xref: /openbmc/qemu/hw/ppc/spapr_pci.c (revision 6233759a)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qapi/error.h"
28 #include "hw/irq.h"
29 #include "hw/sysbus.h"
30 #include "migration/vmstate.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/ram_addr.h"
38 #include <libfdt.h>
39 #include "trace.h"
40 #include "qemu/error-report.h"
41 #include "qemu/module.h"
42 #include "qapi/qmp/qerror.h"
43 #include "hw/ppc/fdt.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/pci/pci_ids.h"
47 #include "hw/ppc/spapr_drc.h"
48 #include "hw/qdev-properties.h"
49 #include "sysemu/device_tree.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/numa.h"
53 #include "hw/ppc/spapr_numa.h"
54 #include "qemu/log.h"
55 
56 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
57 #define RTAS_QUERY_FN           0
58 #define RTAS_CHANGE_FN          1
59 #define RTAS_RESET_FN           2
60 #define RTAS_CHANGE_MSI_FN      3
61 #define RTAS_CHANGE_MSIX_FN     4
62 
63 /* Interrupt types to return on RTAS_CHANGE_* */
64 #define RTAS_TYPE_MSI           1
65 #define RTAS_TYPE_MSIX          2
66 
67 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid)
68 {
69     SpaprPhbState *sphb;
70 
71     QLIST_FOREACH(sphb, &spapr->phbs, list) {
72         if (sphb->buid != buid) {
73             continue;
74         }
75         return sphb;
76     }
77 
78     return NULL;
79 }
80 
81 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid,
82                               uint32_t config_addr)
83 {
84     SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid);
85     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
86     int bus_num = (config_addr >> 16) & 0xFF;
87     int devfn = (config_addr >> 8) & 0xFF;
88 
89     if (!phb) {
90         return NULL;
91     }
92 
93     return pci_find_device(phb->bus, bus_num, devfn);
94 }
95 
96 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
97 {
98     /* This handles the encoding of extended config space addresses */
99     return ((arg >> 20) & 0xf00) | (arg & 0xff);
100 }
101 
102 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid,
103                                    uint32_t addr, uint32_t size,
104                                    target_ulong rets)
105 {
106     PCIDevice *pci_dev;
107     uint32_t val;
108 
109     if ((size != 1) && (size != 2) && (size != 4)) {
110         /* access must be 1, 2 or 4 bytes */
111         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
112         return;
113     }
114 
115     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
116     addr = rtas_pci_cfgaddr(addr);
117 
118     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
119         /* Access must be to a valid device, within bounds and
120          * naturally aligned */
121         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
122         return;
123     }
124 
125     val = pci_host_config_read_common(pci_dev, addr,
126                                       pci_config_size(pci_dev), size);
127 
128     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
129     rtas_st(rets, 1, val);
130 }
131 
132 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
133                                      uint32_t token, uint32_t nargs,
134                                      target_ulong args,
135                                      uint32_t nret, target_ulong rets)
136 {
137     uint64_t buid;
138     uint32_t size, addr;
139 
140     if ((nargs != 4) || (nret != 2)) {
141         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
142         return;
143     }
144 
145     buid = rtas_ldq(args, 1);
146     size = rtas_ld(args, 3);
147     addr = rtas_ld(args, 0);
148 
149     finish_read_pci_config(spapr, buid, addr, size, rets);
150 }
151 
152 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
153                                  uint32_t token, uint32_t nargs,
154                                  target_ulong args,
155                                  uint32_t nret, target_ulong rets)
156 {
157     uint32_t size, addr;
158 
159     if ((nargs != 2) || (nret != 2)) {
160         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
161         return;
162     }
163 
164     size = rtas_ld(args, 1);
165     addr = rtas_ld(args, 0);
166 
167     finish_read_pci_config(spapr, 0, addr, size, rets);
168 }
169 
170 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid,
171                                     uint32_t addr, uint32_t size,
172                                     uint32_t val, target_ulong rets)
173 {
174     PCIDevice *pci_dev;
175 
176     if ((size != 1) && (size != 2) && (size != 4)) {
177         /* access must be 1, 2 or 4 bytes */
178         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
179         return;
180     }
181 
182     pci_dev = spapr_pci_find_dev(spapr, buid, addr);
183     addr = rtas_pci_cfgaddr(addr);
184 
185     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
186         /* Access must be to a valid device, within bounds and
187          * naturally aligned */
188         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
189         return;
190     }
191 
192     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
193                                  val, size);
194 
195     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
196 }
197 
198 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
199                                       uint32_t token, uint32_t nargs,
200                                       target_ulong args,
201                                       uint32_t nret, target_ulong rets)
202 {
203     uint64_t buid;
204     uint32_t val, size, addr;
205 
206     if ((nargs != 5) || (nret != 1)) {
207         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
208         return;
209     }
210 
211     buid = rtas_ldq(args, 1);
212     val = rtas_ld(args, 4);
213     size = rtas_ld(args, 3);
214     addr = rtas_ld(args, 0);
215 
216     finish_write_pci_config(spapr, buid, addr, size, val, rets);
217 }
218 
219 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
220                                   uint32_t token, uint32_t nargs,
221                                   target_ulong args,
222                                   uint32_t nret, target_ulong rets)
223 {
224     uint32_t val, size, addr;
225 
226     if ((nargs != 3) || (nret != 1)) {
227         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
228         return;
229     }
230 
231 
232     val = rtas_ld(args, 2);
233     size = rtas_ld(args, 1);
234     addr = rtas_ld(args, 0);
235 
236     finish_write_pci_config(spapr, 0, addr, size, val, rets);
237 }
238 
239 /*
240  * Set MSI/MSIX message data.
241  * This is required for msi_notify()/msix_notify() which
242  * will write at the addresses via spapr_msi_write().
243  *
244  * If hwaddr == 0, all entries will have .data == first_irq i.e.
245  * table will be reset.
246  */
247 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
248                              unsigned first_irq, unsigned req_num)
249 {
250     unsigned i;
251     MSIMessage msg = { .address = addr, .data = first_irq };
252 
253     if (!msix) {
254         msi_set_message(pdev, msg);
255         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
256         return;
257     }
258 
259     for (i = 0; i < req_num; ++i) {
260         msix_set_message(pdev, i, msg);
261         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
262         if (addr) {
263             ++msg.data;
264         }
265     }
266 }
267 
268 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr,
269                                 uint32_t token, uint32_t nargs,
270                                 target_ulong args, uint32_t nret,
271                                 target_ulong rets)
272 {
273     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
274     uint32_t config_addr = rtas_ld(args, 0);
275     uint64_t buid = rtas_ldq(args, 1);
276     unsigned int func = rtas_ld(args, 3);
277     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
278     unsigned int seq_num = rtas_ld(args, 5);
279     unsigned int ret_intr_type;
280     unsigned int irq, max_irqs = 0;
281     SpaprPhbState *phb = NULL;
282     PCIDevice *pdev = NULL;
283     SpaprPciMsi *msi;
284     int *config_addr_key;
285     Error *err = NULL;
286     int i;
287 
288     /* Fins SpaprPhbState */
289     phb = spapr_pci_find_phb(spapr, buid);
290     if (phb) {
291         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
292     }
293     if (!phb || !pdev) {
294         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
295         return;
296     }
297 
298     switch (func) {
299     case RTAS_CHANGE_FN:
300         if (msi_present(pdev)) {
301             ret_intr_type = RTAS_TYPE_MSI;
302         } else if (msix_present(pdev)) {
303             ret_intr_type = RTAS_TYPE_MSIX;
304         } else {
305             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
306             return;
307         }
308         break;
309     case RTAS_CHANGE_MSI_FN:
310         if (msi_present(pdev)) {
311             ret_intr_type = RTAS_TYPE_MSI;
312         } else {
313             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
314             return;
315         }
316         break;
317     case RTAS_CHANGE_MSIX_FN:
318         if (msix_present(pdev)) {
319             ret_intr_type = RTAS_TYPE_MSIX;
320         } else {
321             rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
322             return;
323         }
324         break;
325     default:
326         error_report("rtas_ibm_change_msi(%u) is not implemented", func);
327         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
328         return;
329     }
330 
331     msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
332 
333     /* Releasing MSIs */
334     if (!req_num) {
335         if (!msi) {
336             trace_spapr_pci_msi("Releasing wrong config", config_addr);
337             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
338             return;
339         }
340 
341         if (msi_present(pdev)) {
342             spapr_msi_setmsg(pdev, 0, false, 0, 0);
343         }
344         if (msix_present(pdev)) {
345             spapr_msi_setmsg(pdev, 0, true, 0, 0);
346         }
347         g_hash_table_remove(phb->msi, &config_addr);
348 
349         trace_spapr_pci_msi("Released MSIs", config_addr);
350         rtas_st(rets, 0, RTAS_OUT_SUCCESS);
351         rtas_st(rets, 1, 0);
352         return;
353     }
354 
355     /* Enabling MSI */
356 
357     /* Check if the device supports as many IRQs as requested */
358     if (ret_intr_type == RTAS_TYPE_MSI) {
359         max_irqs = msi_nr_vectors_allocated(pdev);
360     } else if (ret_intr_type == RTAS_TYPE_MSIX) {
361         max_irqs = pdev->msix_entries_nr;
362     }
363     if (!max_irqs) {
364         error_report("Requested interrupt type %d is not enabled for device %x",
365                      ret_intr_type, config_addr);
366         rtas_st(rets, 0, -1); /* Hardware error */
367         return;
368     }
369     /* Correct the number if the guest asked for too many */
370     if (req_num > max_irqs) {
371         trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
372         req_num = max_irqs;
373         irq = 0; /* to avoid misleading trace */
374         goto out;
375     }
376 
377     /* Allocate MSIs */
378     if (smc->legacy_irq_allocation) {
379         irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
380                              &err);
381     } else {
382         irq = spapr_irq_msi_alloc(spapr, req_num,
383                                   ret_intr_type == RTAS_TYPE_MSI, &err);
384     }
385     if (err) {
386         error_reportf_err(err, "Can't allocate MSIs for device %x: ",
387                           config_addr);
388         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
389         return;
390     }
391 
392     for (i = 0; i < req_num; i++) {
393         spapr_irq_claim(spapr, irq + i, false, &err);
394         if (err) {
395             if (i) {
396                 spapr_irq_free(spapr, irq, i);
397             }
398             if (!smc->legacy_irq_allocation) {
399                 spapr_irq_msi_free(spapr, irq, req_num);
400             }
401             error_reportf_err(err, "Can't allocate MSIs for device %x: ",
402                               config_addr);
403             rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
404             return;
405         }
406     }
407 
408     /* Release previous MSIs */
409     if (msi) {
410         g_hash_table_remove(phb->msi, &config_addr);
411     }
412 
413     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
414     spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
415                      irq, req_num);
416 
417     /* Add MSI device to cache */
418     msi = g_new(SpaprPciMsi, 1);
419     msi->first_irq = irq;
420     msi->num = req_num;
421     config_addr_key = g_new(int, 1);
422     *config_addr_key = config_addr;
423     g_hash_table_insert(phb->msi, config_addr_key, msi);
424 
425 out:
426     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
427     rtas_st(rets, 1, req_num);
428     rtas_st(rets, 2, ++seq_num);
429     if (nret > 3) {
430         rtas_st(rets, 3, ret_intr_type);
431     }
432 
433     trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
434 }
435 
436 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
437                                                    SpaprMachineState *spapr,
438                                                    uint32_t token,
439                                                    uint32_t nargs,
440                                                    target_ulong args,
441                                                    uint32_t nret,
442                                                    target_ulong rets)
443 {
444     uint32_t config_addr = rtas_ld(args, 0);
445     uint64_t buid = rtas_ldq(args, 1);
446     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
447     SpaprPhbState *phb = NULL;
448     PCIDevice *pdev = NULL;
449     SpaprPciMsi *msi;
450 
451     /* Find SpaprPhbState */
452     phb = spapr_pci_find_phb(spapr, buid);
453     if (phb) {
454         pdev = spapr_pci_find_dev(spapr, buid, config_addr);
455     }
456     if (!phb || !pdev) {
457         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
458         return;
459     }
460 
461     /* Find device descriptor and start IRQ */
462     msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
463     if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
464         trace_spapr_pci_msi("Failed to return vector", config_addr);
465         rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
466         return;
467     }
468     intr_src_num = msi->first_irq + ioa_intr_num;
469     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
470                                                            intr_src_num);
471 
472     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
473     rtas_st(rets, 1, intr_src_num);
474     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
475 }
476 
477 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
478                                     SpaprMachineState *spapr,
479                                     uint32_t token, uint32_t nargs,
480                                     target_ulong args, uint32_t nret,
481                                     target_ulong rets)
482 {
483     SpaprPhbState *sphb;
484     uint32_t addr, option;
485     uint64_t buid;
486     int ret;
487 
488     if ((nargs != 4) || (nret != 1)) {
489         goto param_error_exit;
490     }
491 
492     buid = rtas_ldq(args, 1);
493     addr = rtas_ld(args, 0);
494     option = rtas_ld(args, 3);
495 
496     sphb = spapr_pci_find_phb(spapr, buid);
497     if (!sphb) {
498         goto param_error_exit;
499     }
500 
501     if (!spapr_phb_eeh_available(sphb)) {
502         goto param_error_exit;
503     }
504 
505     ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
506     rtas_st(rets, 0, ret);
507     return;
508 
509 param_error_exit:
510     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
511 }
512 
513 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
514                                            SpaprMachineState *spapr,
515                                            uint32_t token, uint32_t nargs,
516                                            target_ulong args, uint32_t nret,
517                                            target_ulong rets)
518 {
519     SpaprPhbState *sphb;
520     PCIDevice *pdev;
521     uint32_t addr, option;
522     uint64_t buid;
523 
524     if ((nargs != 4) || (nret != 2)) {
525         goto param_error_exit;
526     }
527 
528     buid = rtas_ldq(args, 1);
529     sphb = spapr_pci_find_phb(spapr, buid);
530     if (!sphb) {
531         goto param_error_exit;
532     }
533 
534     if (!spapr_phb_eeh_available(sphb)) {
535         goto param_error_exit;
536     }
537 
538     /*
539      * We always have PE address of form "00BB0001". "BB"
540      * represents the bus number of PE's primary bus.
541      */
542     option = rtas_ld(args, 3);
543     switch (option) {
544     case RTAS_GET_PE_ADDR:
545         addr = rtas_ld(args, 0);
546         pdev = spapr_pci_find_dev(spapr, buid, addr);
547         if (!pdev) {
548             goto param_error_exit;
549         }
550 
551         rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
552         break;
553     case RTAS_GET_PE_MODE:
554         rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
555         break;
556     default:
557         goto param_error_exit;
558     }
559 
560     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
561     return;
562 
563 param_error_exit:
564     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
565 }
566 
567 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
568                                             SpaprMachineState *spapr,
569                                             uint32_t token, uint32_t nargs,
570                                             target_ulong args, uint32_t nret,
571                                             target_ulong rets)
572 {
573     SpaprPhbState *sphb;
574     uint64_t buid;
575     int state, ret;
576 
577     if ((nargs != 3) || (nret != 4 && nret != 5)) {
578         goto param_error_exit;
579     }
580 
581     buid = rtas_ldq(args, 1);
582     sphb = spapr_pci_find_phb(spapr, buid);
583     if (!sphb) {
584         goto param_error_exit;
585     }
586 
587     if (!spapr_phb_eeh_available(sphb)) {
588         goto param_error_exit;
589     }
590 
591     ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
592     rtas_st(rets, 0, ret);
593     if (ret != RTAS_OUT_SUCCESS) {
594         return;
595     }
596 
597     rtas_st(rets, 1, state);
598     rtas_st(rets, 2, RTAS_EEH_SUPPORT);
599     rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
600     if (nret >= 5) {
601         rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
602     }
603     return;
604 
605 param_error_exit:
606     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
607 }
608 
609 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
610                                     SpaprMachineState *spapr,
611                                     uint32_t token, uint32_t nargs,
612                                     target_ulong args, uint32_t nret,
613                                     target_ulong rets)
614 {
615     SpaprPhbState *sphb;
616     uint32_t option;
617     uint64_t buid;
618     int ret;
619 
620     if ((nargs != 4) || (nret != 1)) {
621         goto param_error_exit;
622     }
623 
624     buid = rtas_ldq(args, 1);
625     option = rtas_ld(args, 3);
626     sphb = spapr_pci_find_phb(spapr, buid);
627     if (!sphb) {
628         goto param_error_exit;
629     }
630 
631     if (!spapr_phb_eeh_available(sphb)) {
632         goto param_error_exit;
633     }
634 
635     ret = spapr_phb_vfio_eeh_reset(sphb, option);
636     rtas_st(rets, 0, ret);
637     return;
638 
639 param_error_exit:
640     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
641 }
642 
643 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
644                                   SpaprMachineState *spapr,
645                                   uint32_t token, uint32_t nargs,
646                                   target_ulong args, uint32_t nret,
647                                   target_ulong rets)
648 {
649     SpaprPhbState *sphb;
650     uint64_t buid;
651     int ret;
652 
653     if ((nargs != 3) || (nret != 1)) {
654         goto param_error_exit;
655     }
656 
657     buid = rtas_ldq(args, 1);
658     sphb = spapr_pci_find_phb(spapr, buid);
659     if (!sphb) {
660         goto param_error_exit;
661     }
662 
663     if (!spapr_phb_eeh_available(sphb)) {
664         goto param_error_exit;
665     }
666 
667     ret = spapr_phb_vfio_eeh_configure(sphb);
668     rtas_st(rets, 0, ret);
669     return;
670 
671 param_error_exit:
672     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
673 }
674 
675 /* To support it later */
676 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
677                                        SpaprMachineState *spapr,
678                                        uint32_t token, uint32_t nargs,
679                                        target_ulong args, uint32_t nret,
680                                        target_ulong rets)
681 {
682     SpaprPhbState *sphb;
683     int option;
684     uint64_t buid;
685 
686     if ((nargs != 8) || (nret != 1)) {
687         goto param_error_exit;
688     }
689 
690     buid = rtas_ldq(args, 1);
691     sphb = spapr_pci_find_phb(spapr, buid);
692     if (!sphb) {
693         goto param_error_exit;
694     }
695 
696     if (!spapr_phb_eeh_available(sphb)) {
697         goto param_error_exit;
698     }
699 
700     option = rtas_ld(args, 7);
701     switch (option) {
702     case RTAS_SLOT_TEMP_ERR_LOG:
703     case RTAS_SLOT_PERM_ERR_LOG:
704         break;
705     default:
706         goto param_error_exit;
707     }
708 
709     /* We don't have error log yet */
710     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
711     return;
712 
713 param_error_exit:
714     rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
715 }
716 
717 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
718 {
719     /*
720      * Here we use the number returned by pci_swizzle_map_irq_fn to find a
721      * corresponding qemu_irq.
722      */
723     SpaprPhbState *phb = opaque;
724     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
725 
726     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
727     qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level);
728 }
729 
730 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
731 {
732     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
733     PCIINTxRoute route;
734 
735     route.mode = PCI_INTX_ENABLED;
736     route.irq = sphb->lsi_table[pin].irq;
737 
738     return route;
739 }
740 
741 static uint64_t spapr_msi_read(void *opaque, hwaddr addr, unsigned size)
742 {
743     qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__);
744     return 0;
745 }
746 
747 /*
748  * MSI/MSIX memory region implementation.
749  * The handler handles both MSI and MSIX.
750  * The vector number is encoded in least bits in data.
751  */
752 static void spapr_msi_write(void *opaque, hwaddr addr,
753                             uint64_t data, unsigned size)
754 {
755     SpaprMachineState *spapr = opaque;
756     uint32_t irq = data;
757 
758     trace_spapr_pci_msi_write(addr, data, irq);
759 
760     qemu_irq_pulse(spapr_qirq(spapr, irq));
761 }
762 
763 static const MemoryRegionOps spapr_msi_ops = {
764     /*
765      * .read result is undefined by PCI spec.
766      * define .read method to avoid assert failure in memory_region_init_io
767      */
768     .read = spapr_msi_read,
769     .write = spapr_msi_write,
770     .endianness = DEVICE_LITTLE_ENDIAN
771 };
772 
773 /*
774  * PHB PCI device
775  */
776 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
777 {
778     SpaprPhbState *phb = opaque;
779 
780     return &phb->iommu_as;
781 }
782 
783 static const PCIIOMMUOps spapr_iommu_ops = {
784     .get_address_space = spapr_pci_dma_iommu,
785 };
786 
787 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb,  PCIDevice *pdev)
788 {
789     g_autofree char *path = NULL;
790     g_autofree char *host = NULL;
791     g_autofree char *devspec = NULL;
792     char *buf = NULL;
793 
794     /* Get the PCI VFIO host id */
795     host = object_property_get_str(OBJECT(pdev), "host", NULL);
796     if (!host) {
797         return NULL;
798     }
799 
800     /* Construct the path of the file that will give us the DT location */
801     path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
802     if (!g_file_get_contents(path, &devspec, NULL, NULL)) {
803         return NULL;
804     }
805 
806     /* Construct and read from host device tree the loc-code */
807     g_free(path);
808     path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", devspec);
809     if (!g_file_get_contents(path, &buf, NULL, NULL)) {
810         return NULL;
811     }
812     return buf;
813 }
814 
815 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
816 {
817     char *buf;
818     const char *devtype = "qemu";
819     uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
820 
821     if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
822         buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
823         if (buf) {
824             return buf;
825         }
826         devtype = "vfio";
827     }
828     /*
829      * For emulated devices and VFIO-failure case, make up
830      * the loc-code.
831      */
832     buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
833                           devtype, pdev->name, sphb->index, busnr,
834                           PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
835     return buf;
836 }
837 
838 /* Macros to operate with address in OF binding to PCI */
839 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
840 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
841 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
842 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
843 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
844 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
845 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
846 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
847 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
848 
849 /* for 'reg' OF properties */
850 #define RESOURCE_CELLS_SIZE 2
851 #define RESOURCE_CELLS_ADDRESS 3
852 
853 typedef struct ResourceFields {
854     uint32_t phys_hi;
855     uint32_t phys_mid;
856     uint32_t phys_lo;
857     uint32_t size_hi;
858     uint32_t size_lo;
859 } QEMU_PACKED ResourceFields;
860 
861 typedef struct ResourceProps {
862     ResourceFields reg[8];
863     uint32_t reg_len;
864 } ResourceProps;
865 
866 /* fill in the 'reg' OF properties for
867  * a PCI device. 'reg' describes resource requirements for a
868  * device's IO/MEM regions.
869  *
870  * the property is an array of ('phys-addr', 'size') pairs describing
871  * the addressable regions of the PCI device, where 'phys-addr' is a
872  * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
873  * (phys.hi, phys.mid, phys.lo), and 'size' is a
874  * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
875  *
876  * phys.hi = 0xYYXXXXZZ, where:
877  *   0xYY = npt000ss
878  *          |||   |
879  *          |||   +-- space code
880  *          |||               |
881  *          |||               +  00 if configuration space
882  *          |||               +  01 if IO region,
883  *          |||               +  10 if 32-bit MEM region
884  *          |||               +  11 if 64-bit MEM region
885  *          |||
886  *          ||+------ for non-relocatable IO: 1 if aliased
887  *          ||        for relocatable IO: 1 if below 64KB
888  *          ||        for MEM: 1 if below 1MB
889  *          |+------- 1 if region is prefetchable
890  *          +-------- 1 if region is non-relocatable
891  *   0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
892  *            bits respectively
893  *   0xZZ = rrrrrrrr, the register number of the BAR corresponding
894  *          to the region
895  *
896  * phys.mid and phys.lo correspond respectively to the hi/lo portions
897  * of the actual address of the region.
898  *
899  * note also that addresses defined in this property are, at least
900  * for PAPR guests, relative to the PHBs IO/MEM windows, and
901  * correspond directly to the addresses in the BARs.
902  *
903  * in accordance with PCI Bus Binding to Open Firmware,
904  * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
905  * Appendix C.
906  */
907 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
908 {
909     int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
910     uint32_t dev_id = (b_bbbbbbbb(bus_num) |
911                        b_ddddd(PCI_SLOT(d->devfn)) |
912                        b_fff(PCI_FUNC(d->devfn)));
913     ResourceFields *reg;
914     int i, reg_idx = 0;
915 
916     /* config space region */
917     reg = &rp->reg[reg_idx++];
918     reg->phys_hi = cpu_to_be32(dev_id);
919     reg->phys_mid = 0;
920     reg->phys_lo = 0;
921     reg->size_hi = 0;
922     reg->size_lo = 0;
923 
924     for (i = 0; i < PCI_NUM_REGIONS; i++) {
925         if (!d->io_regions[i].size) {
926             continue;
927         }
928 
929         reg = &rp->reg[reg_idx++];
930 
931         reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
932         if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
933             reg->phys_hi |= cpu_to_be32(b_ss(1));
934         } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
935             reg->phys_hi |= cpu_to_be32(b_ss(3));
936         } else {
937             reg->phys_hi |= cpu_to_be32(b_ss(2));
938         }
939         reg->phys_mid = 0;
940         reg->phys_lo = 0;
941         reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
942         reg->size_lo = cpu_to_be32(d->io_regions[i].size);
943     }
944 
945     rp->reg_len = reg_idx * sizeof(ResourceFields);
946 }
947 
948 typedef struct PCIClass PCIClass;
949 typedef struct PCISubClass PCISubClass;
950 typedef struct PCIIFace PCIIFace;
951 
952 struct PCIIFace {
953     int iface;
954     const char *name;
955 };
956 
957 struct PCISubClass {
958     int subclass;
959     const char *name;
960     const PCIIFace *iface;
961 };
962 
963 struct PCIClass {
964     const char *name;
965     const PCISubClass *subc;
966 };
967 
968 static const PCISubClass undef_subclass[] = {
969     { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
970     { 0xFF, NULL, NULL },
971 };
972 
973 static const PCISubClass mass_subclass[] = {
974     { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
975     { PCI_CLASS_STORAGE_IDE, "ide", NULL },
976     { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
977     { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
978     { PCI_CLASS_STORAGE_RAID, "raid", NULL },
979     { PCI_CLASS_STORAGE_ATA, "ata", NULL },
980     { PCI_CLASS_STORAGE_SATA, "sata", NULL },
981     { PCI_CLASS_STORAGE_SAS, "sas", NULL },
982     { 0xFF, NULL, NULL },
983 };
984 
985 static const PCISubClass net_subclass[] = {
986     { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
987     { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
988     { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
989     { PCI_CLASS_NETWORK_ATM, "atm", NULL },
990     { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
991     { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
992     { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
993     { 0xFF, NULL, NULL },
994 };
995 
996 static const PCISubClass displ_subclass[] = {
997     { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
998     { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
999     { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1000     { 0xFF, NULL, NULL },
1001 };
1002 
1003 static const PCISubClass media_subclass[] = {
1004     { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1005     { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1006     { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1007     { 0xFF, NULL, NULL },
1008 };
1009 
1010 static const PCISubClass mem_subclass[] = {
1011     { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1012     { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1013     { 0xFF, NULL, NULL },
1014 };
1015 
1016 static const PCISubClass bridg_subclass[] = {
1017     { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1018     { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1019     { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1020     { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1021     { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1022     { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1023     { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1024     { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1025     { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1026     { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1027     { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1028     { 0xFF, NULL, NULL },
1029 };
1030 
1031 static const PCISubClass comm_subclass[] = {
1032     { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1033     { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1034     { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1035     { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1036     { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1037     { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1038     { 0xFF, NULL, NULL, },
1039 };
1040 
1041 static const PCIIFace pic_iface[] = {
1042     { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1043     { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1044     { 0xFF, NULL },
1045 };
1046 
1047 static const PCISubClass sys_subclass[] = {
1048     { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1049     { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1050     { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1051     { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1052     { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1053     { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1054     { 0xFF, NULL, NULL },
1055 };
1056 
1057 static const PCISubClass inp_subclass[] = {
1058     { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1059     { PCI_CLASS_INPUT_PEN, "pen", NULL },
1060     { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1061     { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1062     { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1063     { 0xFF, NULL, NULL },
1064 };
1065 
1066 static const PCISubClass dock_subclass[] = {
1067     { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1068     { 0xFF, NULL, NULL },
1069 };
1070 
1071 static const PCISubClass cpu_subclass[] = {
1072     { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1073     { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1074     { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1075     { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1076     { 0xFF, NULL, NULL },
1077 };
1078 
1079 static const PCIIFace usb_iface[] = {
1080     { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1081     { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1082     { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1083     { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1084     { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1085     { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1086     { 0xFF, NULL },
1087 };
1088 
1089 static const PCISubClass ser_subclass[] = {
1090     { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1091     { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1092     { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1093     { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1094     { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1095     { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1096     { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1097     { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1098     { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1099     { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1100     { 0xFF, NULL, NULL },
1101 };
1102 
1103 static const PCISubClass wrl_subclass[] = {
1104     { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1105     { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1106     { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1107     { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1108     { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1109     { 0xFF, NULL, NULL },
1110 };
1111 
1112 static const PCISubClass sat_subclass[] = {
1113     { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1114     { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1115     { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1116     { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1117     { 0xFF, NULL, NULL },
1118 };
1119 
1120 static const PCISubClass crypt_subclass[] = {
1121     { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1122     { PCI_CLASS_CRYPT_ENTERTAINMENT,
1123       "entertainment-encryption", NULL },
1124     { 0xFF, NULL, NULL },
1125 };
1126 
1127 static const PCISubClass spc_subclass[] = {
1128     { PCI_CLASS_SP_DPIO, "dpio", NULL },
1129     { PCI_CLASS_SP_PERF, "counter", NULL },
1130     { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1131     { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1132     { 0xFF, NULL, NULL },
1133 };
1134 
1135 static const PCIClass pci_classes[] = {
1136     { "legacy-device", undef_subclass },
1137     { "mass-storage",  mass_subclass },
1138     { "network", net_subclass },
1139     { "display", displ_subclass, },
1140     { "multimedia-device", media_subclass },
1141     { "memory-controller", mem_subclass },
1142     { "unknown-bridge", bridg_subclass },
1143     { "communication-controller", comm_subclass},
1144     { "system-peripheral", sys_subclass },
1145     { "input-controller", inp_subclass },
1146     { "docking-station", dock_subclass },
1147     { "cpu", cpu_subclass },
1148     { "serial-bus", ser_subclass },
1149     { "wireless-controller", wrl_subclass },
1150     { "intelligent-io", NULL },
1151     { "satellite-device", sat_subclass },
1152     { "encryption", crypt_subclass },
1153     { "data-processing-controller", spc_subclass },
1154 };
1155 
1156 static const char *dt_name_from_class(uint8_t class, uint8_t subclass,
1157                                       uint8_t iface)
1158 {
1159     const PCIClass *pclass;
1160     const PCISubClass *psubclass;
1161     const PCIIFace *piface;
1162     const char *name;
1163 
1164     if (class >= ARRAY_SIZE(pci_classes)) {
1165         return "pci";
1166     }
1167 
1168     pclass = pci_classes + class;
1169     name = pclass->name;
1170 
1171     if (pclass->subc == NULL) {
1172         return name;
1173     }
1174 
1175     psubclass = pclass->subc;
1176     while ((psubclass->subclass & 0xff) != 0xff) {
1177         if ((psubclass->subclass & 0xff) == subclass) {
1178             name = psubclass->name;
1179             break;
1180         }
1181         psubclass++;
1182     }
1183 
1184     piface = psubclass->iface;
1185     if (piface == NULL) {
1186         return name;
1187     }
1188     while ((piface->iface & 0xff) != 0xff) {
1189         if ((piface->iface & 0xff) == iface) {
1190             name = piface->name;
1191             break;
1192         }
1193         piface++;
1194     }
1195 
1196     return name;
1197 }
1198 
1199 /*
1200  * DRC helper functions
1201  */
1202 
1203 static uint32_t drc_id_from_devfn(SpaprPhbState *phb,
1204                                   uint8_t chassis, int32_t devfn)
1205 {
1206     return (phb->index << 16) | (chassis << 8) | devfn;
1207 }
1208 
1209 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb,
1210                                 uint8_t chassis, int32_t devfn)
1211 {
1212     return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1213                            drc_id_from_devfn(phb, chassis, devfn));
1214 }
1215 
1216 static uint8_t chassis_from_bus(PCIBus *bus)
1217 {
1218     if (pci_bus_is_root(bus)) {
1219         return 0;
1220     } else {
1221         PCIDevice *bridge = pci_bridge_get_device(bus);
1222 
1223         return object_property_get_uint(OBJECT(bridge), "chassis_nr",
1224                                         &error_abort);
1225     }
1226 }
1227 
1228 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev)
1229 {
1230     uint8_t chassis = chassis_from_bus(pci_get_bus(dev));
1231 
1232     return drc_from_devfn(phb, chassis, dev->devfn);
1233 }
1234 
1235 static void add_drcs(SpaprPhbState *phb, PCIBus *bus)
1236 {
1237     Object *owner;
1238     int i;
1239     uint8_t chassis;
1240 
1241     if (!phb->dr_enabled) {
1242         return;
1243     }
1244 
1245     chassis = chassis_from_bus(bus);
1246 
1247     if (pci_bus_is_root(bus)) {
1248         owner = OBJECT(phb);
1249     } else {
1250         owner = OBJECT(pci_bridge_get_device(bus));
1251     }
1252 
1253     for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) {
1254         spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI,
1255                                drc_id_from_devfn(phb, chassis, i));
1256     }
1257 }
1258 
1259 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus)
1260 {
1261     int i;
1262     uint8_t chassis;
1263 
1264     if (!phb->dr_enabled) {
1265         return;
1266     }
1267 
1268     chassis = chassis_from_bus(bus);
1269 
1270     for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) {
1271         SpaprDrc *drc = drc_from_devfn(phb, chassis, i);
1272 
1273         if (drc) {
1274             object_unparent(OBJECT(drc));
1275         }
1276     }
1277 }
1278 
1279 typedef struct PciWalkFdt {
1280     void *fdt;
1281     int offset;
1282     SpaprPhbState *sphb;
1283     int err;
1284 } PciWalkFdt;
1285 
1286 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1287                                void *fdt, int parent_offset);
1288 
1289 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev,
1290                                    void *opaque)
1291 {
1292     PciWalkFdt *p = opaque;
1293     int err;
1294 
1295     if (p->err) {
1296         /* Something's already broken, don't keep going */
1297         return;
1298     }
1299 
1300     err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset);
1301     if (err < 0) {
1302         p->err = err;
1303     }
1304 }
1305 
1306 /* Augment PCI device node with bridge specific information */
1307 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus,
1308                                void *fdt, int offset)
1309 {
1310     Object *owner;
1311     PciWalkFdt cbinfo = {
1312         .fdt = fdt,
1313         .offset = offset,
1314         .sphb = sphb,
1315         .err = 0,
1316     };
1317     int ret;
1318 
1319     _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1320                           RESOURCE_CELLS_ADDRESS));
1321     _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1322                           RESOURCE_CELLS_SIZE));
1323 
1324     assert(bus);
1325     pci_for_each_device_under_bus_reverse(bus, spapr_dt_pci_device_cb, &cbinfo);
1326     if (cbinfo.err) {
1327         return cbinfo.err;
1328     }
1329 
1330     if (pci_bus_is_root(bus)) {
1331         owner = OBJECT(sphb);
1332     } else {
1333         owner = OBJECT(pci_bridge_get_device(bus));
1334     }
1335 
1336     ret = spapr_dt_drc(fdt, offset, owner,
1337                        SPAPR_DR_CONNECTOR_TYPE_PCI);
1338     if (ret) {
1339         return ret;
1340     }
1341 
1342     return offset;
1343 }
1344 
1345 char *spapr_pci_fw_dev_name(PCIDevice *dev)
1346 {
1347     const gchar *basename;
1348     int slot = PCI_SLOT(dev->devfn);
1349     int func = PCI_FUNC(dev->devfn);
1350     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1351 
1352     basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1353                                   ccode & 0xff);
1354 
1355     if (func != 0) {
1356         return g_strdup_printf("%s@%x,%x", basename, slot, func);
1357     } else {
1358         return g_strdup_printf("%s@%x", basename, slot);
1359     }
1360 }
1361 
1362 /* create OF node for pci device and required OF DT properties */
1363 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1364                                void *fdt, int parent_offset)
1365 {
1366     int offset;
1367     g_autofree gchar *nodename = spapr_pci_fw_dev_name(dev);
1368     ResourceProps rp;
1369     SpaprDrc *drc = drc_from_dev(sphb, dev);
1370     uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2);
1371     uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2);
1372     uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1);
1373     uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1374     uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1);
1375     uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2);
1376     uint32_t subsystem_vendor_id =
1377         pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
1378     uint32_t cache_line_size =
1379         pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1);
1380     uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1381     gchar *loc_code;
1382 
1383     _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename));
1384 
1385     /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1386     _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id));
1387     _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id));
1388     _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id));
1389 
1390     _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1391     if (irq_pin) {
1392         _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin));
1393     }
1394 
1395     if (subsystem_id) {
1396         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id));
1397     }
1398 
1399     if (subsystem_vendor_id) {
1400         _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1401                               subsystem_vendor_id));
1402     }
1403 
1404     _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size));
1405 
1406 
1407     /* the following fdt cells are masked off the pci status register */
1408     _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1409                           PCI_STATUS_DEVSEL_MASK & pci_status));
1410 
1411     if (pci_status & PCI_STATUS_FAST_BACK) {
1412         _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1413     }
1414     if (pci_status & PCI_STATUS_66MHZ) {
1415         _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1416     }
1417     if (pci_status & PCI_STATUS_UDF) {
1418         _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1419     }
1420 
1421     loc_code = spapr_phb_get_loc_code(sphb, dev);
1422     _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code));
1423     g_free(loc_code);
1424 
1425     if (drc) {
1426         _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index",
1427                               spapr_drc_index(drc)));
1428     }
1429 
1430     if (msi_present(dev)) {
1431         uint32_t max_msi = msi_nr_vectors_allocated(dev);
1432         if (max_msi) {
1433             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1434         }
1435     }
1436     if (msix_present(dev)) {
1437         uint32_t max_msix = dev->msix_entries_nr;
1438         if (max_msix) {
1439             _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1440         }
1441     }
1442 
1443     populate_resource_props(dev, &rp);
1444     _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1445 
1446     if (sphb->pcie_ecs && pci_is_express(dev)) {
1447         _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1448     }
1449 
1450     if (!IS_PCI_BRIDGE(dev)) {
1451         /* Properties only for non-bridges */
1452         uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1);
1453         uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1);
1454         _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant));
1455         _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency));
1456         return offset;
1457     } else {
1458         PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev));
1459 
1460         return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset);
1461     }
1462 }
1463 
1464 /* Callback to be called during DRC release. */
1465 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1466 {
1467     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
1468 
1469     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
1470     object_unparent(OBJECT(dev));
1471 }
1472 
1473 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
1474                           void *fdt, int *fdt_start_offset, Error **errp)
1475 {
1476     HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev);
1477     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler);
1478     PCIDevice *pdev = PCI_DEVICE(drc->dev);
1479 
1480     *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0);
1481     return 0;
1482 }
1483 
1484 static void spapr_pci_bridge_plug(SpaprPhbState *phb,
1485                                   PCIBridge *bridge)
1486 {
1487     PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1488 
1489     add_drcs(phb, bus);
1490 }
1491 
1492 /* Returns non-zero if the value of "chassis_nr" is already in use */
1493 static int check_chassis_nr(Object *obj, void *opaque)
1494 {
1495     int new_chassis_nr =
1496         object_property_get_uint(opaque, "chassis_nr", &error_abort);
1497     int chassis_nr =
1498         object_property_get_uint(obj, "chassis_nr", NULL);
1499 
1500     if (!object_dynamic_cast(obj, TYPE_PCI_BRIDGE)) {
1501         return 0;
1502     }
1503 
1504     /* Skip unsupported bridge types */
1505     if (!chassis_nr) {
1506         return 0;
1507     }
1508 
1509     /* Skip self */
1510     if (obj == opaque) {
1511         return 0;
1512     }
1513 
1514     return chassis_nr == new_chassis_nr;
1515 }
1516 
1517 static bool bridge_has_valid_chassis_nr(Object *bridge, Error **errp)
1518 {
1519     int chassis_nr =
1520         object_property_get_uint(bridge, "chassis_nr", NULL);
1521 
1522     /*
1523      * slotid_cap_init() already ensures that "chassis_nr" isn't null for
1524      * standard PCI bridges, so this really tells if "chassis_nr" is present
1525      * or not.
1526      */
1527     if (!chassis_nr) {
1528         error_setg(errp, "PCI Bridge lacks a \"chassis_nr\" property");
1529         error_append_hint(errp, "Try -device pci-bridge instead.\n");
1530         return false;
1531     }
1532 
1533     /* We want unique values for "chassis_nr" */
1534     if (object_child_foreach_recursive(object_get_root(), check_chassis_nr,
1535                                        bridge)) {
1536         error_setg(errp, "Bridge chassis %d already in use", chassis_nr);
1537         return false;
1538     }
1539 
1540     return true;
1541 }
1542 
1543 static void spapr_pci_pre_plug(HotplugHandler *plug_handler,
1544                                DeviceState *plugged_dev, Error **errp)
1545 {
1546     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1547     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1548     SpaprDrc *drc = drc_from_dev(phb, pdev);
1549     PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1550     uint32_t slotnr = PCI_SLOT(pdev->devfn);
1551 
1552     if (!phb->dr_enabled) {
1553         /* if this is a hotplug operation initiated by the user
1554          * we need to let them know it's not enabled
1555          */
1556         if (plugged_dev->hotplugged) {
1557             error_setg(errp, QERR_BUS_NO_HOTPLUG,
1558                        object_get_typename(OBJECT(phb)));
1559             return;
1560         }
1561     }
1562 
1563     if (IS_PCI_BRIDGE(plugged_dev)) {
1564         if (!bridge_has_valid_chassis_nr(OBJECT(plugged_dev), errp)) {
1565             return;
1566         }
1567     }
1568 
1569     /* Following the QEMU convention used for PCIe multifunction
1570      * hotplug, we do not allow functions to be hotplugged to a
1571      * slot that already has function 0 present
1572      */
1573     if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1574         PCI_FUNC(pdev->devfn) != 0) {
1575         error_setg(errp, "PCI: slot %d function 0 already occupied by %s,"
1576                    " additional functions can no longer be exposed to guest.",
1577                    slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1578     }
1579 
1580     if (drc && drc->dev) {
1581         error_setg(errp, "PCI: slot %d already occupied by %s", slotnr,
1582                    pci_get_function_0(PCI_DEVICE(drc->dev))->name);
1583         return;
1584     }
1585 }
1586 
1587 static void spapr_pci_plug(HotplugHandler *plug_handler,
1588                            DeviceState *plugged_dev, Error **errp)
1589 {
1590     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1591     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1592     SpaprDrc *drc = drc_from_dev(phb, pdev);
1593     uint32_t slotnr = PCI_SLOT(pdev->devfn);
1594 
1595     /*
1596      * If DR is disabled we don't need to do anything in the case of
1597      * hotplug or coldplug callbacks.
1598      */
1599     if (!phb->dr_enabled) {
1600         return;
1601     }
1602 
1603     g_assert(drc);
1604 
1605     if (IS_PCI_BRIDGE(plugged_dev)) {
1606         spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev));
1607     }
1608 
1609     /* spapr_pci_pre_plug() already checked the DRC is attachable */
1610     spapr_drc_attach(drc, DEVICE(pdev));
1611 
1612     /* If this is function 0, signal hotplug for all the device functions.
1613      * Otherwise defer sending the hotplug event.
1614      */
1615     if (!spapr_drc_hotplugged(plugged_dev)) {
1616         spapr_drc_reset(drc);
1617     } else if (PCI_FUNC(pdev->devfn) == 0) {
1618         int i;
1619         uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1620 
1621         for (i = 0; i < 8; i++) {
1622             SpaprDrc *func_drc;
1623             SpaprDrcClass *func_drck;
1624             SpaprDREntitySense state;
1625 
1626             func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1627             func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1628             state = func_drck->dr_entity_sense(func_drc);
1629 
1630             if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1631                 spapr_hotplug_req_add_by_index(func_drc);
1632             }
1633         }
1634     }
1635 }
1636 
1637 static void spapr_pci_bridge_unplug(SpaprPhbState *phb,
1638                                     PCIBridge *bridge)
1639 {
1640     PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1641 
1642     remove_drcs(phb, bus);
1643 }
1644 
1645 static void spapr_pci_unplug(HotplugHandler *plug_handler,
1646                              DeviceState *plugged_dev, Error **errp)
1647 {
1648     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1649 
1650     /* some version guests do not wait for completion of a device
1651      * cleanup (generally done asynchronously by the kernel) before
1652      * signaling to QEMU that the device is safe, but instead sleep
1653      * for some 'safe' period of time. unfortunately on a busy host
1654      * this sleep isn't guaranteed to be long enough, resulting in
1655      * bad things like IRQ lines being left asserted during final
1656      * device removal. to deal with this we call reset just prior
1657      * to finalizing the device, which will put the device back into
1658      * an 'idle' state, as the device cleanup code expects.
1659      */
1660     pci_device_reset(PCI_DEVICE(plugged_dev));
1661 
1662     if (IS_PCI_BRIDGE(plugged_dev)) {
1663         spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev));
1664         return;
1665     }
1666 
1667     qdev_unrealize(plugged_dev);
1668 }
1669 
1670 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1671                                      DeviceState *plugged_dev, Error **errp)
1672 {
1673     SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1674     PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1675     SpaprDrc *drc = drc_from_dev(phb, pdev);
1676 
1677     if (!phb->dr_enabled) {
1678         error_setg(errp, QERR_BUS_NO_HOTPLUG,
1679                    object_get_typename(OBJECT(phb)));
1680         return;
1681     }
1682 
1683     g_assert(drc);
1684     g_assert(drc->dev == plugged_dev);
1685 
1686     if (!spapr_drc_unplug_requested(drc)) {
1687         uint32_t slotnr = PCI_SLOT(pdev->devfn);
1688         SpaprDrc *func_drc;
1689         SpaprDrcClass *func_drck;
1690         SpaprDREntitySense state;
1691         int i;
1692         uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1693 
1694         if (IS_PCI_BRIDGE(plugged_dev)) {
1695             error_setg(errp, "PCI: Hot unplug of PCI bridges not supported");
1696             return;
1697         }
1698         if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) {
1699             error_setg(errp, "PCI: Cannot unplug NVLink2 devices");
1700             return;
1701         }
1702 
1703         /* ensure any other present functions are pending unplug */
1704         if (PCI_FUNC(pdev->devfn) == 0) {
1705             for (i = 1; i < 8; i++) {
1706                 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1707                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1708                 state = func_drck->dr_entity_sense(func_drc);
1709                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1710                     && !spapr_drc_unplug_requested(func_drc)) {
1711                     /*
1712                      * Attempting to remove function 0 of a multifunction
1713                      * device will will cascade into removing all child
1714                      * functions, even if their unplug weren't requested
1715                      * beforehand.
1716                      */
1717                     spapr_drc_unplug_request(func_drc);
1718                 }
1719             }
1720         }
1721 
1722         spapr_drc_unplug_request(drc);
1723 
1724         /* if this isn't func 0, defer unplug event. otherwise signal removal
1725          * for all present functions
1726          */
1727         if (PCI_FUNC(pdev->devfn) == 0) {
1728             for (i = 7; i >= 0; i--) {
1729                 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1730                 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1731                 state = func_drck->dr_entity_sense(func_drc);
1732                 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1733                     spapr_hotplug_req_remove_by_index(func_drc);
1734                 }
1735             }
1736         }
1737     } else {
1738         error_setg(errp,
1739                    "PCI device unplug already in progress for device %s",
1740                    drc->dev->id);
1741     }
1742 }
1743 
1744 static void spapr_phb_finalizefn(Object *obj)
1745 {
1746     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj);
1747 
1748     g_free(sphb->dtbusname);
1749     sphb->dtbusname = NULL;
1750 }
1751 
1752 static void spapr_phb_unrealize(DeviceState *dev)
1753 {
1754     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1755     SysBusDevice *s = SYS_BUS_DEVICE(dev);
1756     PCIHostState *phb = PCI_HOST_BRIDGE(s);
1757     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb);
1758     SpaprTceTable *tcet;
1759     int i;
1760     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1761 
1762     if (sphb->msi) {
1763         g_hash_table_unref(sphb->msi);
1764         sphb->msi = NULL;
1765     }
1766 
1767     /*
1768      * Remove IO/MMIO subregions and aliases, rest should get cleaned
1769      * via PHB's unrealize->object_finalize
1770      */
1771     for (i = windows_supported - 1; i >= 0; i--) {
1772         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1773         if (tcet) {
1774             memory_region_del_subregion(&sphb->iommu_root,
1775                                         spapr_tce_get_iommu(tcet));
1776         }
1777     }
1778 
1779     remove_drcs(sphb, phb->bus);
1780 
1781     for (i = PCI_NUM_PINS - 1; i >= 0; i--) {
1782         if (sphb->lsi_table[i].irq) {
1783             spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1);
1784             sphb->lsi_table[i].irq = 0;
1785         }
1786     }
1787 
1788     QLIST_REMOVE(sphb, list);
1789 
1790     memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow);
1791 
1792     /*
1793      * An attached PCI device may have memory listeners, eg. VFIO PCI. We have
1794      * unmapped all sections. Remove the listeners now, before destroying the
1795      * address space.
1796      */
1797     address_space_remove_listeners(&sphb->iommu_as);
1798     address_space_destroy(&sphb->iommu_as);
1799 
1800     qbus_set_hotplug_handler(BUS(phb->bus), NULL);
1801     pci_unregister_root_bus(phb->bus);
1802 
1803     memory_region_del_subregion(get_system_memory(), &sphb->iowindow);
1804     if (sphb->mem64_win_pciaddr != (hwaddr)-1) {
1805         memory_region_del_subregion(get_system_memory(), &sphb->mem64window);
1806     }
1807     memory_region_del_subregion(get_system_memory(), &sphb->mem32window);
1808 }
1809 
1810 static void spapr_phb_destroy_msi(gpointer opaque)
1811 {
1812     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1813     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1814     SpaprPciMsi *msi = opaque;
1815 
1816     if (!smc->legacy_irq_allocation) {
1817         spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
1818     }
1819     spapr_irq_free(spapr, msi->first_irq, msi->num);
1820     g_free(msi);
1821 }
1822 
1823 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1824 {
1825     ERRP_GUARD();
1826     /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1827      * tries to add a sPAPR PHB to a non-pseries machine.
1828      */
1829     SpaprMachineState *spapr =
1830         (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(),
1831                                                   TYPE_SPAPR_MACHINE);
1832     SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1833     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1834     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(sbd);
1835     PCIHostState *phb = PCI_HOST_BRIDGE(sbd);
1836     MachineState *ms = MACHINE(spapr);
1837     char *namebuf;
1838     int i;
1839     PCIBus *bus;
1840     uint64_t msi_window_size = 4096;
1841     SpaprTceTable *tcet;
1842     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1843 
1844     if (!spapr) {
1845         error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1846         return;
1847     }
1848 
1849     assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */
1850 
1851     if (sphb->mem64_win_size != 0) {
1852         if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1853             error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1854                        " (max 2 GiB)", sphb->mem_win_size);
1855             return;
1856         }
1857 
1858         /* 64-bit window defaults to identity mapping */
1859         sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1860     } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1861         /*
1862          * For compatibility with old configuration, if no 64-bit MMIO
1863          * window is specified, but the ordinary (32-bit) memory
1864          * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1865          * window, with a 64-bit MMIO window following on immediately
1866          * afterwards
1867          */
1868         sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1869         sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1870         sphb->mem64_win_pciaddr =
1871             SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1872         sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1873     }
1874 
1875     if (spapr_pci_find_phb(spapr, sphb->buid)) {
1876         SpaprPhbState *s;
1877 
1878         error_setg(errp, "PCI host bridges must have unique indexes");
1879         error_append_hint(errp, "The following indexes are already in use:");
1880         QLIST_FOREACH(s, &spapr->phbs, list) {
1881             error_append_hint(errp, " %d", s->index);
1882         }
1883         error_append_hint(errp, "\nTry another value for the index property\n");
1884         return;
1885     }
1886 
1887     if (sphb->numa_node != -1 &&
1888         (sphb->numa_node >= MAX_NODES ||
1889          !ms->numa_state->nodes[sphb->numa_node].present)) {
1890         error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1891         return;
1892     }
1893 
1894     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1895 
1896     /* Initialize memory regions */
1897     namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1898     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1899     g_free(namebuf);
1900 
1901     namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1902     memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1903                              namebuf, &sphb->memspace,
1904                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1905     g_free(namebuf);
1906     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1907                                 &sphb->mem32window);
1908 
1909     if (sphb->mem64_win_size != 0) {
1910         namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1911         memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1912                                  namebuf, &sphb->memspace,
1913                                  sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1914         g_free(namebuf);
1915 
1916         memory_region_add_subregion(get_system_memory(),
1917                                     sphb->mem64_win_addr,
1918                                     &sphb->mem64window);
1919     }
1920 
1921     /* Initialize IO regions */
1922     namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1923     memory_region_init(&sphb->iospace, OBJECT(sphb),
1924                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
1925     g_free(namebuf);
1926 
1927     namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1928     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1929                              &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1930     g_free(namebuf);
1931     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1932                                 &sphb->iowindow);
1933 
1934     bus = pci_register_root_bus(dev, NULL,
1935                                 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb,
1936                                 &sphb->memspace, &sphb->iospace,
1937                                 PCI_DEVFN(0, 0), PCI_NUM_PINS,
1938                                 TYPE_PCI_BUS);
1939 
1940     /*
1941      * Despite resembling a vanilla PCI bus in most ways, the PAPR
1942      * para-virtualized PCI bus *does* permit PCI-E extended config
1943      * space access
1944      */
1945     if (sphb->pcie_ecs) {
1946         bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1947     }
1948     phb->bus = bus;
1949     qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb));
1950 
1951     /*
1952      * Initialize PHB address space.
1953      * By default there will be at least one subregion for default
1954      * 32bit DMA window.
1955      * Later the guest might want to create another DMA window
1956      * which will become another memory subregion.
1957      */
1958     namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1959     memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1960                        namebuf, UINT64_MAX);
1961     g_free(namebuf);
1962     address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1963                        sphb->dtbusname);
1964 
1965     /*
1966      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1967      * we need to allocate some memory to catch those writes coming
1968      * from msi_notify()/msix_notify().
1969      * As MSIMessage:addr is going to be the same and MSIMessage:data
1970      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1971      * be used.
1972      *
1973      * For KVM we want to ensure that this memory is a full page so that
1974      * our memory slot is of page size granularity.
1975      */
1976     if (kvm_enabled()) {
1977         msi_window_size = qemu_real_host_page_size();
1978     }
1979 
1980     memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1981                           "msi", msi_window_size);
1982     memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1983                                 &sphb->msiwindow);
1984 
1985     pci_setup_iommu(bus, &spapr_iommu_ops, sphb);
1986 
1987     pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1988 
1989     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1990 
1991     /* Initialize the LSI table */
1992     for (i = 0; i < PCI_NUM_PINS; i++) {
1993         int irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
1994 
1995         if (smc->legacy_irq_allocation) {
1996             irq = spapr_irq_findone(spapr, errp);
1997             if (irq < 0) {
1998                 error_prepend(errp, "can't allocate LSIs: ");
1999                 /*
2000                  * Older machines will never support PHB hotplug, ie, this is an
2001                  * init only path and QEMU will terminate. No need to rollback.
2002                  */
2003                 return;
2004             }
2005         }
2006 
2007         if (spapr_irq_claim(spapr, irq, true, errp) < 0) {
2008             error_prepend(errp, "can't allocate LSIs: ");
2009             goto unrealize;
2010         }
2011 
2012         sphb->lsi_table[i].irq = irq;
2013     }
2014 
2015     /* allocate connectors for child PCI devices */
2016     add_drcs(sphb, phb->bus);
2017 
2018     /* DMA setup */
2019     for (i = 0; i < windows_supported; ++i) {
2020         tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
2021         if (!tcet) {
2022             error_setg(errp, "Creating window#%d failed for %s",
2023                        i, sphb->dtbusname);
2024             goto unrealize;
2025         }
2026         memory_region_add_subregion(&sphb->iommu_root, 0,
2027                                     spapr_tce_get_iommu(tcet));
2028     }
2029 
2030     sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free,
2031                                       spapr_phb_destroy_msi);
2032     return;
2033 
2034 unrealize:
2035     spapr_phb_unrealize(dev);
2036 }
2037 
2038 static int spapr_phb_children_reset(Object *child, void *opaque)
2039 {
2040     DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
2041 
2042     if (dev) {
2043         device_cold_reset(dev);
2044     }
2045 
2046     return 0;
2047 }
2048 
2049 void spapr_phb_dma_reset(SpaprPhbState *sphb)
2050 {
2051     int i;
2052     SpaprTceTable *tcet;
2053 
2054     for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
2055         tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
2056 
2057         if (tcet && tcet->nb_table) {
2058             spapr_tce_table_disable(tcet);
2059         }
2060     }
2061 
2062     /* Register default 32bit DMA window */
2063     tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
2064     spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
2065                            sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
2066     tcet->def_win = true;
2067 }
2068 
2069 static void spapr_phb_reset(DeviceState *qdev)
2070 {
2071     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
2072 
2073     spapr_phb_dma_reset(sphb);
2074 
2075     /* Reset the IOMMU state */
2076     object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
2077 
2078     if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
2079         spapr_phb_vfio_reset(qdev);
2080     }
2081 
2082     g_hash_table_remove_all(sphb->msi);
2083 }
2084 
2085 static Property spapr_phb_properties[] = {
2086     DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1),
2087     DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size,
2088                        SPAPR_PCI_MEM32_WIN_SIZE),
2089     DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size,
2090                        SPAPR_PCI_MEM64_WIN_SIZE),
2091     DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size,
2092                        SPAPR_PCI_IO_WIN_SIZE),
2093     DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled,
2094                      true),
2095     /* Default DMA window is 0..1GB */
2096     DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0),
2097     DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000),
2098     DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr,
2099                        0x800000000000000ULL),
2100     DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true),
2101     DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask,
2102                        (1ULL << 12) | (1ULL << 16)
2103                        | (1ULL << 21) | (1ULL << 24)),
2104     DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1),
2105     DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState,
2106                      pre_2_8_migration, false),
2107     DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState,
2108                      pcie_ecs, true),
2109     DEFINE_PROP_BOOL("pre-5.1-associativity", SpaprPhbState,
2110                      pre_5_1_assoc, false),
2111     DEFINE_PROP_END_OF_LIST(),
2112 };
2113 
2114 static const VMStateDescription vmstate_spapr_pci_lsi = {
2115     .name = "spapr_pci/lsi",
2116     .version_id = 1,
2117     .minimum_version_id = 1,
2118     .fields = (VMStateField[]) {
2119         VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL),
2120 
2121         VMSTATE_END_OF_LIST()
2122     },
2123 };
2124 
2125 static const VMStateDescription vmstate_spapr_pci_msi = {
2126     .name = "spapr_pci/msi",
2127     .version_id = 1,
2128     .minimum_version_id = 1,
2129     .fields = (VMStateField []) {
2130         VMSTATE_UINT32(key, SpaprPciMsiMig),
2131         VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig),
2132         VMSTATE_UINT32(value.num, SpaprPciMsiMig),
2133         VMSTATE_END_OF_LIST()
2134     },
2135 };
2136 
2137 static int spapr_pci_pre_save(void *opaque)
2138 {
2139     SpaprPhbState *sphb = opaque;
2140     GHashTableIter iter;
2141     gpointer key, value;
2142     int i;
2143 
2144     if (sphb->pre_2_8_migration) {
2145         sphb->mig_liobn = sphb->dma_liobn[0];
2146         sphb->mig_mem_win_addr = sphb->mem_win_addr;
2147         sphb->mig_mem_win_size = sphb->mem_win_size;
2148         sphb->mig_io_win_addr = sphb->io_win_addr;
2149         sphb->mig_io_win_size = sphb->io_win_size;
2150 
2151         if ((sphb->mem64_win_size != 0)
2152             && (sphb->mem64_win_addr
2153                 == (sphb->mem_win_addr + sphb->mem_win_size))) {
2154             sphb->mig_mem_win_size += sphb->mem64_win_size;
2155         }
2156     }
2157 
2158     g_free(sphb->msi_devs);
2159     sphb->msi_devs = NULL;
2160     sphb->msi_devs_num = g_hash_table_size(sphb->msi);
2161     if (!sphb->msi_devs_num) {
2162         return 0;
2163     }
2164     sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num);
2165 
2166     g_hash_table_iter_init(&iter, sphb->msi);
2167     for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
2168         sphb->msi_devs[i].key = *(uint32_t *) key;
2169         sphb->msi_devs[i].value = *(SpaprPciMsi *) value;
2170     }
2171 
2172     return 0;
2173 }
2174 
2175 static int spapr_pci_post_save(void *opaque)
2176 {
2177     SpaprPhbState *sphb = opaque;
2178 
2179     g_free(sphb->msi_devs);
2180     sphb->msi_devs = NULL;
2181     sphb->msi_devs_num = 0;
2182     return 0;
2183 }
2184 
2185 static int spapr_pci_post_load(void *opaque, int version_id)
2186 {
2187     SpaprPhbState *sphb = opaque;
2188     gpointer key, value;
2189     int i;
2190 
2191     for (i = 0; i < sphb->msi_devs_num; ++i) {
2192         key = g_memdup(&sphb->msi_devs[i].key,
2193                        sizeof(sphb->msi_devs[i].key));
2194         value = g_memdup(&sphb->msi_devs[i].value,
2195                          sizeof(sphb->msi_devs[i].value));
2196         g_hash_table_insert(sphb->msi, key, value);
2197     }
2198     g_free(sphb->msi_devs);
2199     sphb->msi_devs = NULL;
2200     sphb->msi_devs_num = 0;
2201 
2202     return 0;
2203 }
2204 
2205 static bool pre_2_8_migration(void *opaque, int version_id)
2206 {
2207     SpaprPhbState *sphb = opaque;
2208 
2209     return sphb->pre_2_8_migration;
2210 }
2211 
2212 static const VMStateDescription vmstate_spapr_pci = {
2213     .name = "spapr_pci",
2214     .version_id = 2,
2215     .minimum_version_id = 2,
2216     .pre_save = spapr_pci_pre_save,
2217     .post_save = spapr_pci_post_save,
2218     .post_load = spapr_pci_post_load,
2219     .fields = (VMStateField[]) {
2220         VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL),
2221         VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration),
2222         VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration),
2223         VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration),
2224         VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration),
2225         VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration),
2226         VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0,
2227                              vmstate_spapr_pci_lsi, SpaprPciLsi),
2228         VMSTATE_INT32(msi_devs_num, SpaprPhbState),
2229         VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0,
2230                                     vmstate_spapr_pci_msi, SpaprPciMsiMig),
2231         VMSTATE_END_OF_LIST()
2232     },
2233 };
2234 
2235 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
2236                                            PCIBus *rootbus)
2237 {
2238     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
2239 
2240     return sphb->dtbusname;
2241 }
2242 
2243 static void spapr_phb_class_init(ObjectClass *klass, void *data)
2244 {
2245     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
2246     DeviceClass *dc = DEVICE_CLASS(klass);
2247     HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
2248 
2249     hc->root_bus_path = spapr_phb_root_bus_path;
2250     dc->realize = spapr_phb_realize;
2251     dc->unrealize = spapr_phb_unrealize;
2252     device_class_set_props(dc, spapr_phb_properties);
2253     dc->reset = spapr_phb_reset;
2254     dc->vmsd = &vmstate_spapr_pci;
2255     /* Supported by TYPE_SPAPR_MACHINE */
2256     dc->user_creatable = true;
2257     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
2258     hp->pre_plug = spapr_pci_pre_plug;
2259     hp->plug = spapr_pci_plug;
2260     hp->unplug = spapr_pci_unplug;
2261     hp->unplug_request = spapr_pci_unplug_request;
2262 }
2263 
2264 static const TypeInfo spapr_phb_info = {
2265     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
2266     .parent        = TYPE_PCI_HOST_BRIDGE,
2267     .instance_size = sizeof(SpaprPhbState),
2268     .instance_finalize = spapr_phb_finalizefn,
2269     .class_init    = spapr_phb_class_init,
2270     .interfaces    = (InterfaceInfo[]) {
2271         { TYPE_HOTPLUG_HANDLER },
2272         { }
2273     }
2274 };
2275 
2276 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2277                                            void *opaque)
2278 {
2279     unsigned int *bus_no = opaque;
2280     PCIBus *sec_bus = NULL;
2281 
2282     if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2283          PCI_HEADER_TYPE_BRIDGE)) {
2284         return;
2285     }
2286 
2287     (*bus_no)++;
2288     pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
2289     pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2290     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2291 
2292     sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2293     if (!sec_bus) {
2294         return;
2295     }
2296 
2297     pci_for_each_device_under_bus(sec_bus, spapr_phb_pci_enumerate_bridge,
2298                                   bus_no);
2299     pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2300 }
2301 
2302 static void spapr_phb_pci_enumerate(SpaprPhbState *phb)
2303 {
2304     PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2305     unsigned int bus_no = 0;
2306 
2307     pci_for_each_device_under_bus(bus, spapr_phb_pci_enumerate_bridge,
2308                                   &bus_no);
2309 
2310 }
2311 
2312 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb,
2313                  uint32_t intc_phandle, void *fdt, int *node_offset)
2314 {
2315     int bus_off, i, j, ret;
2316     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2317     struct {
2318         uint32_t hi;
2319         uint64_t child;
2320         uint64_t parent;
2321         uint64_t size;
2322     } QEMU_PACKED ranges[] = {
2323         {
2324             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2325             cpu_to_be64(phb->io_win_addr),
2326             cpu_to_be64(memory_region_size(&phb->iospace)),
2327         },
2328         {
2329             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2330             cpu_to_be64(phb->mem_win_addr),
2331             cpu_to_be64(phb->mem_win_size),
2332         },
2333         {
2334             cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2335             cpu_to_be64(phb->mem64_win_addr),
2336             cpu_to_be64(phb->mem64_win_size),
2337         },
2338     };
2339     const unsigned sizeof_ranges =
2340         (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2341     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2342     uint32_t interrupt_map_mask[] = {
2343         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2344     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2345     uint32_t ddw_applicable[] = {
2346         cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2347         cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2348         cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2349     };
2350     uint32_t ddw_extensions[] = {
2351         cpu_to_be32(2),
2352         cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW),
2353         cpu_to_be32(1), /* 1: ibm,query-pe-dma-window 6 outputs, PAPR 2.8 */
2354     };
2355     SpaprTceTable *tcet;
2356     SpaprDrc *drc;
2357 
2358     /* Start populating the FDT */
2359     _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname));
2360     if (node_offset) {
2361         *node_offset = bus_off;
2362     }
2363 
2364     /* Write PHB properties */
2365     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2366     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2367     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2368     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2369     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2370     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2371     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2372     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2373     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi",
2374                           spapr_irq_nr_msis(spapr)));
2375 
2376     /* Dynamic DMA window */
2377     if (phb->ddw_enabled) {
2378         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2379                          sizeof(ddw_applicable)));
2380         _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2381                          &ddw_extensions, sizeof(ddw_extensions)));
2382     }
2383 
2384     /* Advertise NUMA via ibm,associativity */
2385     if (phb->numa_node != -1) {
2386         spapr_numa_write_associativity_dt(spapr, fdt, bus_off, phb->numa_node);
2387     }
2388 
2389     /* Build the interrupt-map, this must matches what is done
2390      * in pci_swizzle_map_irq_fn
2391      */
2392     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2393                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
2394     for (i = 0; i < PCI_SLOT_MAX; i++) {
2395         for (j = 0; j < PCI_NUM_PINS; j++) {
2396             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2397             int lsi_num = pci_swizzle(i, j);
2398 
2399             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2400             irqmap[1] = 0;
2401             irqmap[2] = 0;
2402             irqmap[3] = cpu_to_be32(j+1);
2403             irqmap[4] = cpu_to_be32(intc_phandle);
2404             spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2405         }
2406     }
2407     /* Write interrupt map */
2408     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2409                      sizeof(interrupt_map)));
2410 
2411     tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2412     if (!tcet) {
2413         return -1;
2414     }
2415     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2416                  tcet->liobn, tcet->bus_offset,
2417                  tcet->nb_table << tcet->page_shift);
2418 
2419     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index);
2420     if (drc) {
2421         uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc));
2422 
2423         _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index,
2424                          sizeof(drc_index)));
2425     }
2426 
2427     /* Walk the bridges and program the bus numbers*/
2428     spapr_phb_pci_enumerate(phb);
2429     _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2430 
2431     /* Walk the bridge and subordinate buses */
2432     ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off);
2433     if (ret < 0) {
2434         return ret;
2435     }
2436 
2437     return 0;
2438 }
2439 
2440 void spapr_pci_rtas_init(void)
2441 {
2442     spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2443                         rtas_read_pci_config);
2444     spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2445                         rtas_write_pci_config);
2446     spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2447                         rtas_ibm_read_pci_config);
2448     spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2449                         rtas_ibm_write_pci_config);
2450     if (msi_nonbroken) {
2451         spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2452                             "ibm,query-interrupt-source-number",
2453                             rtas_ibm_query_interrupt_source_number);
2454         spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2455                             rtas_ibm_change_msi);
2456     }
2457 
2458     spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2459                         "ibm,set-eeh-option",
2460                         rtas_ibm_set_eeh_option);
2461     spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2462                         "ibm,get-config-addr-info2",
2463                         rtas_ibm_get_config_addr_info2);
2464     spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2465                         "ibm,read-slot-reset-state2",
2466                         rtas_ibm_read_slot_reset_state2);
2467     spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2468                         "ibm,set-slot-reset",
2469                         rtas_ibm_set_slot_reset);
2470     spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2471                         "ibm,configure-pe",
2472                         rtas_ibm_configure_pe);
2473     spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2474                         "ibm,slot-error-detail",
2475                         rtas_ibm_slot_error_detail);
2476 }
2477 
2478 static void spapr_pci_register_types(void)
2479 {
2480     type_register_static(&spapr_phb_info);
2481 }
2482 
2483 type_init(spapr_pci_register_types)
2484 
2485 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2486 {
2487     bool be = *(bool *)opaque;
2488 
2489     if (object_dynamic_cast(OBJECT(dev), "VGA")
2490         || object_dynamic_cast(OBJECT(dev), "secondary-vga")
2491         || object_dynamic_cast(OBJECT(dev), "bochs-display")
2492         || object_dynamic_cast(OBJECT(dev), "virtio-vga")) {
2493         object_property_set_bool(OBJECT(dev), "big-endian-framebuffer", be,
2494                                  &error_abort);
2495     }
2496     return 0;
2497 }
2498 
2499 void spapr_pci_switch_vga(SpaprMachineState *spapr, bool big_endian)
2500 {
2501     SpaprPhbState *sphb;
2502 
2503     /*
2504      * For backward compatibility with existing guests, we switch
2505      * the endianness of the VGA controller when changing the guest
2506      * interrupt mode
2507      */
2508     QLIST_FOREACH(sphb, &spapr->phbs, list) {
2509         BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2510         qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2511                            &big_endian);
2512     }
2513 }
2514