xref: /openbmc/qemu/hw/ppc/spapr_pci.c (revision 5accc840)
1 /*
2  * QEMU sPAPR PCI host originated from Uninorth PCI host
3  *
4  * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5  * Copyright (C) 2011 David Gibson, IBM Corporation.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35 
36 #include "hw/pci/pci_bus.h"
37 
38 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
39 #define RTAS_QUERY_FN           0
40 #define RTAS_CHANGE_FN          1
41 #define RTAS_RESET_FN           2
42 #define RTAS_CHANGE_MSI_FN      3
43 #define RTAS_CHANGE_MSIX_FN     4
44 
45 /* Interrupt types to return on RTAS_CHANGE_* */
46 #define RTAS_TYPE_MSI           1
47 #define RTAS_TYPE_MSIX          2
48 
49 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
50 {
51     sPAPRPHBState *sphb;
52 
53     QLIST_FOREACH(sphb, &spapr->phbs, list) {
54         if (sphb->buid != buid) {
55             continue;
56         }
57         return sphb;
58     }
59 
60     return NULL;
61 }
62 
63 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
64                            uint32_t config_addr)
65 {
66     sPAPRPHBState *sphb = find_phb(spapr, buid);
67     PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
68     int bus_num = (config_addr >> 16) & 0xFF;
69     int devfn = (config_addr >> 8) & 0xFF;
70 
71     if (!phb) {
72         return NULL;
73     }
74 
75     return pci_find_device(phb->bus, bus_num, devfn);
76 }
77 
78 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
79 {
80     /* This handles the encoding of extended config space addresses */
81     return ((arg >> 20) & 0xf00) | (arg & 0xff);
82 }
83 
84 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
85                                    uint32_t addr, uint32_t size,
86                                    target_ulong rets)
87 {
88     PCIDevice *pci_dev;
89     uint32_t val;
90 
91     if ((size != 1) && (size != 2) && (size != 4)) {
92         /* access must be 1, 2 or 4 bytes */
93         rtas_st(rets, 0, -1);
94         return;
95     }
96 
97     pci_dev = find_dev(spapr, buid, addr);
98     addr = rtas_pci_cfgaddr(addr);
99 
100     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
101         /* Access must be to a valid device, within bounds and
102          * naturally aligned */
103         rtas_st(rets, 0, -1);
104         return;
105     }
106 
107     val = pci_host_config_read_common(pci_dev, addr,
108                                       pci_config_size(pci_dev), size);
109 
110     rtas_st(rets, 0, 0);
111     rtas_st(rets, 1, val);
112 }
113 
114 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
115                                      uint32_t token, uint32_t nargs,
116                                      target_ulong args,
117                                      uint32_t nret, target_ulong rets)
118 {
119     uint64_t buid;
120     uint32_t size, addr;
121 
122     if ((nargs != 4) || (nret != 2)) {
123         rtas_st(rets, 0, -1);
124         return;
125     }
126 
127     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
128     size = rtas_ld(args, 3);
129     addr = rtas_ld(args, 0);
130 
131     finish_read_pci_config(spapr, buid, addr, size, rets);
132 }
133 
134 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
135                                  uint32_t token, uint32_t nargs,
136                                  target_ulong args,
137                                  uint32_t nret, target_ulong rets)
138 {
139     uint32_t size, addr;
140 
141     if ((nargs != 2) || (nret != 2)) {
142         rtas_st(rets, 0, -1);
143         return;
144     }
145 
146     size = rtas_ld(args, 1);
147     addr = rtas_ld(args, 0);
148 
149     finish_read_pci_config(spapr, 0, addr, size, rets);
150 }
151 
152 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
153                                     uint32_t addr, uint32_t size,
154                                     uint32_t val, target_ulong rets)
155 {
156     PCIDevice *pci_dev;
157 
158     if ((size != 1) && (size != 2) && (size != 4)) {
159         /* access must be 1, 2 or 4 bytes */
160         rtas_st(rets, 0, -1);
161         return;
162     }
163 
164     pci_dev = find_dev(spapr, buid, addr);
165     addr = rtas_pci_cfgaddr(addr);
166 
167     if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
168         /* Access must be to a valid device, within bounds and
169          * naturally aligned */
170         rtas_st(rets, 0, -1);
171         return;
172     }
173 
174     pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
175                                  val, size);
176 
177     rtas_st(rets, 0, 0);
178 }
179 
180 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
181                                       uint32_t token, uint32_t nargs,
182                                       target_ulong args,
183                                       uint32_t nret, target_ulong rets)
184 {
185     uint64_t buid;
186     uint32_t val, size, addr;
187 
188     if ((nargs != 5) || (nret != 1)) {
189         rtas_st(rets, 0, -1);
190         return;
191     }
192 
193     buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
194     val = rtas_ld(args, 4);
195     size = rtas_ld(args, 3);
196     addr = rtas_ld(args, 0);
197 
198     finish_write_pci_config(spapr, buid, addr, size, val, rets);
199 }
200 
201 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
202                                   uint32_t token, uint32_t nargs,
203                                   target_ulong args,
204                                   uint32_t nret, target_ulong rets)
205 {
206     uint32_t val, size, addr;
207 
208     if ((nargs != 3) || (nret != 1)) {
209         rtas_st(rets, 0, -1);
210         return;
211     }
212 
213 
214     val = rtas_ld(args, 2);
215     size = rtas_ld(args, 1);
216     addr = rtas_ld(args, 0);
217 
218     finish_write_pci_config(spapr, 0, addr, size, val, rets);
219 }
220 
221 /*
222  * Find an entry with config_addr or returns the empty one if not found AND
223  * alloc_new is set.
224  * At the moment the msi_table entries are never released so there is
225  * no point to look till the end of the list if we need to find the free entry.
226  */
227 static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
228                              bool alloc_new)
229 {
230     int i;
231 
232     for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
233         if (!phb->msi_table[i].nvec) {
234             break;
235         }
236         if (phb->msi_table[i].config_addr == config_addr) {
237             return i;
238         }
239     }
240     if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
241         trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
242         return i;
243     }
244 
245     return -1;
246 }
247 
248 /*
249  * Set MSI/MSIX message data.
250  * This is required for msi_notify()/msix_notify() which
251  * will write at the addresses via spapr_msi_write().
252  */
253 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
254                              unsigned first_irq, unsigned req_num)
255 {
256     unsigned i;
257     MSIMessage msg = { .address = addr, .data = first_irq };
258 
259     if (!msix) {
260         msi_set_message(pdev, msg);
261         trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
262         return;
263     }
264 
265     for (i = 0; i < req_num; ++i, ++msg.data) {
266         msix_set_message(pdev, i, msg);
267         trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
268     }
269 }
270 
271 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
272                                 uint32_t token, uint32_t nargs,
273                                 target_ulong args, uint32_t nret,
274                                 target_ulong rets)
275 {
276     uint32_t config_addr = rtas_ld(args, 0);
277     uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
278     unsigned int func = rtas_ld(args, 3);
279     unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
280     unsigned int seq_num = rtas_ld(args, 5);
281     unsigned int ret_intr_type;
282     int ndev, irq;
283     sPAPRPHBState *phb = NULL;
284     PCIDevice *pdev = NULL;
285 
286     switch (func) {
287     case RTAS_CHANGE_MSI_FN:
288     case RTAS_CHANGE_FN:
289         ret_intr_type = RTAS_TYPE_MSI;
290         break;
291     case RTAS_CHANGE_MSIX_FN:
292         ret_intr_type = RTAS_TYPE_MSIX;
293         break;
294     default:
295         fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
296         rtas_st(rets, 0, -3); /* Parameter error */
297         return;
298     }
299 
300     /* Fins sPAPRPHBState */
301     phb = find_phb(spapr, buid);
302     if (phb) {
303         pdev = find_dev(spapr, buid, config_addr);
304     }
305     if (!phb || !pdev) {
306         rtas_st(rets, 0, -3); /* Parameter error */
307         return;
308     }
309 
310     /* Releasing MSIs */
311     if (!req_num) {
312         ndev = spapr_msicfg_find(phb, config_addr, false);
313         if (ndev < 0) {
314             trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
315             rtas_st(rets, 0, -1); /* Hardware error */
316             return;
317         }
318         trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
319         rtas_st(rets, 0, 0);
320         rtas_st(rets, 1, 0);
321         return;
322     }
323 
324     /* Enabling MSI */
325 
326     /* Find a device number in the map to add or reuse the existing one */
327     ndev = spapr_msicfg_find(phb, config_addr, true);
328     if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
329         fprintf(stderr, "No free entry for a new MSI device\n");
330         rtas_st(rets, 0, -1); /* Hardware error */
331         return;
332     }
333     trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
334 
335     /* Check if there is an old config and MSI number has not changed */
336     if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
337         /* Unexpected behaviour */
338         fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
339         rtas_st(rets, 0, -1); /* Hardware error */
340         return;
341     }
342 
343     /* There is no cached config, allocate MSIs */
344     if (!phb->msi_table[ndev].nvec) {
345         irq = spapr_allocate_irq_block(req_num, false,
346                                        ret_intr_type == RTAS_TYPE_MSI);
347         if (irq < 0) {
348             fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
349             rtas_st(rets, 0, -1); /* Hardware error */
350             return;
351         }
352         phb->msi_table[ndev].irq = irq;
353         phb->msi_table[ndev].nvec = req_num;
354         phb->msi_table[ndev].config_addr = config_addr;
355     }
356 
357     /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
358     spapr_msi_setmsg(pdev, spapr->msi_win_addr, ret_intr_type == RTAS_TYPE_MSIX,
359                      phb->msi_table[ndev].irq, req_num);
360 
361     rtas_st(rets, 0, 0);
362     rtas_st(rets, 1, req_num);
363     rtas_st(rets, 2, ++seq_num);
364     rtas_st(rets, 3, ret_intr_type);
365 
366     trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
367 }
368 
369 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
370                                                    sPAPREnvironment *spapr,
371                                                    uint32_t token,
372                                                    uint32_t nargs,
373                                                    target_ulong args,
374                                                    uint32_t nret,
375                                                    target_ulong rets)
376 {
377     uint32_t config_addr = rtas_ld(args, 0);
378     uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
379     unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
380     int ndev;
381     sPAPRPHBState *phb = NULL;
382 
383     /* Fins sPAPRPHBState */
384     phb = find_phb(spapr, buid);
385     if (!phb) {
386         rtas_st(rets, 0, -3); /* Parameter error */
387         return;
388     }
389 
390     /* Find device descriptor and start IRQ */
391     ndev = spapr_msicfg_find(phb, config_addr, false);
392     if (ndev < 0) {
393         trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
394         rtas_st(rets, 0, -1); /* Hardware error */
395         return;
396     }
397 
398     intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
399     trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
400                                                            intr_src_num);
401 
402     rtas_st(rets, 0, 0);
403     rtas_st(rets, 1, intr_src_num);
404     rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
405 }
406 
407 static int pci_spapr_swizzle(int slot, int pin)
408 {
409     return (slot + pin) % PCI_NUM_PINS;
410 }
411 
412 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
413 {
414     /*
415      * Here we need to convert pci_dev + irq_num to some unique value
416      * which is less than number of IRQs on the specific bus (4).  We
417      * use standard PCI swizzling, that is (slot number + pin number)
418      * % 4.
419      */
420     return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
421 }
422 
423 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
424 {
425     /*
426      * Here we use the number returned by pci_spapr_map_irq to find a
427      * corresponding qemu_irq.
428      */
429     sPAPRPHBState *phb = opaque;
430 
431     trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
432     qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
433 }
434 
435 /*
436  * MSI/MSIX memory region implementation.
437  * The handler handles both MSI and MSIX.
438  * For MSI-X, the vector number is encoded as a part of the address,
439  * data is set to 0.
440  * For MSI, the vector number is encoded in least bits in data.
441  */
442 static void spapr_msi_write(void *opaque, hwaddr addr,
443                             uint64_t data, unsigned size)
444 {
445     uint32_t irq = data;
446 
447     trace_spapr_pci_msi_write(addr, data, irq);
448 
449     qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
450 }
451 
452 static const MemoryRegionOps spapr_msi_ops = {
453     /* There is no .read as the read result is undefined by PCI spec */
454     .read = NULL,
455     .write = spapr_msi_write,
456     .endianness = DEVICE_LITTLE_ENDIAN
457 };
458 
459 void spapr_pci_msi_init(sPAPREnvironment *spapr, hwaddr addr)
460 {
461     /*
462      * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
463      * we need to allocate some memory to catch those writes coming
464      * from msi_notify()/msix_notify().
465      * As MSIMessage:addr is going to be the same and MSIMessage:data
466      * is going to be a VIRQ number, 4 bytes of the MSI MR will only
467      * be used.
468      */
469     spapr->msi_win_addr = addr;
470     memory_region_init_io(&spapr->msiwindow, NULL, &spapr_msi_ops, spapr,
471                           "msi", getpagesize());
472     memory_region_add_subregion(get_system_memory(), spapr->msi_win_addr,
473                                 &spapr->msiwindow);
474 }
475 
476 /*
477  * PHB PCI device
478  */
479 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
480 {
481     sPAPRPHBState *phb = opaque;
482 
483     return &phb->iommu_as;
484 }
485 
486 static int spapr_phb_init(SysBusDevice *s)
487 {
488     DeviceState *dev = DEVICE(s);
489     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
490     PCIHostState *phb = PCI_HOST_BRIDGE(s);
491     const char *busname;
492     char *namebuf;
493     int i;
494     PCIBus *bus;
495 
496     if (sphb->index != -1) {
497         hwaddr windows_base;
498 
499         if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
500             || (sphb->mem_win_addr != -1)
501             || (sphb->io_win_addr != -1)) {
502             fprintf(stderr, "Either \"index\" or other parameters must"
503                     " be specified for PAPR PHB, not both\n");
504             return -1;
505         }
506 
507         sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
508         sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
509 
510         windows_base = SPAPR_PCI_WINDOW_BASE
511             + sphb->index * SPAPR_PCI_WINDOW_SPACING;
512         sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
513         sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
514     }
515 
516     if (sphb->buid == -1) {
517         fprintf(stderr, "BUID not specified for PHB\n");
518         return -1;
519     }
520 
521     if (sphb->dma_liobn == -1) {
522         fprintf(stderr, "LIOBN not specified for PHB\n");
523         return -1;
524     }
525 
526     if (sphb->mem_win_addr == -1) {
527         fprintf(stderr, "Memory window address not specified for PHB\n");
528         return -1;
529     }
530 
531     if (sphb->io_win_addr == -1) {
532         fprintf(stderr, "IO window address not specified for PHB\n");
533         return -1;
534     }
535 
536     if (find_phb(spapr, sphb->buid)) {
537         fprintf(stderr, "PCI host bridges must have unique BUIDs\n");
538         return -1;
539     }
540 
541     sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
542 
543     namebuf = alloca(strlen(sphb->dtbusname) + 32);
544 
545     /* Initialize memory regions */
546     sprintf(namebuf, "%s.mmio", sphb->dtbusname);
547     memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, INT64_MAX);
548 
549     sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
550     memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
551                              namebuf, &sphb->memspace,
552                              SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
553     memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
554                                 &sphb->memwindow);
555 
556     /* On ppc, we only have MMIO no specific IO space from the CPU
557      * perspective.  In theory we ought to be able to embed the PCI IO
558      * memory region direction in the system memory space.  However,
559      * if any of the IO BAR subregions use the old_portio mechanism,
560      * that won't be processed properly unless accessed from the
561      * system io address space.  This hack to bounce things via
562      * system_io works around the problem until all the users of
563      * old_portion are updated */
564     sprintf(namebuf, "%s.io", sphb->dtbusname);
565     memory_region_init(&sphb->iospace, OBJECT(sphb),
566                        namebuf, SPAPR_PCI_IO_WIN_SIZE);
567     /* FIXME: fix to support multiple PHBs */
568     memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
569 
570     sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
571     memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
572                              get_system_io(), 0, SPAPR_PCI_IO_WIN_SIZE);
573     memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
574                                 &sphb->iowindow);
575     /*
576      * Selecting a busname is more complex than you'd think, due to
577      * interacting constraints.  If the user has specified an id
578      * explicitly for the phb , then we want to use the qdev default
579      * of naming the bus based on the bridge device (so the user can
580      * then assign devices to it in the way they expect).  For the
581      * first / default PCI bus (index=0) we want to use just "pci"
582      * because libvirt expects there to be a bus called, simply,
583      * "pci".  Otherwise, we use the same name as in the device tree,
584      * since it's unique by construction, and makes the guest visible
585      * BUID clear.
586      */
587     if (dev->id) {
588         busname = NULL;
589     } else if (sphb->index == 0) {
590         busname = "pci";
591     } else {
592         busname = sphb->dtbusname;
593     }
594     bus = pci_register_bus(dev, busname,
595                            pci_spapr_set_irq, pci_spapr_map_irq, sphb,
596                            &sphb->memspace, &sphb->iospace,
597                            PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
598     phb->bus = bus;
599 
600     sphb->dma_window_start = 0;
601     sphb->dma_window_size = 0x40000000;
602     sphb->tcet = spapr_tce_new_table(dev, sphb->dma_liobn,
603                                      sphb->dma_window_size);
604     if (!sphb->tcet) {
605         fprintf(stderr, "Unable to create TCE table for %s\n", sphb->dtbusname);
606         return -1;
607     }
608     address_space_init(&sphb->iommu_as, spapr_tce_get_iommu(sphb->tcet),
609                        sphb->dtbusname);
610 
611     pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
612 
613     QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
614 
615     /* Initialize the LSI table */
616     for (i = 0; i < PCI_NUM_PINS; i++) {
617         uint32_t irq;
618 
619         irq = spapr_allocate_lsi(0);
620         if (!irq) {
621             return -1;
622         }
623 
624         sphb->lsi_table[i].irq = irq;
625     }
626 
627     return 0;
628 }
629 
630 static void spapr_phb_reset(DeviceState *qdev)
631 {
632     SysBusDevice *s = SYS_BUS_DEVICE(qdev);
633     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
634 
635     /* Reset the IOMMU state */
636     device_reset(DEVICE(sphb->tcet));
637 }
638 
639 static Property spapr_phb_properties[] = {
640     DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
641     DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, -1),
642     DEFINE_PROP_HEX32("liobn", sPAPRPHBState, dma_liobn, -1),
643     DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
644     DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size,
645                       SPAPR_PCI_MMIO_WIN_SIZE),
646     DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
647     DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size,
648                       SPAPR_PCI_IO_WIN_SIZE),
649     DEFINE_PROP_END_OF_LIST(),
650 };
651 
652 static const VMStateDescription vmstate_spapr_pci_lsi = {
653     .name = "spapr_pci/lsi",
654     .version_id = 1,
655     .minimum_version_id = 1,
656     .minimum_version_id_old = 1,
657     .fields      = (VMStateField []) {
658         VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
659 
660         VMSTATE_END_OF_LIST()
661     },
662 };
663 
664 static const VMStateDescription vmstate_spapr_pci_msi = {
665     .name = "spapr_pci/lsi",
666     .version_id = 1,
667     .minimum_version_id = 1,
668     .minimum_version_id_old = 1,
669     .fields      = (VMStateField []) {
670         VMSTATE_UINT32(config_addr, struct spapr_pci_msi),
671         VMSTATE_UINT32(irq, struct spapr_pci_msi),
672         VMSTATE_UINT32(nvec, struct spapr_pci_msi),
673 
674         VMSTATE_END_OF_LIST()
675     },
676 };
677 
678 static const VMStateDescription vmstate_spapr_pci = {
679     .name = "spapr_pci",
680     .version_id = 1,
681     .minimum_version_id = 1,
682     .minimum_version_id_old = 1,
683     .fields      = (VMStateField []) {
684         VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
685         VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
686         VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
687         VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
688         VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
689         VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
690         VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
691                              vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
692         VMSTATE_STRUCT_ARRAY(msi_table, sPAPRPHBState, SPAPR_MSIX_MAX_DEVS, 0,
693                              vmstate_spapr_pci_msi, struct spapr_pci_msi),
694 
695         VMSTATE_END_OF_LIST()
696     },
697 };
698 
699 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
700                                            PCIBus *rootbus)
701 {
702     sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
703 
704     return sphb->dtbusname;
705 }
706 
707 static void spapr_phb_class_init(ObjectClass *klass, void *data)
708 {
709     PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
710     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
711     DeviceClass *dc = DEVICE_CLASS(klass);
712 
713     hc->root_bus_path = spapr_phb_root_bus_path;
714     sdc->init = spapr_phb_init;
715     dc->props = spapr_phb_properties;
716     dc->reset = spapr_phb_reset;
717     dc->vmsd = &vmstate_spapr_pci;
718 }
719 
720 static const TypeInfo spapr_phb_info = {
721     .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
722     .parent        = TYPE_PCI_HOST_BRIDGE,
723     .instance_size = sizeof(sPAPRPHBState),
724     .class_init    = spapr_phb_class_init,
725 };
726 
727 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
728 {
729     DeviceState *dev;
730 
731     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
732     qdev_prop_set_uint32(dev, "index", index);
733     qdev_init_nofail(dev);
734 
735     return PCI_HOST_BRIDGE(dev);
736 }
737 
738 /* Macros to operate with address in OF binding to PCI */
739 #define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
740 #define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
741 #define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
742 #define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
743 #define b_ss(x)         b_x((x), 24, 2) /* the space code */
744 #define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
745 #define b_ddddd(x)      b_x((x), 11, 5) /* device number */
746 #define b_fff(x)        b_x((x), 8, 3)  /* function number */
747 #define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
748 
749 int spapr_populate_pci_dt(sPAPRPHBState *phb,
750                           uint32_t xics_phandle,
751                           void *fdt)
752 {
753     int bus_off, i, j;
754     char nodename[256];
755     uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
756     struct {
757         uint32_t hi;
758         uint64_t child;
759         uint64_t parent;
760         uint64_t size;
761     } QEMU_PACKED ranges[] = {
762         {
763             cpu_to_be32(b_ss(1)), cpu_to_be64(0),
764             cpu_to_be64(phb->io_win_addr),
765             cpu_to_be64(memory_region_size(&phb->iospace)),
766         },
767         {
768             cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
769             cpu_to_be64(phb->mem_win_addr),
770             cpu_to_be64(memory_region_size(&phb->memwindow)),
771         },
772     };
773     uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
774     uint32_t interrupt_map_mask[] = {
775         cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
776     uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
777 
778     /* Start populating the FDT */
779     sprintf(nodename, "pci@%" PRIx64, phb->buid);
780     bus_off = fdt_add_subnode(fdt, 0, nodename);
781     if (bus_off < 0) {
782         return bus_off;
783     }
784 
785 #define _FDT(exp) \
786     do { \
787         int ret = (exp);                                           \
788         if (ret < 0) {                                             \
789             return ret;                                            \
790         }                                                          \
791     } while (0)
792 
793     /* Write PHB properties */
794     _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
795     _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
796     _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
797     _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
798     _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
799     _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
800     _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
801     _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
802     _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
803     _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
804 
805     /* Build the interrupt-map, this must matches what is done
806      * in pci_spapr_map_irq
807      */
808     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
809                      &interrupt_map_mask, sizeof(interrupt_map_mask)));
810     for (i = 0; i < PCI_SLOT_MAX; i++) {
811         for (j = 0; j < PCI_NUM_PINS; j++) {
812             uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
813             int lsi_num = pci_spapr_swizzle(i, j);
814 
815             irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
816             irqmap[1] = 0;
817             irqmap[2] = 0;
818             irqmap[3] = cpu_to_be32(j+1);
819             irqmap[4] = cpu_to_be32(xics_phandle);
820             irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
821             irqmap[6] = cpu_to_be32(0x8);
822         }
823     }
824     /* Write interrupt map */
825     _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
826                      sizeof(interrupt_map)));
827 
828     spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
829                  phb->dma_liobn, phb->dma_window_start,
830                  phb->dma_window_size);
831 
832     return 0;
833 }
834 
835 void spapr_pci_rtas_init(void)
836 {
837     spapr_rtas_register("read-pci-config", rtas_read_pci_config);
838     spapr_rtas_register("write-pci-config", rtas_write_pci_config);
839     spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
840     spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
841     if (msi_supported) {
842         spapr_rtas_register("ibm,query-interrupt-source-number",
843                             rtas_ibm_query_interrupt_source_number);
844         spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
845     }
846 }
847 
848 static void spapr_pci_register_types(void)
849 {
850     type_register_static(&spapr_phb_info);
851 }
852 
853 type_init(spapr_pci_register_types)
854