 631 } 632 633 if (!spapr_phb_eeh_available(sphb)) { 634 goto param_error_exit; 635 } 636 637 ret = spapr_phb_vfio_eeh_reset(sphb, option); 638 rtas_st(rets, 0, ret); 639 return; 640 641 param_error_exit: 642 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 643 } 644 645 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 646 SpaprMachineState *spapr, 647 uint32_t token, uint32_t nargs, 648 target_ulong args, uint32_t nret, 649 target_ulong rets) 650 { 651 SpaprPhbState *sphb; 652 uint64_t buid; 653 int ret; 654 655 if ((nargs != 3) || (nret != 1)) { 656 goto param_error_exit; 657 } 658 659 buid = rtas_ldq(args, 1); 660 sphb = spapr_pci_find_phb(spapr, buid); 661 if (!sphb) { 662 goto param_error_exit; 663 } 664 665 if (!spapr_phb_eeh_available(sphb)) { 666 goto param_error_exit; 667 } 668 669 ret = spapr_phb_vfio_eeh_configure(sphb); 670 rtas_st(rets, 0, ret); 671 return; 672 673 param_error_exit: 674 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 675 } 676 677 /* To support it later */ 678 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 679 SpaprMachineState *spapr, 680 uint32_t token, uint32_t nargs, 681 target_ulong args, uint32_t nret, 682 target_ulong rets) 683 { 684 SpaprPhbState *sphb; 685 int option; 686 uint64_t buid; 687 688 if ((nargs != 8) || (nret != 1)) { 689 goto param_error_exit; 690 } 691 692 buid = rtas_ldq(args, 1); 693 sphb = spapr_pci_find_phb(spapr, buid); 694 if (!sphb) { 695 goto param_error_exit; 696 } 697 698 if (!spapr_phb_eeh_available(sphb)) { 699 goto param_error_exit; 700 } 701 702 option = rtas_ld(args, 7); 703 switch (option) { 704 case RTAS_SLOT_TEMP_ERR_LOG: 705 case RTAS_SLOT_PERM_ERR_LOG: 706 break; 707 default: 708 goto param_error_exit; 709 } 710 711 /* We don't have error log yet */ 712 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 713 return; 714 715 param_error_exit: 716 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 717 } 718 719 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 720 { 721 /* 722 * Here we use the number returned by pci_swizzle_map_irq_fn to find a 723 * corresponding qemu_irq. 724 */ 725 SpaprPhbState *phb = opaque; 726 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 727 728 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 729 qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level); 730 } 731 732 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 733 { 734 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 735 PCIINTxRoute route; 736 737 route.mode = PCI_INTX_ENABLED; 738 route.irq = sphb->lsi_table[pin].irq; 739 740 return route; 741 } 742 743 static uint64_t spapr_msi_read(void *opaque, hwaddr addr, unsigned size) 744 { 745 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__); 746 return 0; 747 } 748 749 /* 750 * MSI/MSIX memory region implementation. 751 * The handler handles both MSI and MSIX. 752 * The vector number is encoded in least bits in data. 753 */ 754 static void spapr_msi_write(void *opaque, hwaddr addr, 755 uint64_t data, unsigned size) 756 { 757 SpaprMachineState *spapr = opaque; 758 uint32_t irq = data; 759 760 trace_spapr_pci_msi_write(addr, data, irq); 761 762 qemu_irq_pulse(spapr_qirq(spapr, irq)); 763 } 764 765 static const MemoryRegionOps spapr_msi_ops = { 766 /* 767 * .read result is undefined by PCI spec. 768 * define .read method to avoid assert failure in memory_region_init_io 769 */ 770 .read = spapr_msi_read, 771 .write = spapr_msi_write, 772 .endianness = DEVICE_LITTLE_ENDIAN 773 }; 774 775 /* 776 * PHB PCI device 777 */ 778 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 779 { 780 SpaprPhbState *phb = opaque; 781 782 return &phb->iommu_as; 783 } 784 785 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 786 { 787 char *path = NULL, *buf = NULL, *host = NULL; 788 789 /* Get the PCI VFIO host id */ 790 host = object_property_get_str(OBJECT(pdev), "host", NULL); 791 if (!host) { 792 goto err_out; 793 } 794 795 /* Construct the path of the file that will give us the DT location */ 796 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 797 g_free(host); 798 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 799 goto err_out; 800 } 801 g_free(path); 802 803 /* Construct and read from host device tree the loc-code */ 804 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); 805 g_free(buf); 806 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 807 goto err_out; 808 } 809 return buf; 810 811 err_out: 812 g_free(path); 813 return NULL; 814 } 815 816 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev) 817 { 818 char *buf; 819 const char *devtype = "qemu"; 820 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 821 822 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 823 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 824 if (buf) { 825 return buf; 826 } 827 devtype = "vfio"; 828 } 829 /* 830 * For emulated devices and VFIO-failure case, make up 831 * the loc-code. 832 */ 833 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 834 devtype, pdev->name, sphb->index, busnr, 835 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 836 return buf; 837 } 838 839 /* Macros to operate with address in OF binding to PCI */ 840 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 841 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 842 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 843 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 844 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 845 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 846 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 847 #define b_fff(x) b_x((x), 8, 3) /* function number */ 848 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 849 850 /* for 'reg' OF properties */ 851 #define RESOURCE_CELLS_SIZE 2 852 #define RESOURCE_CELLS_ADDRESS 3 853 854 typedef struct ResourceFields { 855 uint32_t phys_hi; 856 uint32_t phys_mid; 857 uint32_t phys_lo; 858 uint32_t size_hi; 859 uint32_t size_lo; 860 } QEMU_PACKED ResourceFields; 861 862 typedef struct ResourceProps { 863 ResourceFields reg[8]; 864 uint32_t reg_len; 865 } ResourceProps; 866 867 /* fill in the 'reg' OF properties for 868 * a PCI device. 'reg' describes resource requirements for a 869 * device's IO/MEM regions. 870 * 871 * the property is an array of ('phys-addr', 'size') pairs describing 872 * the addressable regions of the PCI device, where 'phys-addr' is a 873 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 874 * (phys.hi, phys.mid, phys.lo), and 'size' is a 875 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 876 * 877 * phys.hi = 0xYYXXXXZZ, where: 878 * 0xYY = npt000ss 879 * ||| | 880 * ||| +-- space code 881 * ||| | 882 * ||| + 00 if configuration space 883 * ||| + 01 if IO region, 884 * ||| + 10 if 32-bit MEM region 885 * ||| + 11 if 64-bit MEM region 886 * ||| 887 * ||+------ for non-relocatable IO: 1 if aliased 888 * || for relocatable IO: 1 if below 64KB 889 * || for MEM: 1 if below 1MB 890 * |+------- 1 if region is prefetchable 891 * +-------- 1 if region is non-relocatable 892 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 893 * bits respectively 894 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 895 * to the region 896 * 897 * phys.mid and phys.lo correspond respectively to the hi/lo portions 898 * of the actual address of the region. 899 * 900 * note also that addresses defined in this property are, at least 901 * for PAPR guests, relative to the PHBs IO/MEM windows, and 902 * correspond directly to the addresses in the BARs. 903 * 904 * in accordance with PCI Bus Binding to Open Firmware, 905 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 906 * Appendix C. 907 */ 908 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 909 { 910 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 911 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 912 b_ddddd(PCI_SLOT(d->devfn)) | 913 b_fff(PCI_FUNC(d->devfn))); 914 ResourceFields *reg; 915 int i, reg_idx = 0; 916 917 /* config space region */ 918 reg = &rp->reg[reg_idx++]; 919 reg->phys_hi = cpu_to_be32(dev_id); 920 reg->phys_mid = 0; 921 reg->phys_lo = 0; 922 reg->size_hi = 0; 923 reg->size_lo = 0; 924 925 for (i = 0; i < PCI_NUM_REGIONS; i++) { 926 if (!d->io_regions[i].size) { 927 continue; 928 } 929 930 reg = &rp->reg[reg_idx++]; 931 932 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 933 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 934 reg->phys_hi |= cpu_to_be32(b_ss(1)); 935 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 936 reg->phys_hi |= cpu_to_be32(b_ss(3)); 937 } else { 938 reg->phys_hi |= cpu_to_be32(b_ss(2)); 939 } 940 reg->phys_mid = 0; 941 reg->phys_lo = 0; 942 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 943 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 944 } 945 946 rp->reg_len = reg_idx * sizeof(ResourceFields); 947 } 948 949 typedef struct PCIClass PCIClass; 950 typedef struct PCISubClass PCISubClass; 951 typedef struct PCIIFace PCIIFace; 952 953 struct PCIIFace { 954 int iface; 955 const char *name; 956 }; 957 958 struct PCISubClass { 959 int subclass; 960 const char *name; 961 const PCIIFace *iface; 962 }; 963 964 struct PCIClass { 965 const char *name; 966 const PCISubClass *subc; 967 }; 968 969 static const PCISubClass undef_subclass[] = { 970 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, 971 { 0xFF, NULL, NULL }, 972 }; 973 974 static const PCISubClass mass_subclass[] = { 975 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, 976 { PCI_CLASS_STORAGE_IDE, "ide", NULL }, 977 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, 978 { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, 979 { PCI_CLASS_STORAGE_RAID, "raid", NULL }, 980 { PCI_CLASS_STORAGE_ATA, "ata", NULL }, 981 { PCI_CLASS_STORAGE_SATA, "sata", NULL }, 982 { PCI_CLASS_STORAGE_SAS, "sas", NULL }, 983 { 0xFF, NULL, NULL }, 984 }; 985 986 static const PCISubClass net_subclass[] = { 987 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, 988 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, 989 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, 990 { PCI_CLASS_NETWORK_ATM, "atm", NULL }, 991 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, 992 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, 993 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, 994 { 0xFF, NULL, NULL }, 995 }; 996 997 static const PCISubClass displ_subclass[] = { 998 { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, 999 { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, 1000 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, 1001 { 0xFF, NULL, NULL }, 1002 }; 1003 1004 static const PCISubClass media_subclass[] = { 1005 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, 1006 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, 1007 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, 1008 { 0xFF, NULL, NULL }, 1009 }; 1010 1011 static const PCISubClass mem_subclass[] = { 1012 { PCI_CLASS_MEMORY_RAM, "memory", NULL }, 1013 { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, 1014 { 0xFF, NULL, NULL }, 1015 }; 1016 1017 static const PCISubClass bridg_subclass[] = { 1018 { PCI_CLASS_BRIDGE_HOST, "host", NULL }, 1019 { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, 1020 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, 1021 { PCI_CLASS_BRIDGE_MC, "mca", NULL }, 1022 { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, 1023 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, 1024 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, 1025 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, 1026 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, 1027 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, 1028 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, 1029 { 0xFF, NULL, NULL }, 1030 }; 1031 1032 static const PCISubClass comm_subclass[] = { 1033 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, 1034 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, 1035 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, 1036 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, 1037 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, 1038 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, 1039 { 0xFF, NULL, NULL, }, 1040 }; 1041 1042 static const PCIIFace pic_iface[] = { 1043 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, 1044 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, 1045 { 0xFF, NULL }, 1046 }; 1047 1048 static const PCISubClass sys_subclass[] = { 1049 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, 1050 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, 1051 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, 1052 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, 1053 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, 1054 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, 1055 { 0xFF, NULL, NULL }, 1056 }; 1057 1058 static const PCISubClass inp_subclass[] = { 1059 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, 1060 { PCI_CLASS_INPUT_PEN, "pen", NULL }, 1061 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, 1062 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, 1063 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, 1064 { 0xFF, NULL, NULL }, 1065 }; 1066 1067 static const PCISubClass dock_subclass[] = { 1068 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, 1069 { 0xFF, NULL, NULL }, 1070 }; 1071 1072 static const PCISubClass cpu_subclass[] = { 1073 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, 1074 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, 1075 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, 1076 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, 1077 { 0xFF, NULL, NULL }, 1078 }; 1079 1080 static const PCIIFace usb_iface[] = { 1081 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, 1082 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, 1083 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, 1084 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, 1085 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, 1086 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, 1087 { 0xFF, NULL }, 1088 }; 1089 1090 static const PCISubClass ser_subclass[] = { 1091 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, 1092 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, 1093 { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, 1094 { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, 1095 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, 1096 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, 1097 { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, 1098 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, 1099 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, 1100 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, 1101 { 0xFF, NULL, NULL }, 1102 }; 1103 1104 static const PCISubClass wrl_subclass[] = { 1105 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, 1106 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, 1107 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, 1108 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, 1109 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, 1110 { 0xFF, NULL, NULL }, 1111 }; 1112 1113 static const PCISubClass sat_subclass[] = { 1114 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, 1115 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, 1116 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, 1117 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, 1118 { 0xFF, NULL, NULL }, 1119 }; 1120 1121 static const PCISubClass crypt_subclass[] = { 1122 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, 1123 { PCI_CLASS_CRYPT_ENTERTAINMENT, 1124 "entertainment-encryption", NULL }, 1125 { 0xFF, NULL, NULL }, 1126 }; 1127 1128 static const PCISubClass spc_subclass[] = { 1129 { PCI_CLASS_SP_DPIO, "dpio", NULL }, 1130 { PCI_CLASS_SP_PERF, "counter", NULL }, 1131 { PCI_CLASS_SP_SYNCH, "measurement", NULL }, 1132 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, 1133 { 0xFF, NULL, NULL }, 1134 }; 1135 1136 static const PCIClass pci_classes[] = { 1137 { "legacy-device", undef_subclass }, 1138 { "mass-storage", mass_subclass }, 1139 { "network", net_subclass }, 1140 { "display", displ_subclass, }, 1141 { "multimedia-device", media_subclass }, 1142 { "memory-controller", mem_subclass }, 1143 { "unknown-bridge", bridg_subclass }, 1144 { "communication-controller", comm_subclass}, 1145 { "system-peripheral", sys_subclass }, 1146 { "input-controller", inp_subclass }, 1147 { "docking-station", dock_subclass }, 1148 { "cpu", cpu_subclass }, 1149 { "serial-bus", ser_subclass }, 1150 { "wireless-controller", wrl_subclass }, 1151 { "intelligent-io", NULL }, 1152 { "satellite-device", sat_subclass }, 1153 { "encryption", crypt_subclass }, 1154 { "data-processing-controller", spc_subclass }, 1155 }; 1156 1157 static const char *dt_name_from_class(uint8_t class, uint8_t subclass, 1158 uint8_t iface) 1159 { 1160 const PCIClass *pclass; 1161 const PCISubClass *psubclass; 1162 const PCIIFace *piface; 1163 const char *name; 1164 1165 if (class >= ARRAY_SIZE(pci_classes)) { 1166 return "pci"; 1167 } 1168 1169 pclass = pci_classes + class; 1170 name = pclass->name; 1171 1172 if (pclass->subc == NULL) { 1173 return name; 1174 } 1175 1176 psubclass = pclass->subc; 1177 while ((psubclass->subclass & 0xff) != 0xff) { 1178 if ((psubclass->subclass & 0xff) == subclass) { 1179 name = psubclass->name; 1180 break; 1181 } 1182 psubclass++; 1183 } 1184 1185 piface = psubclass->iface; 1186 if (piface == NULL) { 1187 return name; 1188 } 1189 while ((piface->iface & 0xff) != 0xff) { 1190 if ((piface->iface & 0xff) == iface) { 1191 name = piface->name; 1192 break; 1193 } 1194 piface++; 1195 } 1196 1197 return name; 1198 } 1199 1200 /* 1201 * DRC helper functions 1202 */ 1203 1204 static uint32_t drc_id_from_devfn(SpaprPhbState *phb, 1205 uint8_t chassis, int32_t devfn) 1206 { 1207 return (phb->index << 16) | (chassis << 8) | devfn; 1208 } 1209 1210 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb, 1211 uint8_t chassis, int32_t devfn) 1212 { 1213 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1214 drc_id_from_devfn(phb, chassis, devfn)); 1215 } 1216 1217 static uint8_t chassis_from_bus(PCIBus *bus) 1218 { 1219 if (pci_bus_is_root(bus)) { 1220 return 0; 1221 } else { 1222 PCIDevice *bridge = pci_bridge_get_device(bus); 1223 1224 return object_property_get_uint(OBJECT(bridge), "chassis_nr", 1225 &error_abort); 1226 } 1227 } 1228 1229 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev) 1230 { 1231 uint8_t chassis = chassis_from_bus(pci_get_bus(dev)); 1232 1233 return drc_from_devfn(phb, chassis, dev->devfn); 1234 } 1235 1236 static void add_drcs(SpaprPhbState *phb, PCIBus *bus) 1237 { 1238 Object *owner; 1239 int i; 1240 uint8_t chassis; 1241 1242 if (!phb->dr_enabled) { 1243 return; 1244 } 1245 1246 chassis = chassis_from_bus(bus); 1247 1248 if (pci_bus_is_root(bus)) { 1249 owner = OBJECT(phb); 1250 } else { 1251 owner = OBJECT(pci_bridge_get_device(bus)); 1252 } 1253 1254 for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) { 1255 spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI, 1256 drc_id_from_devfn(phb, chassis, i)); 1257 } 1258 } 1259 1260 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus) 1261 { 1262 int i; 1263 uint8_t chassis; 1264 1265 if (!phb->dr_enabled) { 1266 return; 1267 } 1268 1269 chassis = chassis_from_bus(bus); 1270 1271 for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) { 1272 SpaprDrc *drc = drc_from_devfn(phb, chassis, i); 1273 1274 if (drc) { 1275 object_unparent(OBJECT(drc)); 1276 } 1277 } 1278 } 1279 1280 typedef struct PciWalkFdt { 1281 void *fdt; 1282 int offset; 1283 SpaprPhbState *sphb; 1284 int err; 1285 } PciWalkFdt; 1286 1287 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev, 1288 void *fdt, int parent_offset); 1289 1290 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev, 1291 void *opaque) 1292 { 1293 PciWalkFdt *p = opaque; 1294 int err; 1295 1296 if (p->err) { 1297 /* Something's already broken, don't keep going */ 1298 return; 1299 } 1300 1301 err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset); 1302 if (err < 0) { 1303 p->err = err; 1304 } 1305 } 1306 1307 /* Augment PCI device node with bridge specific information */ 1308 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus, 1309 void *fdt, int offset) 1310 { 1311 Object *owner; 1312 PciWalkFdt cbinfo = { 1313 .fdt = fdt, 1314 .offset = offset, 1315 .sphb = sphb, 1316 .err = 0, 1317 }; 1318 int ret; 1319 1320 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1321 RESOURCE_CELLS_ADDRESS)); 1322 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1323 RESOURCE_CELLS_SIZE)); 1324 1325 assert(bus); 1326 pci_for_each_device_reverse(bus, pci_bus_num(bus), 1327 spapr_dt_pci_device_cb, &cbinfo); 1328 if (cbinfo.err) { 1329 return cbinfo.err; 1330 } 1331 1332 if (pci_bus_is_root(bus)) { 1333 owner = OBJECT(sphb); 1334 } else { 1335 owner = OBJECT(pci_bridge_get_device(bus)); 1336 } 1337 1338 ret = spapr_dt_drc(fdt, offset, owner, 1339 SPAPR_DR_CONNECTOR_TYPE_PCI); 1340 if (ret) { 1341 return ret; 1342 } 1343 1344 return offset; 1345 } 1346 1347 char *spapr_pci_fw_dev_name(PCIDevice *dev) 1348 { 1349 const gchar *basename; 1350 int slot = PCI_SLOT(dev->devfn); 1351 int func = PCI_FUNC(dev->devfn); 1352 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1353 1354 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, 1355 ccode & 0xff); 1356 1357 if (func != 0) { 1358 return g_strdup_printf("%s@%x,%x", basename, slot, func); 1359 } else { 1360 return g_strdup_printf("%s@%x", basename, slot); 1361 } 1362 } 1363 1364 /* create OF node for pci device and required OF DT properties */ 1365 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev, 1366 void *fdt, int parent_offset) 1367 { 1368 int offset; 1369 g_autofree gchar *nodename = spapr_pci_fw_dev_name(dev); 1370 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev); 1371 ResourceProps rp; 1372 SpaprDrc *drc = drc_from_dev(sphb, dev); 1373 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2); 1374 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2); 1375 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1); 1376 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1377 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1); 1378 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2); 1379 uint32_t subsystem_vendor_id = 1380 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2); 1381 uint32_t cache_line_size = 1382 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1); 1383 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1384 gchar *loc_code; 1385 1386 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename)); 1387 1388 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 1389 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id)); 1390 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id)); 1391 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id)); 1392 1393 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); 1394 if (irq_pin) { 1395 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin)); 1396 } 1397 1398 if (subsystem_id) { 1399 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id)); 1400 } 1401 1402 if (subsystem_vendor_id) { 1403 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 1404 subsystem_vendor_id)); 1405 } 1406 1407 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size)); 1408 1409 1410 /* the following fdt cells are masked off the pci status register */ 1411 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1412 PCI_STATUS_DEVSEL_MASK & pci_status)); 1413 1414 if (pci_status & PCI_STATUS_FAST_BACK) { 1415 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1416 } 1417 if (pci_status & PCI_STATUS_66MHZ) { 1418 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1419 } 1420 if (pci_status & PCI_STATUS_UDF) { 1421 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1422 } 1423 1424 loc_code = spapr_phb_get_loc_code(sphb, dev); 1425 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code)); 1426 g_free(loc_code); 1427 1428 if (drc) { 1429 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", 1430 spapr_drc_index(drc))); 1431 } 1432 1433 if (msi_present(dev)) { 1434 uint32_t max_msi = msi_nr_vectors_allocated(dev); 1435 if (max_msi) { 1436 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1437 } 1438 } 1439 if (msix_present(dev)) { 1440 uint32_t max_msix = dev->msix_entries_nr; 1441 if (max_msix) { 1442 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1443 } 1444 } 1445 1446 populate_resource_props(dev, &rp); 1447 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1448 1449 if (sphb->pcie_ecs && pci_is_express(dev)) { 1450 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); 1451 } 1452 1453 spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb); 1454 1455 if (!pc->is_bridge) { 1456 /* Properties only for non-bridges */ 1457 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1); 1458 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1); 1459 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant)); 1460 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency)); 1461 return offset; 1462 } else { 1463 PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev)); 1464 1465 return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset); 1466 } 1467 } 1468 1469 /* Callback to be called during DRC release. */ 1470 void spapr_phb_remove_pci_device_cb(DeviceState *dev) 1471 { 1472 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 1473 1474 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 1475 object_unparent(OBJECT(dev)); 1476 } 1477 1478 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 1479 void *fdt, int *fdt_start_offset, Error **errp) 1480 { 1481 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev); 1482 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler); 1483 PCIDevice *pdev = PCI_DEVICE(drc->dev); 1484 1485 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0); 1486 return 0; 1487 } 1488 1489 static void spapr_pci_bridge_plug(SpaprPhbState *phb, 1490 PCIBridge *bridge) 1491 { 1492 PCIBus *bus = pci_bridge_get_sec_bus(bridge); 1493 1494 add_drcs(phb, bus); 1495 } 1496 1497 /* Returns non-zero if the value of "chassis_nr" is already in use */ 1498 static int check_chassis_nr(Object *obj, void *opaque) 1499 { 1500 int new_chassis_nr = 1501 object_property_get_uint(opaque, "chassis_nr", &error_abort); 1502 int chassis_nr = 1503 object_property_get_uint(obj, "chassis_nr", NULL); 1504 1505 if (!object_dynamic_cast(obj, TYPE_PCI_BRIDGE)) { 1506 return 0; 1507 } 1508 1509 /* Skip unsupported bridge types */ 1510 if (!chassis_nr) { 1511 return 0; 1512 } 1513 1514 /* Skip self */ 1515 if (obj == opaque) { 1516 return 0; 1517 } 1518 1519 return chassis_nr == new_chassis_nr; 1520 } 1521 1522 static bool bridge_has_valid_chassis_nr(Object *bridge, Error **errp) 1523 { 1524 int chassis_nr = 1525 object_property_get_uint(bridge, "chassis_nr", NULL); 1526 1527 /* 1528 * slotid_cap_init() already ensures that "chassis_nr" isn't null for 1529 * standard PCI bridges, so this really tells if "chassis_nr" is present 1530 * or not. 1531 */ 1532 if (!chassis_nr) { 1533 error_setg(errp, "PCI Bridge lacks a \"chassis_nr\" property"); 1534 error_append_hint(errp, "Try -device pci-bridge instead.\n"); 1535 return false; 1536 } 1537 1538 /* We want unique values for "chassis_nr" */ 1539 if (object_child_foreach_recursive(object_get_root(), check_chassis_nr, 1540 bridge)) { 1541 error_setg(errp, "Bridge chassis %d already in use", chassis_nr); 1542 return false; 1543 } 1544 1545 return true; 1546 } 1547 1548 static void spapr_pci_pre_plug(HotplugHandler *plug_handler, 1549 DeviceState *plugged_dev, Error **errp) 1550 { 1551 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1552 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1553 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1554 SpaprDrc *drc = drc_from_dev(phb, pdev); 1555 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1556 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1557 1558 if (!phb->dr_enabled) { 1559 /* if this is a hotplug operation initiated by the user 1560 * we need to let them know it's not enabled 1561 */ 1562 if (plugged_dev->hotplugged) { 1563 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1564 object_get_typename(OBJECT(phb))); 1565 return; 1566 } 1567 } 1568 1569 if (pc->is_bridge) { 1570 if (!bridge_has_valid_chassis_nr(OBJECT(plugged_dev), errp)) { 1571 return; 1572 } 1573 } 1574 1575 /* Following the QEMU convention used for PCIe multifunction 1576 * hotplug, we do not allow functions to be hotplugged to a 1577 * slot that already has function 0 present 1578 */ 1579 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1580 PCI_FUNC(pdev->devfn) != 0) { 1581 error_setg(errp, "PCI: slot %d function 0 already occupied by %s," 1582 " additional functions can no longer be exposed to guest.", 1583 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1584 } 1585 1586 if (drc && drc->dev) { 1587 error_setg(errp, "PCI: slot %d already occupied by %s", slotnr, 1588 pci_get_function_0(PCI_DEVICE(drc->dev))->name); 1589 return; 1590 } 1591 } 1592 1593 static void spapr_pci_plug(HotplugHandler *plug_handler, 1594 DeviceState *plugged_dev, Error **errp) 1595 { 1596 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1597 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1598 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1599 SpaprDrc *drc = drc_from_dev(phb, pdev); 1600 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1601 1602 /* 1603 * If DR is disabled we don't need to do anything in the case of 1604 * hotplug or coldplug callbacks. 1605 */ 1606 if (!phb->dr_enabled) { 1607 return; 1608 } 1609 1610 g_assert(drc); 1611 1612 if (pc->is_bridge) { 1613 spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev)); 1614 } 1615 1616 /* spapr_pci_pre_plug() already checked the DRC is attachable */ 1617 spapr_drc_attach(drc, DEVICE(pdev)); 1618 1619 /* If this is function 0, signal hotplug for all the device functions. 1620 * Otherwise defer sending the hotplug event. 1621 */ 1622 if (!spapr_drc_hotplugged(plugged_dev)) { 1623 spapr_drc_reset(drc); 1624 } else if (PCI_FUNC(pdev->devfn) == 0) { 1625 int i; 1626 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev)); 1627 1628 for (i = 0; i < 8; i++) { 1629 SpaprDrc *func_drc; 1630 SpaprDrcClass *func_drck; 1631 SpaprDREntitySense state; 1632 1633 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1634 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1635 state = func_drck->dr_entity_sense(func_drc); 1636 1637 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1638 spapr_hotplug_req_add_by_index(func_drc); 1639 } 1640 } 1641 } 1642 } 1643 1644 static void spapr_pci_bridge_unplug(SpaprPhbState *phb, 1645 PCIBridge *bridge) 1646 { 1647 PCIBus *bus = pci_bridge_get_sec_bus(bridge); 1648 1649 remove_drcs(phb, bus); 1650 } 1651 1652 static void spapr_pci_unplug(HotplugHandler *plug_handler, 1653 DeviceState *plugged_dev, Error **errp) 1654 { 1655 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1656 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1657 1658 /* some version guests do not wait for completion of a device 1659 * cleanup (generally done asynchronously by the kernel) before 1660 * signaling to QEMU that the device is safe, but instead sleep 1661 * for some 'safe' period of time. unfortunately on a busy host 1662 * this sleep isn't guaranteed to be long enough, resulting in 1663 * bad things like IRQ lines being left asserted during final 1664 * device removal. to deal with this we call reset just prior 1665 * to finalizing the device, which will put the device back into 1666 * an 'idle' state, as the device cleanup code expects. 1667 */ 1668 pci_device_reset(PCI_DEVICE(plugged_dev)); 1669 1670 if (pc->is_bridge) { 1671 spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev)); 1672 return; 1673 } 1674 1675 qdev_unrealize(plugged_dev); 1676 } 1677 1678 static void spapr_pci_unplug_request(HotplugHandler *plug_handler, 1679 DeviceState *plugged_dev, Error **errp) 1680 { 1681 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1682 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1683 SpaprDrc *drc = drc_from_dev(phb, pdev); 1684 1685 if (!phb->dr_enabled) { 1686 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1687 object_get_typename(OBJECT(phb))); 1688 return; 1689 } 1690 1691 g_assert(drc); 1692 g_assert(drc->dev == plugged_dev); 1693 1694 if (!spapr_drc_unplug_requested(drc)) { 1695 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev); 1696 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1697 SpaprDrc *func_drc; 1698 SpaprDrcClass *func_drck; 1699 SpaprDREntitySense state; 1700 int i; 1701 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev)); 1702 1703 if (pc->is_bridge) { 1704 error_setg(errp, "PCI: Hot unplug of PCI bridges not supported"); 1705 return; 1706 } 1707 if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) { 1708 error_setg(errp, "PCI: Cannot unplug NVLink2 devices"); 1709 return; 1710 } 1711 1712 /* ensure any other present functions are pending unplug */ 1713 if (PCI_FUNC(pdev->devfn) == 0) { 1714 for (i = 1; i < 8; i++) { 1715 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1716 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1717 state = func_drck->dr_entity_sense(func_drc); 1718 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1719 && !spapr_drc_unplug_requested(func_drc)) { 1720 /* 1721 * Attempting to remove function 0 of a multifunction 1722 * device will will cascade into removing all child 1723 * functions, even if their unplug weren't requested 1724 * beforehand. 1725 */ 1726 spapr_drc_detach(func_drc); 1727 } 1728 } 1729 } 1730 1731 spapr_drc_detach(drc); 1732 1733 /* if this isn't func 0, defer unplug event. otherwise signal removal 1734 * for all present functions 1735 */ 1736 if (PCI_FUNC(pdev->devfn) == 0) { 1737 for (i = 7; i >= 0; i--) { 1738 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i)); 1739 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1740 state = func_drck->dr_entity_sense(func_drc); 1741 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1742 spapr_hotplug_req_remove_by_index(func_drc); 1743 } 1744 } 1745 } 1746 } 1747 } 1748 1749 static void spapr_phb_finalizefn(Object *obj) 1750 { 1751 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj); 1752 1753 g_free(sphb->dtbusname); 1754 sphb->dtbusname = NULL; 1755 } 1756 1757 static void spapr_phb_unrealize(DeviceState *dev) 1758 { 1759 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1760 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1761 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1762 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb); 1763 SpaprTceTable *tcet; 1764 int i; 1765 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1766 1767 spapr_phb_nvgpu_free(sphb); 1768 1769 if (sphb->msi) { 1770 g_hash_table_unref(sphb->msi); 1771 sphb->msi = NULL; 1772 } 1773 1774 /* 1775 * Remove IO/MMIO subregions and aliases, rest should get cleaned 1776 * via PHB's unrealize->object_finalize 1777 */ 1778 for (i = windows_supported - 1; i >= 0; i--) { 1779 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1780 if (tcet) { 1781 memory_region_del_subregion(&sphb->iommu_root, 1782 spapr_tce_get_iommu(tcet)); 1783 } 1784 } 1785 1786 remove_drcs(sphb, phb->bus); 1787 1788 for (i = PCI_NUM_PINS - 1; i >= 0; i--) { 1789 if (sphb->lsi_table[i].irq) { 1790 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1); 1791 sphb->lsi_table[i].irq = 0; 1792 } 1793 } 1794 1795 QLIST_REMOVE(sphb, list); 1796 1797 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow); 1798 1799 /* 1800 * An attached PCI device may have memory listeners, eg. VFIO PCI. We have 1801 * unmapped all sections. Remove the listeners now, before destroying the 1802 * address space. 1803 */ 1804 address_space_remove_listeners(&sphb->iommu_as); 1805 address_space_destroy(&sphb->iommu_as); 1806 1807 qbus_set_hotplug_handler(BUS(phb->bus), NULL); 1808 pci_unregister_root_bus(phb->bus); 1809 1810 memory_region_del_subregion(get_system_memory(), &sphb->iowindow); 1811 if (sphb->mem64_win_pciaddr != (hwaddr)-1) { 1812 memory_region_del_subregion(get_system_memory(), &sphb->mem64window); 1813 } 1814 memory_region_del_subregion(get_system_memory(), &sphb->mem32window); 1815 } 1816 1817 static void spapr_phb_destroy_msi(gpointer opaque) 1818 { 1819 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1820 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1821 SpaprPciMsi *msi = opaque; 1822 1823 if (!smc->legacy_irq_allocation) { 1824 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 1825 } 1826 spapr_irq_free(spapr, msi->first_irq, msi->num); 1827 g_free(msi); 1828 } 1829 1830 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1831 { 1832 ERRP_GUARD(); 1833 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 1834 * tries to add a sPAPR PHB to a non-pseries machine. 1835 */ 1836 SpaprMachineState *spapr = 1837 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(), 1838 TYPE_SPAPR_MACHINE); 1839 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL; 1840 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1841 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 1842 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1843 MachineState *ms = MACHINE(spapr); 1844 char *namebuf; 1845 int i; 1846 PCIBus *bus; 1847 uint64_t msi_window_size = 4096; 1848 SpaprTceTable *tcet; 1849 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 1850 1851 if (!spapr) { 1852 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine"); 1853 return; 1854 } 1855 1856 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */ 1857 1858 if (sphb->mem64_win_size != 0) { 1859 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1860 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1861 " (max 2 GiB)", sphb->mem_win_size); 1862 return; 1863 } 1864 1865 /* 64-bit window defaults to identity mapping */ 1866 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1867 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1868 /* 1869 * For compatibility with old configuration, if no 64-bit MMIO 1870 * window is specified, but the ordinary (32-bit) memory 1871 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1872 * window, with a 64-bit MMIO window following on immediately 1873 * afterwards 1874 */ 1875 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1876 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1877 sphb->mem64_win_pciaddr = 1878 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1879 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1880 } 1881 1882 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1883 SpaprPhbState *s; 1884 1885 error_setg(errp, "PCI host bridges must have unique indexes"); 1886 error_append_hint(errp, "The following indexes are already in use:"); 1887 QLIST_FOREACH(s, &spapr->phbs, list) { 1888 error_append_hint(errp, " %d", s->index); 1889 } 1890 error_append_hint(errp, "\nTry another value for the index property\n"); 1891 return; 1892 } 1893 1894 if (sphb->numa_node != -1 && 1895 (sphb->numa_node >= MAX_NODES || 1896 !ms->numa_state->nodes[sphb->numa_node].present)) { 1897 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1898 return; 1899 } 1900 1901 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1902 1903 /* Initialize memory regions */ 1904 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname); 1905 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1906 g_free(namebuf); 1907 1908 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname); 1909 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1910 namebuf, &sphb->memspace, 1911 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1912 g_free(namebuf); 1913 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1914 &sphb->mem32window); 1915 1916 if (sphb->mem64_win_size != 0) { 1917 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname); 1918 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1919 namebuf, &sphb->memspace, 1920 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1921 g_free(namebuf); 1922 1923 memory_region_add_subregion(get_system_memory(), 1924 sphb->mem64_win_addr, 1925 &sphb->mem64window); 1926 } 1927 1928 /* Initialize IO regions */ 1929 namebuf = g_strdup_printf("%s.io", sphb->dtbusname); 1930 memory_region_init(&sphb->iospace, OBJECT(sphb), 1931 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1932 g_free(namebuf); 1933 1934 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname); 1935 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1936 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1937 g_free(namebuf); 1938 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1939 &sphb->iowindow); 1940 1941 bus = pci_register_root_bus(dev, NULL, 1942 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb, 1943 &sphb->memspace, &sphb->iospace, 1944 PCI_DEVFN(0, 0), PCI_NUM_PINS, 1945 TYPE_PCI_BUS); 1946 1947 /* 1948 * Despite resembling a vanilla PCI bus in most ways, the PAPR 1949 * para-virtualized PCI bus *does* permit PCI-E extended config 1950 * space access 1951 */ 1952 if (sphb->pcie_ecs) { 1953 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 1954 } 1955 phb->bus = bus; 1956 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb)); 1957 1958 /* 1959 * Initialize PHB address space. 1960 * By default there will be at least one subregion for default 1961 * 32bit DMA window. 1962 * Later the guest might want to create another DMA window 1963 * which will become another memory subregion. 1964 */ 1965 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname); 1966 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1967 namebuf, UINT64_MAX); 1968 g_free(namebuf); 1969 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1970 sphb->dtbusname); 1971 1972 /* 1973 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1974 * we need to allocate some memory to catch those writes coming 1975 * from msi_notify()/msix_notify(). 1976 * As MSIMessage:addr is going to be the same and MSIMessage:data 1977 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1978 * be used. 1979 * 1980 * For KVM we want to ensure that this memory is a full page so that 1981 * our memory slot is of page size granularity. 1982 */ 1983 if (kvm_enabled()) { 1984 msi_window_size = qemu_real_host_page_size; 1985 } 1986 1987 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, 1988 "msi", msi_window_size); 1989 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1990 &sphb->msiwindow); 1991 1992 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1993 1994 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1995 1996 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1997 1998 /* Initialize the LSI table */ 1999 for (i = 0; i < PCI_NUM_PINS; i++) { 2000 int irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i; 2001 2002 if (smc->legacy_irq_allocation) { 2003 irq = spapr_irq_findone(spapr, errp); 2004 if (irq < 0) { 2005 error_prepend(errp, "can't allocate LSIs: "); 2006 /* 2007 * Older machines will never support PHB hotplug, ie, this is an 2008 * init only path and QEMU will terminate. No need to rollback. 2009 */ 2010 return; 2011 } 2012 } 2013 2014 if (spapr_irq_claim(spapr, irq, true, errp) < 0) { 2015 error_prepend(errp, "can't allocate LSIs: "); 2016 goto unrealize; 2017 } 2018 2019 sphb->lsi_table[i].irq = irq; 2020 } 2021 2022 /* allocate connectors for child PCI devices */ 2023 add_drcs(sphb, phb->bus); 2024 2025 /* DMA setup */ 2026 for (i = 0; i < windows_supported; ++i) { 2027 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 2028 if (!tcet) { 2029 error_setg(errp, "Creating window#%d failed for %s", 2030 i, sphb->dtbusname); 2031 goto unrealize; 2032 } 2033 memory_region_add_subregion(&sphb->iommu_root, 0, 2034 spapr_tce_get_iommu(tcet)); 2035 } 2036 2037 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, 2038 spapr_phb_destroy_msi); 2039 return; 2040 2041 unrealize: 2042 spapr_phb_unrealize(dev); 2043 } 2044 2045 static int spapr_phb_children_reset(Object *child, void *opaque) 2046 { 2047 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 2048 2049 if (dev) { 2050 device_legacy_reset(dev); 2051 } 2052 2053 return 0; 2054 } 2055 2056 void spapr_phb_dma_reset(SpaprPhbState *sphb) 2057 { 2058 int i; 2059 SpaprTceTable *tcet; 2060 2061 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 2062 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 2063 2064 if (tcet && tcet->nb_table) { 2065 spapr_tce_table_disable(tcet); 2066 } 2067 } 2068 2069 /* Register default 32bit DMA window */ 2070 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 2071 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 2072 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 2073 } 2074 2075 static void spapr_phb_reset(DeviceState *qdev) 2076 { 2077 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 2078 Error *err = NULL; 2079 2080 spapr_phb_dma_reset(sphb); 2081 spapr_phb_nvgpu_free(sphb); 2082 spapr_phb_nvgpu_setup(sphb, &err); 2083 if (err) { 2084 error_report_err(err); 2085 } 2086 2087 /* Reset the IOMMU state */ 2088 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 2089 2090 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 2091 spapr_phb_vfio_reset(qdev); 2092 } 2093 2094 g_hash_table_remove_all(sphb->msi); 2095 } 2096 2097 static Property spapr_phb_properties[] = { 2098 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1), 2099 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size, 2100 SPAPR_PCI_MEM32_WIN_SIZE), 2101 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size, 2102 SPAPR_PCI_MEM64_WIN_SIZE), 2103 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size, 2104 SPAPR_PCI_IO_WIN_SIZE), 2105 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled, 2106 true), 2107 /* Default DMA window is 0..1GB */ 2108 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0), 2109 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000), 2110 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr, 2111 0x800000000000000ULL), 2112 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true), 2113 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask, 2114 (1ULL << 12) | (1ULL << 16) 2115 | (1ULL << 21) | (1ULL << 24)), 2116 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1), 2117 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState, 2118 pre_2_8_migration, false), 2119 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState, 2120 pcie_ecs, true), 2121 DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0), 2122 DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0), 2123 DEFINE_PROP_BOOL("pre-5.1-associativity", SpaprPhbState, 2124 pre_5_1_assoc, false), 2125 DEFINE_PROP_END_OF_LIST(), 2126 }; 2127 2128 static const VMStateDescription vmstate_spapr_pci_lsi = { 2129 .name = "spapr_pci/lsi", 2130 .version_id = 1, 2131 .minimum_version_id = 1, 2132 .fields = (VMStateField[]) { 2133 VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL), 2134 2135 VMSTATE_END_OF_LIST() 2136 }, 2137 }; 2138 2139 static const VMStateDescription vmstate_spapr_pci_msi = { 2140 .name = "spapr_pci/msi", 2141 .version_id = 1, 2142 .minimum_version_id = 1, 2143 .fields = (VMStateField []) { 2144 VMSTATE_UINT32(key, SpaprPciMsiMig), 2145 VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig), 2146 VMSTATE_UINT32(value.num, SpaprPciMsiMig), 2147 VMSTATE_END_OF_LIST() 2148 }, 2149 }; 2150 2151 static int spapr_pci_pre_save(void *opaque) 2152 { 2153 SpaprPhbState *sphb = opaque; 2154 GHashTableIter iter; 2155 gpointer key, value; 2156 int i; 2157 2158 if (sphb->pre_2_8_migration) { 2159 sphb->mig_liobn = sphb->dma_liobn[0]; 2160 sphb->mig_mem_win_addr = sphb->mem_win_addr; 2161 sphb->mig_mem_win_size = sphb->mem_win_size; 2162 sphb->mig_io_win_addr = sphb->io_win_addr; 2163 sphb->mig_io_win_size = sphb->io_win_size; 2164 2165 if ((sphb->mem64_win_size != 0) 2166 && (sphb->mem64_win_addr 2167 == (sphb->mem_win_addr + sphb->mem_win_size))) { 2168 sphb->mig_mem_win_size += sphb->mem64_win_size; 2169 } 2170 } 2171 2172 g_free(sphb->msi_devs); 2173 sphb->msi_devs = NULL; 2174 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 2175 if (!sphb->msi_devs_num) { 2176 return 0; 2177 } 2178 sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num); 2179 2180 g_hash_table_iter_init(&iter, sphb->msi); 2181 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 2182 sphb->msi_devs[i].key = *(uint32_t *) key; 2183 sphb->msi_devs[i].value = *(SpaprPciMsi *) value; 2184 } 2185 2186 return 0; 2187 } 2188 2189 static int spapr_pci_post_save(void *opaque) 2190 { 2191 SpaprPhbState *sphb = opaque; 2192 2193 g_free(sphb->msi_devs); 2194 sphb->msi_devs = NULL; 2195 sphb->msi_devs_num = 0; 2196 return 0; 2197 } 2198 2199 static int spapr_pci_post_load(void *opaque, int version_id) 2200 { 2201 SpaprPhbState *sphb = opaque; 2202 gpointer key, value; 2203 int i; 2204 2205 for (i = 0; i < sphb->msi_devs_num; ++i) { 2206 key = g_memdup(&sphb->msi_devs[i].key, 2207 sizeof(sphb->msi_devs[i].key)); 2208 value = g_memdup(&sphb->msi_devs[i].value, 2209 sizeof(sphb->msi_devs[i].value)); 2210 g_hash_table_insert(sphb->msi, key, value); 2211 } 2212 g_free(sphb->msi_devs); 2213 sphb->msi_devs = NULL; 2214 sphb->msi_devs_num = 0; 2215 2216 return 0; 2217 } 2218 2219 static bool pre_2_8_migration(void *opaque, int version_id) 2220 { 2221 SpaprPhbState *sphb = opaque; 2222 2223 return sphb->pre_2_8_migration; 2224 } 2225 2226 static const VMStateDescription vmstate_spapr_pci = { 2227 .name = "spapr_pci", 2228 .version_id = 2, 2229 .minimum_version_id = 2, 2230 .pre_save = spapr_pci_pre_save, 2231 .post_save = spapr_pci_post_save, 2232 .post_load = spapr_pci_post_load, 2233 .fields = (VMStateField[]) { 2234 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL), 2235 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration), 2236 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration), 2237 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration), 2238 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration), 2239 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration), 2240 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0, 2241 vmstate_spapr_pci_lsi, SpaprPciLsi), 2242 VMSTATE_INT32(msi_devs_num, SpaprPhbState), 2243 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0, 2244 vmstate_spapr_pci_msi, SpaprPciMsiMig), 2245 VMSTATE_END_OF_LIST() 2246 }, 2247 }; 2248 2249 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 2250 PCIBus *rootbus) 2251 { 2252 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 2253 2254 return sphb->dtbusname; 2255 } 2256 2257 static void spapr_phb_class_init(ObjectClass *klass, void *data) 2258 { 2259 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 2260 DeviceClass *dc = DEVICE_CLASS(klass); 2261 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 2262 2263 hc->root_bus_path = spapr_phb_root_bus_path; 2264 dc->realize = spapr_phb_realize; 2265 dc->unrealize = spapr_phb_unrealize; 2266 device_class_set_props(dc, spapr_phb_properties); 2267 dc->reset = spapr_phb_reset; 2268 dc->vmsd = &vmstate_spapr_pci; 2269 /* Supported by TYPE_SPAPR_MACHINE */ 2270 dc->user_creatable = true; 2271 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 2272 hp->pre_plug = spapr_pci_pre_plug; 2273 hp->plug = spapr_pci_plug; 2274 hp->unplug = spapr_pci_unplug; 2275 hp->unplug_request = spapr_pci_unplug_request; 2276 } 2277 2278 static const TypeInfo spapr_phb_info = { 2279 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 2280 .parent = TYPE_PCI_HOST_BRIDGE, 2281 .instance_size = sizeof(SpaprPhbState), 2282 .instance_finalize = spapr_phb_finalizefn, 2283 .class_init = spapr_phb_class_init, 2284 .interfaces = (InterfaceInfo[]) { 2285 { TYPE_HOTPLUG_HANDLER }, 2286 { } 2287 } 2288 }; 2289 2290 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 2291 void *opaque) 2292 { 2293 unsigned int *bus_no = opaque; 2294 PCIBus *sec_bus = NULL; 2295 2296 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2297 PCI_HEADER_TYPE_BRIDGE)) { 2298 return; 2299 } 2300 2301 (*bus_no)++; 2302 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1); 2303 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 2304 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2305 2306 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2307 if (!sec_bus) { 2308 return; 2309 } 2310 2311 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 2312 spapr_phb_pci_enumerate_bridge, bus_no); 2313 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2314 } 2315 2316 static void spapr_phb_pci_enumerate(SpaprPhbState *phb) 2317 { 2318 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2319 unsigned int bus_no = 0; 2320 2321 pci_for_each_device(bus, pci_bus_num(bus), 2322 spapr_phb_pci_enumerate_bridge, 2323 &bus_no); 2324 2325 } 2326 2327 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb, 2328 uint32_t intc_phandle, void *fdt, int *node_offset) 2329 { 2330 int bus_off, i, j, ret; 2331 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 2332 struct { 2333 uint32_t hi; 2334 uint64_t child; 2335 uint64_t parent; 2336 uint64_t size; 2337 } QEMU_PACKED ranges[] = { 2338 { 2339 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 2340 cpu_to_be64(phb->io_win_addr), 2341 cpu_to_be64(memory_region_size(&phb->iospace)), 2342 }, 2343 { 2344 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 2345 cpu_to_be64(phb->mem_win_addr), 2346 cpu_to_be64(phb->mem_win_size), 2347 }, 2348 { 2349 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 2350 cpu_to_be64(phb->mem64_win_addr), 2351 cpu_to_be64(phb->mem64_win_size), 2352 }, 2353 }; 2354 const unsigned sizeof_ranges = 2355 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 2356 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 2357 uint32_t interrupt_map_mask[] = { 2358 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 2359 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 2360 uint32_t ddw_applicable[] = { 2361 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 2362 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 2363 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 2364 }; 2365 uint32_t ddw_extensions[] = { 2366 cpu_to_be32(1), 2367 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) 2368 }; 2369 SpaprTceTable *tcet; 2370 SpaprDrc *drc; 2371 Error *err = NULL; 2372 2373 /* Start populating the FDT */ 2374 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname)); 2375 if (node_offset) { 2376 *node_offset = bus_off; 2377 } 2378 2379 /* Write PHB properties */ 2380 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 2381 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 2382 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 2383 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 2384 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 2385 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 2386 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 2387 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 2388 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", 2389 spapr_irq_nr_msis(spapr))); 2390 2391 /* Dynamic DMA window */ 2392 if (phb->ddw_enabled) { 2393 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 2394 sizeof(ddw_applicable))); 2395 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 2396 &ddw_extensions, sizeof(ddw_extensions))); 2397 } 2398 2399 /* Advertise NUMA via ibm,associativity */ 2400 if (phb->numa_node != -1) { 2401 spapr_numa_write_associativity_dt(spapr, fdt, bus_off, phb->numa_node); 2402 } 2403 2404 /* Build the interrupt-map, this must matches what is done 2405 * in pci_swizzle_map_irq_fn 2406 */ 2407 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 2408 &interrupt_map_mask, sizeof(interrupt_map_mask))); 2409 for (i = 0; i < PCI_SLOT_MAX; i++) { 2410 for (j = 0; j < PCI_NUM_PINS; j++) { 2411 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 2412 int lsi_num = pci_swizzle(i, j); 2413 2414 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 2415 irqmap[1] = 0; 2416 irqmap[2] = 0; 2417 irqmap[3] = cpu_to_be32(j+1); 2418 irqmap[4] = cpu_to_be32(intc_phandle); 2419 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true); 2420 } 2421 } 2422 /* Write interrupt map */ 2423 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 2424 sizeof(interrupt_map))); 2425 2426 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 2427 if (!tcet) { 2428 return -1; 2429 } 2430 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 2431 tcet->liobn, tcet->bus_offset, 2432 tcet->nb_table << tcet->page_shift); 2433 2434 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index); 2435 if (drc) { 2436 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc)); 2437 2438 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index, 2439 sizeof(drc_index))); 2440 } 2441 2442 /* Walk the bridges and program the bus numbers*/ 2443 spapr_phb_pci_enumerate(phb); 2444 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 2445 2446 /* Walk the bridge and subordinate buses */ 2447 ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off); 2448 if (ret < 0) { 2449 return ret; 2450 } 2451 2452 spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &err); 2453 if (err) { 2454 error_report_err(err); 2455 } 2456 spapr_phb_nvgpu_ram_populate_dt(phb, fdt); 2457 2458 return 0; 2459 } 2460 2461 void spapr_pci_rtas_init(void) 2462 { 2463 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 2464 rtas_read_pci_config); 2465 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 2466 rtas_write_pci_config); 2467 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 2468 rtas_ibm_read_pci_config); 2469 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 2470 rtas_ibm_write_pci_config); 2471 if (msi_nonbroken) { 2472 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 2473 "ibm,query-interrupt-source-number", 2474 rtas_ibm_query_interrupt_source_number); 2475 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 2476 rtas_ibm_change_msi); 2477 } 2478 2479 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 2480 "ibm,set-eeh-option", 2481 rtas_ibm_set_eeh_option); 2482 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 2483 "ibm,get-config-addr-info2", 2484 rtas_ibm_get_config_addr_info2); 2485 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 2486 "ibm,read-slot-reset-state2", 2487 rtas_ibm_read_slot_reset_state2); 2488 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 2489 "ibm,set-slot-reset", 2490 rtas_ibm_set_slot_reset); 2491 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 2492 "ibm,configure-pe", 2493 rtas_ibm_configure_pe); 2494 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 2495 "ibm,slot-error-detail", 2496 rtas_ibm_slot_error_detail); 2497 } 2498 2499 static void spapr_pci_register_types(void) 2500 { 2501 type_register_static(&spapr_phb_info); 2502 } 2503 2504 type_init(spapr_pci_register_types) 2505 2506 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 2507 { 2508 bool be = *(bool *)opaque; 2509 2510 if (object_dynamic_cast(OBJECT(dev), "VGA") 2511 || object_dynamic_cast(OBJECT(dev), "secondary-vga") 2512 || object_dynamic_cast(OBJECT(dev), "bochs-display") 2513 || object_dynamic_cast(OBJECT(dev), "virtio-vga")) { 2514 object_property_set_bool(OBJECT(dev), "big-endian-framebuffer", be, 2515 &error_abort); 2516 } 2517 return 0; 2518 } 2519 2520 void spapr_pci_switch_vga(SpaprMachineState *spapr, bool big_endian) 2521 { 2522 SpaprPhbState *sphb; 2523 2524 /* 2525 * For backward compatibility with existing guests, we switch 2526 * the endianness of the VGA controller when changing the guest 2527 * interrupt mode 2528 */ 2529 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2530 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2531 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2532 &big_endian); 2533 } 2534 } 2535