1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "hw/hw.h" 26 #include "hw/pci/pci.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/pci/pci_host.h" 30 #include "hw/ppc/spapr.h" 31 #include "hw/pci-host/spapr.h" 32 #include "exec/address-spaces.h" 33 #include <libfdt.h> 34 #include "trace.h" 35 36 #include "hw/pci/pci_bus.h" 37 38 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 39 #define RTAS_QUERY_FN 0 40 #define RTAS_CHANGE_FN 1 41 #define RTAS_RESET_FN 2 42 #define RTAS_CHANGE_MSI_FN 3 43 #define RTAS_CHANGE_MSIX_FN 4 44 45 /* Interrupt types to return on RTAS_CHANGE_* */ 46 #define RTAS_TYPE_MSI 1 47 #define RTAS_TYPE_MSIX 2 48 49 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid) 50 { 51 sPAPRPHBState *sphb; 52 53 QLIST_FOREACH(sphb, &spapr->phbs, list) { 54 if (sphb->buid != buid) { 55 continue; 56 } 57 return sphb; 58 } 59 60 return NULL; 61 } 62 63 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid, 64 uint32_t config_addr) 65 { 66 sPAPRPHBState *sphb = find_phb(spapr, buid); 67 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 68 BusState *bus = BUS(phb->bus); 69 BusChild *kid; 70 int devfn = (config_addr >> 8) & 0xFF; 71 72 if (!phb) { 73 return NULL; 74 } 75 76 QTAILQ_FOREACH(kid, &bus->children, sibling) { 77 PCIDevice *dev = (PCIDevice *)kid->child; 78 if (dev->devfn == devfn) { 79 return dev; 80 } 81 } 82 83 return NULL; 84 } 85 86 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 87 { 88 /* This handles the encoding of extended config space addresses */ 89 return ((arg >> 20) & 0xf00) | (arg & 0xff); 90 } 91 92 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid, 93 uint32_t addr, uint32_t size, 94 target_ulong rets) 95 { 96 PCIDevice *pci_dev; 97 uint32_t val; 98 99 if ((size != 1) && (size != 2) && (size != 4)) { 100 /* access must be 1, 2 or 4 bytes */ 101 rtas_st(rets, 0, -1); 102 return; 103 } 104 105 pci_dev = find_dev(spapr, buid, addr); 106 addr = rtas_pci_cfgaddr(addr); 107 108 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 109 /* Access must be to a valid device, within bounds and 110 * naturally aligned */ 111 rtas_st(rets, 0, -1); 112 return; 113 } 114 115 val = pci_host_config_read_common(pci_dev, addr, 116 pci_config_size(pci_dev), size); 117 118 rtas_st(rets, 0, 0); 119 rtas_st(rets, 1, val); 120 } 121 122 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 123 uint32_t token, uint32_t nargs, 124 target_ulong args, 125 uint32_t nret, target_ulong rets) 126 { 127 uint64_t buid; 128 uint32_t size, addr; 129 130 if ((nargs != 4) || (nret != 2)) { 131 rtas_st(rets, 0, -1); 132 return; 133 } 134 135 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 136 size = rtas_ld(args, 3); 137 addr = rtas_ld(args, 0); 138 139 finish_read_pci_config(spapr, buid, addr, size, rets); 140 } 141 142 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 143 uint32_t token, uint32_t nargs, 144 target_ulong args, 145 uint32_t nret, target_ulong rets) 146 { 147 uint32_t size, addr; 148 149 if ((nargs != 2) || (nret != 2)) { 150 rtas_st(rets, 0, -1); 151 return; 152 } 153 154 size = rtas_ld(args, 1); 155 addr = rtas_ld(args, 0); 156 157 finish_read_pci_config(spapr, 0, addr, size, rets); 158 } 159 160 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid, 161 uint32_t addr, uint32_t size, 162 uint32_t val, target_ulong rets) 163 { 164 PCIDevice *pci_dev; 165 166 if ((size != 1) && (size != 2) && (size != 4)) { 167 /* access must be 1, 2 or 4 bytes */ 168 rtas_st(rets, 0, -1); 169 return; 170 } 171 172 pci_dev = find_dev(spapr, buid, addr); 173 addr = rtas_pci_cfgaddr(addr); 174 175 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 176 /* Access must be to a valid device, within bounds and 177 * naturally aligned */ 178 rtas_st(rets, 0, -1); 179 return; 180 } 181 182 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 183 val, size); 184 185 rtas_st(rets, 0, 0); 186 } 187 188 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 189 uint32_t token, uint32_t nargs, 190 target_ulong args, 191 uint32_t nret, target_ulong rets) 192 { 193 uint64_t buid; 194 uint32_t val, size, addr; 195 196 if ((nargs != 5) || (nret != 1)) { 197 rtas_st(rets, 0, -1); 198 return; 199 } 200 201 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 202 val = rtas_ld(args, 4); 203 size = rtas_ld(args, 3); 204 addr = rtas_ld(args, 0); 205 206 finish_write_pci_config(spapr, buid, addr, size, val, rets); 207 } 208 209 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 210 uint32_t token, uint32_t nargs, 211 target_ulong args, 212 uint32_t nret, target_ulong rets) 213 { 214 uint32_t val, size, addr; 215 216 if ((nargs != 3) || (nret != 1)) { 217 rtas_st(rets, 0, -1); 218 return; 219 } 220 221 222 val = rtas_ld(args, 2); 223 size = rtas_ld(args, 1); 224 addr = rtas_ld(args, 0); 225 226 finish_write_pci_config(spapr, 0, addr, size, val, rets); 227 } 228 229 /* 230 * Find an entry with config_addr or returns the empty one if not found AND 231 * alloc_new is set. 232 * At the moment the msi_table entries are never released so there is 233 * no point to look till the end of the list if we need to find the free entry. 234 */ 235 static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr, 236 bool alloc_new) 237 { 238 int i; 239 240 for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) { 241 if (!phb->msi_table[i].nvec) { 242 break; 243 } 244 if (phb->msi_table[i].config_addr == config_addr) { 245 return i; 246 } 247 } 248 if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) { 249 trace_spapr_pci_msi("Allocating new MSI config", i, config_addr); 250 return i; 251 } 252 253 return -1; 254 } 255 256 /* 257 * Set MSI/MSIX message data. 258 * This is required for msi_notify()/msix_notify() which 259 * will write at the addresses via spapr_msi_write(). 260 */ 261 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, 262 bool msix, unsigned req_num) 263 { 264 unsigned i; 265 MSIMessage msg = { .address = addr, .data = 0 }; 266 267 if (!msix) { 268 msi_set_message(pdev, msg); 269 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 270 return; 271 } 272 273 for (i = 0; i < req_num; ++i) { 274 msg.address = addr | (i << 2); 275 msix_set_message(pdev, i, msg); 276 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 277 } 278 } 279 280 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr, 281 uint32_t token, uint32_t nargs, 282 target_ulong args, uint32_t nret, 283 target_ulong rets) 284 { 285 uint32_t config_addr = rtas_ld(args, 0); 286 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 287 unsigned int func = rtas_ld(args, 3); 288 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 289 unsigned int seq_num = rtas_ld(args, 5); 290 unsigned int ret_intr_type; 291 int ndev, irq; 292 sPAPRPHBState *phb = NULL; 293 PCIDevice *pdev = NULL; 294 295 switch (func) { 296 case RTAS_CHANGE_MSI_FN: 297 case RTAS_CHANGE_FN: 298 ret_intr_type = RTAS_TYPE_MSI; 299 break; 300 case RTAS_CHANGE_MSIX_FN: 301 ret_intr_type = RTAS_TYPE_MSIX; 302 break; 303 default: 304 fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func); 305 rtas_st(rets, 0, -3); /* Parameter error */ 306 return; 307 } 308 309 /* Fins sPAPRPHBState */ 310 phb = find_phb(spapr, buid); 311 if (phb) { 312 pdev = find_dev(spapr, buid, config_addr); 313 } 314 if (!phb || !pdev) { 315 rtas_st(rets, 0, -3); /* Parameter error */ 316 return; 317 } 318 319 /* Releasing MSIs */ 320 if (!req_num) { 321 ndev = spapr_msicfg_find(phb, config_addr, false); 322 if (ndev < 0) { 323 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr); 324 rtas_st(rets, 0, -1); /* Hardware error */ 325 return; 326 } 327 trace_spapr_pci_msi("Released MSIs", ndev, config_addr); 328 rtas_st(rets, 0, 0); 329 rtas_st(rets, 1, 0); 330 return; 331 } 332 333 /* Enabling MSI */ 334 335 /* Find a device number in the map to add or reuse the existing one */ 336 ndev = spapr_msicfg_find(phb, config_addr, true); 337 if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) { 338 fprintf(stderr, "No free entry for a new MSI device\n"); 339 rtas_st(rets, 0, -1); /* Hardware error */ 340 return; 341 } 342 trace_spapr_pci_msi("Configuring MSI", ndev, config_addr); 343 344 /* Check if there is an old config and MSI number has not changed */ 345 if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) { 346 /* Unexpected behaviour */ 347 fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev); 348 rtas_st(rets, 0, -1); /* Hardware error */ 349 return; 350 } 351 352 /* There is no cached config, allocate MSIs */ 353 if (!phb->msi_table[ndev].nvec) { 354 irq = spapr_allocate_irq_block(req_num, false); 355 if (irq < 0) { 356 fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev); 357 rtas_st(rets, 0, -1); /* Hardware error */ 358 return; 359 } 360 phb->msi_table[ndev].irq = irq; 361 phb->msi_table[ndev].nvec = req_num; 362 phb->msi_table[ndev].config_addr = config_addr; 363 } 364 365 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 366 spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16), 367 ret_intr_type == RTAS_TYPE_MSIX, req_num); 368 369 rtas_st(rets, 0, 0); 370 rtas_st(rets, 1, req_num); 371 rtas_st(rets, 2, ++seq_num); 372 rtas_st(rets, 3, ret_intr_type); 373 374 trace_spapr_pci_rtas_ibm_change_msi(func, req_num); 375 } 376 377 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 378 sPAPREnvironment *spapr, 379 uint32_t token, 380 uint32_t nargs, 381 target_ulong args, 382 uint32_t nret, 383 target_ulong rets) 384 { 385 uint32_t config_addr = rtas_ld(args, 0); 386 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 387 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 388 int ndev; 389 sPAPRPHBState *phb = NULL; 390 391 /* Fins sPAPRPHBState */ 392 phb = find_phb(spapr, buid); 393 if (!phb) { 394 rtas_st(rets, 0, -3); /* Parameter error */ 395 return; 396 } 397 398 /* Find device descriptor and start IRQ */ 399 ndev = spapr_msicfg_find(phb, config_addr, false); 400 if (ndev < 0) { 401 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr); 402 rtas_st(rets, 0, -1); /* Hardware error */ 403 return; 404 } 405 406 intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num; 407 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 408 intr_src_num); 409 410 rtas_st(rets, 0, 0); 411 rtas_st(rets, 1, intr_src_num); 412 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 413 } 414 415 static int pci_spapr_swizzle(int slot, int pin) 416 { 417 return (slot + pin) % PCI_NUM_PINS; 418 } 419 420 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) 421 { 422 /* 423 * Here we need to convert pci_dev + irq_num to some unique value 424 * which is less than number of IRQs on the specific bus (4). We 425 * use standard PCI swizzling, that is (slot number + pin number) 426 * % 4. 427 */ 428 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); 429 } 430 431 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 432 { 433 /* 434 * Here we use the number returned by pci_spapr_map_irq to find a 435 * corresponding qemu_irq. 436 */ 437 sPAPRPHBState *phb = opaque; 438 439 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 440 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); 441 } 442 443 static uint64_t spapr_io_read(void *opaque, hwaddr addr, 444 unsigned size) 445 { 446 switch (size) { 447 case 1: 448 return cpu_inb(addr); 449 case 2: 450 return cpu_inw(addr); 451 case 4: 452 return cpu_inl(addr); 453 } 454 assert(0); 455 } 456 457 static void spapr_io_write(void *opaque, hwaddr addr, 458 uint64_t data, unsigned size) 459 { 460 switch (size) { 461 case 1: 462 cpu_outb(addr, data); 463 return; 464 case 2: 465 cpu_outw(addr, data); 466 return; 467 case 4: 468 cpu_outl(addr, data); 469 return; 470 } 471 assert(0); 472 } 473 474 static const MemoryRegionOps spapr_io_ops = { 475 .endianness = DEVICE_LITTLE_ENDIAN, 476 .read = spapr_io_read, 477 .write = spapr_io_write 478 }; 479 480 /* 481 * MSI/MSIX memory region implementation. 482 * The handler handles both MSI and MSIX. 483 * For MSI-X, the vector number is encoded as a part of the address, 484 * data is set to 0. 485 * For MSI, the vector number is encoded in least bits in data. 486 */ 487 static void spapr_msi_write(void *opaque, hwaddr addr, 488 uint64_t data, unsigned size) 489 { 490 sPAPRPHBState *phb = opaque; 491 int ndev = addr >> 16; 492 int vec = ((addr & 0xFFFF) >> 2) | data; 493 uint32_t irq = phb->msi_table[ndev].irq + vec; 494 495 trace_spapr_pci_msi_write(addr, data, irq); 496 497 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq)); 498 } 499 500 static const MemoryRegionOps spapr_msi_ops = { 501 /* There is no .read as the read result is undefined by PCI spec */ 502 .read = NULL, 503 .write = spapr_msi_write, 504 .endianness = DEVICE_LITTLE_ENDIAN 505 }; 506 507 /* 508 * PHB PCI device 509 */ 510 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 511 { 512 sPAPRPHBState *phb = opaque; 513 514 return &phb->iommu_as; 515 } 516 517 static int spapr_phb_init(SysBusDevice *s) 518 { 519 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 520 PCIHostState *phb = PCI_HOST_BRIDGE(s); 521 const char *busname; 522 char *namebuf; 523 int i; 524 PCIBus *bus; 525 526 if (sphb->index != -1) { 527 hwaddr windows_base; 528 529 if ((sphb->buid != -1) || (sphb->dma_liobn != -1) 530 || (sphb->mem_win_addr != -1) 531 || (sphb->io_win_addr != -1) 532 || (sphb->msi_win_addr != -1)) { 533 fprintf(stderr, "Either \"index\" or other parameters must" 534 " be specified for PAPR PHB, not both\n"); 535 return -1; 536 } 537 538 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index; 539 sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index; 540 541 windows_base = SPAPR_PCI_WINDOW_BASE 542 + sphb->index * SPAPR_PCI_WINDOW_SPACING; 543 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF; 544 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF; 545 sphb->msi_win_addr = windows_base + SPAPR_PCI_MSI_WIN_OFF; 546 } 547 548 if (sphb->buid == -1) { 549 fprintf(stderr, "BUID not specified for PHB\n"); 550 return -1; 551 } 552 553 if (sphb->dma_liobn == -1) { 554 fprintf(stderr, "LIOBN not specified for PHB\n"); 555 return -1; 556 } 557 558 if (sphb->mem_win_addr == -1) { 559 fprintf(stderr, "Memory window address not specified for PHB\n"); 560 return -1; 561 } 562 563 if (sphb->io_win_addr == -1) { 564 fprintf(stderr, "IO window address not specified for PHB\n"); 565 return -1; 566 } 567 568 if (sphb->msi_win_addr == -1) { 569 fprintf(stderr, "MSI window address not specified for PHB\n"); 570 return -1; 571 } 572 573 if (find_phb(spapr, sphb->buid)) { 574 fprintf(stderr, "PCI host bridges must have unique BUIDs\n"); 575 return -1; 576 } 577 578 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 579 580 namebuf = alloca(strlen(sphb->dtbusname) + 32); 581 582 /* Initialize memory regions */ 583 sprintf(namebuf, "%s.mmio", sphb->dtbusname); 584 memory_region_init(&sphb->memspace, NULL, namebuf, INT64_MAX); 585 586 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname); 587 memory_region_init_alias(&sphb->memwindow, NULL, namebuf, &sphb->memspace, 588 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 589 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 590 &sphb->memwindow); 591 592 /* On ppc, we only have MMIO no specific IO space from the CPU 593 * perspective. In theory we ought to be able to embed the PCI IO 594 * memory region direction in the system memory space. However, 595 * if any of the IO BAR subregions use the old_portio mechanism, 596 * that won't be processed properly unless accessed from the 597 * system io address space. This hack to bounce things via 598 * system_io works around the problem until all the users of 599 * old_portion are updated */ 600 sprintf(namebuf, "%s.io", sphb->dtbusname); 601 memory_region_init(&sphb->iospace, NULL, namebuf, SPAPR_PCI_IO_WIN_SIZE); 602 /* FIXME: fix to support multiple PHBs */ 603 memory_region_add_subregion(get_system_io(), 0, &sphb->iospace); 604 605 sprintf(namebuf, "%s.io-alias", sphb->dtbusname); 606 memory_region_init_io(&sphb->iowindow, NULL, &spapr_io_ops, sphb, 607 namebuf, SPAPR_PCI_IO_WIN_SIZE); 608 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 609 &sphb->iowindow); 610 611 /* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 612 * we need to allocate some memory to catch those writes coming 613 * from msi_notify()/msix_notify() */ 614 if (msi_supported) { 615 sprintf(namebuf, "%s.msi", sphb->dtbusname); 616 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, sphb, 617 namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000); 618 memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr, 619 &sphb->msiwindow); 620 } 621 622 /* 623 * Selecting a busname is more complex than you'd think, due to 624 * interacting constraints. If the user has specified an id 625 * explicitly for the phb , then we want to use the qdev default 626 * of naming the bus based on the bridge device (so the user can 627 * then assign devices to it in the way they expect). For the 628 * first / default PCI bus (index=0) we want to use just "pci" 629 * because libvirt expects there to be a bus called, simply, 630 * "pci". Otherwise, we use the same name as in the device tree, 631 * since it's unique by construction, and makes the guest visible 632 * BUID clear. 633 */ 634 if (s->qdev.id) { 635 busname = NULL; 636 } else if (sphb->index == 0) { 637 busname = "pci"; 638 } else { 639 busname = sphb->dtbusname; 640 } 641 bus = pci_register_bus(DEVICE(s), busname, 642 pci_spapr_set_irq, pci_spapr_map_irq, sphb, 643 &sphb->memspace, &sphb->iospace, 644 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); 645 phb->bus = bus; 646 647 sphb->dma_window_start = 0; 648 sphb->dma_window_size = 0x40000000; 649 sphb->tcet = spapr_tce_new_table(sphb->dma_liobn, sphb->dma_window_size); 650 if (!sphb->tcet) { 651 fprintf(stderr, "Unable to create TCE table for %s\n", sphb->dtbusname); 652 return -1; 653 } 654 address_space_init(&sphb->iommu_as, spapr_tce_get_iommu(sphb->tcet), 655 sphb->dtbusname); 656 657 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 658 659 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 660 661 /* Initialize the LSI table */ 662 for (i = 0; i < PCI_NUM_PINS; i++) { 663 uint32_t irq; 664 665 irq = spapr_allocate_lsi(0); 666 if (!irq) { 667 return -1; 668 } 669 670 sphb->lsi_table[i].irq = irq; 671 } 672 673 return 0; 674 } 675 676 static void spapr_phb_reset(DeviceState *qdev) 677 { 678 SysBusDevice *s = SYS_BUS_DEVICE(qdev); 679 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 680 681 /* Reset the IOMMU state */ 682 spapr_tce_reset(sphb->tcet); 683 } 684 685 static Property spapr_phb_properties[] = { 686 DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1), 687 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, -1), 688 DEFINE_PROP_HEX32("liobn", sPAPRPHBState, dma_liobn, -1), 689 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1), 690 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 691 SPAPR_PCI_MMIO_WIN_SIZE), 692 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, -1), 693 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 694 SPAPR_PCI_IO_WIN_SIZE), 695 DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, -1), 696 DEFINE_PROP_END_OF_LIST(), 697 }; 698 699 static void spapr_phb_class_init(ObjectClass *klass, void *data) 700 { 701 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); 702 DeviceClass *dc = DEVICE_CLASS(klass); 703 704 sdc->init = spapr_phb_init; 705 dc->props = spapr_phb_properties; 706 dc->reset = spapr_phb_reset; 707 } 708 709 static const TypeInfo spapr_phb_info = { 710 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 711 .parent = TYPE_PCI_HOST_BRIDGE, 712 .instance_size = sizeof(sPAPRPHBState), 713 .class_init = spapr_phb_class_init, 714 }; 715 716 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index) 717 { 718 DeviceState *dev; 719 720 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 721 qdev_prop_set_uint32(dev, "index", index); 722 qdev_init_nofail(dev); 723 724 return PCI_HOST_BRIDGE(dev); 725 } 726 727 /* Macros to operate with address in OF binding to PCI */ 728 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 729 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 730 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 731 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 732 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 733 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 734 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 735 #define b_fff(x) b_x((x), 8, 3) /* function number */ 736 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 737 738 int spapr_populate_pci_dt(sPAPRPHBState *phb, 739 uint32_t xics_phandle, 740 void *fdt) 741 { 742 int bus_off, i, j; 743 char nodename[256]; 744 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 745 struct { 746 uint32_t hi; 747 uint64_t child; 748 uint64_t parent; 749 uint64_t size; 750 } QEMU_PACKED ranges[] = { 751 { 752 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 753 cpu_to_be64(phb->io_win_addr), 754 cpu_to_be64(memory_region_size(&phb->iospace)), 755 }, 756 { 757 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 758 cpu_to_be64(phb->mem_win_addr), 759 cpu_to_be64(memory_region_size(&phb->memwindow)), 760 }, 761 }; 762 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 763 uint32_t interrupt_map_mask[] = { 764 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 765 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 766 767 /* Start populating the FDT */ 768 sprintf(nodename, "pci@%" PRIx64, phb->buid); 769 bus_off = fdt_add_subnode(fdt, 0, nodename); 770 if (bus_off < 0) { 771 return bus_off; 772 } 773 774 #define _FDT(exp) \ 775 do { \ 776 int ret = (exp); \ 777 if (ret < 0) { \ 778 return ret; \ 779 } \ 780 } while (0) 781 782 /* Write PHB properties */ 783 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 784 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 785 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); 786 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); 787 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 788 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 789 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 790 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges))); 791 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 792 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 793 794 /* Build the interrupt-map, this must matches what is done 795 * in pci_spapr_map_irq 796 */ 797 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 798 &interrupt_map_mask, sizeof(interrupt_map_mask))); 799 for (i = 0; i < PCI_SLOT_MAX; i++) { 800 for (j = 0; j < PCI_NUM_PINS; j++) { 801 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 802 int lsi_num = pci_spapr_swizzle(i, j); 803 804 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 805 irqmap[1] = 0; 806 irqmap[2] = 0; 807 irqmap[3] = cpu_to_be32(j+1); 808 irqmap[4] = cpu_to_be32(xics_phandle); 809 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); 810 irqmap[6] = cpu_to_be32(0x8); 811 } 812 } 813 /* Write interrupt map */ 814 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 815 sizeof(interrupt_map))); 816 817 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 818 phb->dma_liobn, phb->dma_window_start, 819 phb->dma_window_size); 820 821 return 0; 822 } 823 824 void spapr_pci_rtas_init(void) 825 { 826 spapr_rtas_register("read-pci-config", rtas_read_pci_config); 827 spapr_rtas_register("write-pci-config", rtas_write_pci_config); 828 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config); 829 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config); 830 if (msi_supported) { 831 spapr_rtas_register("ibm,query-interrupt-source-number", 832 rtas_ibm_query_interrupt_source_number); 833 spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi); 834 } 835 } 836 837 static void spapr_pci_register_types(void) 838 { 839 type_register_static(&spapr_phb_info); 840 } 841 842 type_init(spapr_pci_register_types) 843