1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "hw/hw.h" 30 #include "hw/sysbus.h" 31 #include "hw/pci/pci.h" 32 #include "hw/pci/msi.h" 33 #include "hw/pci/msix.h" 34 #include "hw/pci/pci_host.h" 35 #include "hw/ppc/spapr.h" 36 #include "hw/pci-host/spapr.h" 37 #include "exec/address-spaces.h" 38 #include "exec/ram_addr.h" 39 #include <libfdt.h> 40 #include "trace.h" 41 #include "qemu/error-report.h" 42 #include "qapi/qmp/qerror.h" 43 #include "hw/ppc/fdt.h" 44 #include "hw/pci/pci_bridge.h" 45 #include "hw/pci/pci_bus.h" 46 #include "hw/pci/pci_ids.h" 47 #include "hw/ppc/spapr_drc.h" 48 #include "sysemu/device_tree.h" 49 #include "sysemu/kvm.h" 50 #include "sysemu/hostmem.h" 51 #include "sysemu/numa.h" 52 53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 54 #define RTAS_QUERY_FN 0 55 #define RTAS_CHANGE_FN 1 56 #define RTAS_RESET_FN 2 57 #define RTAS_CHANGE_MSI_FN 3 58 #define RTAS_CHANGE_MSIX_FN 4 59 60 /* Interrupt types to return on RTAS_CHANGE_* */ 61 #define RTAS_TYPE_MSI 1 62 #define RTAS_TYPE_MSIX 2 63 64 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid) 65 { 66 sPAPRPHBState *sphb; 67 68 QLIST_FOREACH(sphb, &spapr->phbs, list) { 69 if (sphb->buid != buid) { 70 continue; 71 } 72 return sphb; 73 } 74 75 return NULL; 76 } 77 78 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid, 79 uint32_t config_addr) 80 { 81 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid); 82 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 83 int bus_num = (config_addr >> 16) & 0xFF; 84 int devfn = (config_addr >> 8) & 0xFF; 85 86 if (!phb) { 87 return NULL; 88 } 89 90 return pci_find_device(phb->bus, bus_num, devfn); 91 } 92 93 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 94 { 95 /* This handles the encoding of extended config space addresses */ 96 return ((arg >> 20) & 0xf00) | (arg & 0xff); 97 } 98 99 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid, 100 uint32_t addr, uint32_t size, 101 target_ulong rets) 102 { 103 PCIDevice *pci_dev; 104 uint32_t val; 105 106 if ((size != 1) && (size != 2) && (size != 4)) { 107 /* access must be 1, 2 or 4 bytes */ 108 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 109 return; 110 } 111 112 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 113 addr = rtas_pci_cfgaddr(addr); 114 115 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 116 /* Access must be to a valid device, within bounds and 117 * naturally aligned */ 118 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 119 return; 120 } 121 122 val = pci_host_config_read_common(pci_dev, addr, 123 pci_config_size(pci_dev), size); 124 125 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 126 rtas_st(rets, 1, val); 127 } 128 129 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 130 uint32_t token, uint32_t nargs, 131 target_ulong args, 132 uint32_t nret, target_ulong rets) 133 { 134 uint64_t buid; 135 uint32_t size, addr; 136 137 if ((nargs != 4) || (nret != 2)) { 138 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 139 return; 140 } 141 142 buid = rtas_ldq(args, 1); 143 size = rtas_ld(args, 3); 144 addr = rtas_ld(args, 0); 145 146 finish_read_pci_config(spapr, buid, addr, size, rets); 147 } 148 149 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 150 uint32_t token, uint32_t nargs, 151 target_ulong args, 152 uint32_t nret, target_ulong rets) 153 { 154 uint32_t size, addr; 155 156 if ((nargs != 2) || (nret != 2)) { 157 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 158 return; 159 } 160 161 size = rtas_ld(args, 1); 162 addr = rtas_ld(args, 0); 163 164 finish_read_pci_config(spapr, 0, addr, size, rets); 165 } 166 167 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid, 168 uint32_t addr, uint32_t size, 169 uint32_t val, target_ulong rets) 170 { 171 PCIDevice *pci_dev; 172 173 if ((size != 1) && (size != 2) && (size != 4)) { 174 /* access must be 1, 2 or 4 bytes */ 175 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 176 return; 177 } 178 179 pci_dev = spapr_pci_find_dev(spapr, buid, addr); 180 addr = rtas_pci_cfgaddr(addr); 181 182 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 183 /* Access must be to a valid device, within bounds and 184 * naturally aligned */ 185 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 186 return; 187 } 188 189 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 190 val, size); 191 192 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 193 } 194 195 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 196 uint32_t token, uint32_t nargs, 197 target_ulong args, 198 uint32_t nret, target_ulong rets) 199 { 200 uint64_t buid; 201 uint32_t val, size, addr; 202 203 if ((nargs != 5) || (nret != 1)) { 204 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 205 return; 206 } 207 208 buid = rtas_ldq(args, 1); 209 val = rtas_ld(args, 4); 210 size = rtas_ld(args, 3); 211 addr = rtas_ld(args, 0); 212 213 finish_write_pci_config(spapr, buid, addr, size, val, rets); 214 } 215 216 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, 217 uint32_t token, uint32_t nargs, 218 target_ulong args, 219 uint32_t nret, target_ulong rets) 220 { 221 uint32_t val, size, addr; 222 223 if ((nargs != 3) || (nret != 1)) { 224 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 225 return; 226 } 227 228 229 val = rtas_ld(args, 2); 230 size = rtas_ld(args, 1); 231 addr = rtas_ld(args, 0); 232 233 finish_write_pci_config(spapr, 0, addr, size, val, rets); 234 } 235 236 /* 237 * Set MSI/MSIX message data. 238 * This is required for msi_notify()/msix_notify() which 239 * will write at the addresses via spapr_msi_write(). 240 * 241 * If hwaddr == 0, all entries will have .data == first_irq i.e. 242 * table will be reset. 243 */ 244 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 245 unsigned first_irq, unsigned req_num) 246 { 247 unsigned i; 248 MSIMessage msg = { .address = addr, .data = first_irq }; 249 250 if (!msix) { 251 msi_set_message(pdev, msg); 252 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 253 return; 254 } 255 256 for (i = 0; i < req_num; ++i) { 257 msix_set_message(pdev, i, msg); 258 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 259 if (addr) { 260 ++msg.data; 261 } 262 } 263 } 264 265 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr, 266 uint32_t token, uint32_t nargs, 267 target_ulong args, uint32_t nret, 268 target_ulong rets) 269 { 270 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 271 uint32_t config_addr = rtas_ld(args, 0); 272 uint64_t buid = rtas_ldq(args, 1); 273 unsigned int func = rtas_ld(args, 3); 274 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 275 unsigned int seq_num = rtas_ld(args, 5); 276 unsigned int ret_intr_type; 277 unsigned int irq, max_irqs = 0; 278 sPAPRPHBState *phb = NULL; 279 PCIDevice *pdev = NULL; 280 spapr_pci_msi *msi; 281 int *config_addr_key; 282 Error *err = NULL; 283 int i; 284 285 /* Fins sPAPRPHBState */ 286 phb = spapr_pci_find_phb(spapr, buid); 287 if (phb) { 288 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 289 } 290 if (!phb || !pdev) { 291 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 292 return; 293 } 294 295 switch (func) { 296 case RTAS_CHANGE_FN: 297 if (msi_present(pdev)) { 298 ret_intr_type = RTAS_TYPE_MSI; 299 } else if (msix_present(pdev)) { 300 ret_intr_type = RTAS_TYPE_MSIX; 301 } else { 302 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 303 return; 304 } 305 break; 306 case RTAS_CHANGE_MSI_FN: 307 if (msi_present(pdev)) { 308 ret_intr_type = RTAS_TYPE_MSI; 309 } else { 310 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 311 return; 312 } 313 break; 314 case RTAS_CHANGE_MSIX_FN: 315 if (msix_present(pdev)) { 316 ret_intr_type = RTAS_TYPE_MSIX; 317 } else { 318 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 319 return; 320 } 321 break; 322 default: 323 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 324 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 325 return; 326 } 327 328 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 329 330 /* Releasing MSIs */ 331 if (!req_num) { 332 if (!msi) { 333 trace_spapr_pci_msi("Releasing wrong config", config_addr); 334 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 335 return; 336 } 337 338 if (!smc->legacy_irq_allocation) { 339 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 340 } 341 spapr_irq_free(spapr, msi->first_irq, msi->num); 342 if (msi_present(pdev)) { 343 spapr_msi_setmsg(pdev, 0, false, 0, 0); 344 } 345 if (msix_present(pdev)) { 346 spapr_msi_setmsg(pdev, 0, true, 0, 0); 347 } 348 g_hash_table_remove(phb->msi, &config_addr); 349 350 trace_spapr_pci_msi("Released MSIs", config_addr); 351 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 352 rtas_st(rets, 1, 0); 353 return; 354 } 355 356 /* Enabling MSI */ 357 358 /* Check if the device supports as many IRQs as requested */ 359 if (ret_intr_type == RTAS_TYPE_MSI) { 360 max_irqs = msi_nr_vectors_allocated(pdev); 361 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 362 max_irqs = pdev->msix_entries_nr; 363 } 364 if (!max_irqs) { 365 error_report("Requested interrupt type %d is not enabled for device %x", 366 ret_intr_type, config_addr); 367 rtas_st(rets, 0, -1); /* Hardware error */ 368 return; 369 } 370 /* Correct the number if the guest asked for too many */ 371 if (req_num > max_irqs) { 372 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); 373 req_num = max_irqs; 374 irq = 0; /* to avoid misleading trace */ 375 goto out; 376 } 377 378 /* Allocate MSIs */ 379 if (smc->legacy_irq_allocation) { 380 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI, 381 &err); 382 } else { 383 irq = spapr_irq_msi_alloc(spapr, req_num, 384 ret_intr_type == RTAS_TYPE_MSI, &err); 385 } 386 if (err) { 387 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 388 config_addr); 389 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 390 return; 391 } 392 393 for (i = 0; i < req_num; i++) { 394 spapr_irq_claim(spapr, irq + i, false, &err); 395 if (err) { 396 if (i) { 397 spapr_irq_free(spapr, irq, i); 398 } 399 if (!smc->legacy_irq_allocation) { 400 spapr_irq_msi_free(spapr, irq, req_num); 401 } 402 error_reportf_err(err, "Can't allocate MSIs for device %x: ", 403 config_addr); 404 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 405 return; 406 } 407 } 408 409 /* Release previous MSIs */ 410 if (msi) { 411 if (!smc->legacy_irq_allocation) { 412 spapr_irq_msi_free(spapr, msi->first_irq, msi->num); 413 } 414 spapr_irq_free(spapr, msi->first_irq, msi->num); 415 g_hash_table_remove(phb->msi, &config_addr); 416 } 417 418 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 419 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, 420 irq, req_num); 421 422 /* Add MSI device to cache */ 423 msi = g_new(spapr_pci_msi, 1); 424 msi->first_irq = irq; 425 msi->num = req_num; 426 config_addr_key = g_new(int, 1); 427 *config_addr_key = config_addr; 428 g_hash_table_insert(phb->msi, config_addr_key, msi); 429 430 out: 431 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 432 rtas_st(rets, 1, req_num); 433 rtas_st(rets, 2, ++seq_num); 434 if (nret > 3) { 435 rtas_st(rets, 3, ret_intr_type); 436 } 437 438 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); 439 } 440 441 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 442 sPAPRMachineState *spapr, 443 uint32_t token, 444 uint32_t nargs, 445 target_ulong args, 446 uint32_t nret, 447 target_ulong rets) 448 { 449 uint32_t config_addr = rtas_ld(args, 0); 450 uint64_t buid = rtas_ldq(args, 1); 451 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 452 sPAPRPHBState *phb = NULL; 453 PCIDevice *pdev = NULL; 454 spapr_pci_msi *msi; 455 456 /* Find sPAPRPHBState */ 457 phb = spapr_pci_find_phb(spapr, buid); 458 if (phb) { 459 pdev = spapr_pci_find_dev(spapr, buid, config_addr); 460 } 461 if (!phb || !pdev) { 462 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 463 return; 464 } 465 466 /* Find device descriptor and start IRQ */ 467 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); 468 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { 469 trace_spapr_pci_msi("Failed to return vector", config_addr); 470 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 471 return; 472 } 473 intr_src_num = msi->first_irq + ioa_intr_num; 474 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 475 intr_src_num); 476 477 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 478 rtas_st(rets, 1, intr_src_num); 479 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 480 } 481 482 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, 483 sPAPRMachineState *spapr, 484 uint32_t token, uint32_t nargs, 485 target_ulong args, uint32_t nret, 486 target_ulong rets) 487 { 488 sPAPRPHBState *sphb; 489 uint32_t addr, option; 490 uint64_t buid; 491 int ret; 492 493 if ((nargs != 4) || (nret != 1)) { 494 goto param_error_exit; 495 } 496 497 buid = rtas_ldq(args, 1); 498 addr = rtas_ld(args, 0); 499 option = rtas_ld(args, 3); 500 501 sphb = spapr_pci_find_phb(spapr, buid); 502 if (!sphb) { 503 goto param_error_exit; 504 } 505 506 if (!spapr_phb_eeh_available(sphb)) { 507 goto param_error_exit; 508 } 509 510 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); 511 rtas_st(rets, 0, ret); 512 return; 513 514 param_error_exit: 515 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 516 } 517 518 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, 519 sPAPRMachineState *spapr, 520 uint32_t token, uint32_t nargs, 521 target_ulong args, uint32_t nret, 522 target_ulong rets) 523 { 524 sPAPRPHBState *sphb; 525 PCIDevice *pdev; 526 uint32_t addr, option; 527 uint64_t buid; 528 529 if ((nargs != 4) || (nret != 2)) { 530 goto param_error_exit; 531 } 532 533 buid = rtas_ldq(args, 1); 534 sphb = spapr_pci_find_phb(spapr, buid); 535 if (!sphb) { 536 goto param_error_exit; 537 } 538 539 if (!spapr_phb_eeh_available(sphb)) { 540 goto param_error_exit; 541 } 542 543 /* 544 * We always have PE address of form "00BB0001". "BB" 545 * represents the bus number of PE's primary bus. 546 */ 547 option = rtas_ld(args, 3); 548 switch (option) { 549 case RTAS_GET_PE_ADDR: 550 addr = rtas_ld(args, 0); 551 pdev = spapr_pci_find_dev(spapr, buid, addr); 552 if (!pdev) { 553 goto param_error_exit; 554 } 555 556 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1); 557 break; 558 case RTAS_GET_PE_MODE: 559 rtas_st(rets, 1, RTAS_PE_MODE_SHARED); 560 break; 561 default: 562 goto param_error_exit; 563 } 564 565 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 566 return; 567 568 param_error_exit: 569 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 570 } 571 572 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, 573 sPAPRMachineState *spapr, 574 uint32_t token, uint32_t nargs, 575 target_ulong args, uint32_t nret, 576 target_ulong rets) 577 { 578 sPAPRPHBState *sphb; 579 uint64_t buid; 580 int state, ret; 581 582 if ((nargs != 3) || (nret != 4 && nret != 5)) { 583 goto param_error_exit; 584 } 585 586 buid = rtas_ldq(args, 1); 587 sphb = spapr_pci_find_phb(spapr, buid); 588 if (!sphb) { 589 goto param_error_exit; 590 } 591 592 if (!spapr_phb_eeh_available(sphb)) { 593 goto param_error_exit; 594 } 595 596 ret = spapr_phb_vfio_eeh_get_state(sphb, &state); 597 rtas_st(rets, 0, ret); 598 if (ret != RTAS_OUT_SUCCESS) { 599 return; 600 } 601 602 rtas_st(rets, 1, state); 603 rtas_st(rets, 2, RTAS_EEH_SUPPORT); 604 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); 605 if (nret >= 5) { 606 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); 607 } 608 return; 609 610 param_error_exit: 611 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 612 } 613 614 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, 615 sPAPRMachineState *spapr, 616 uint32_t token, uint32_t nargs, 617 target_ulong args, uint32_t nret, 618 target_ulong rets) 619 { 620 sPAPRPHBState *sphb; 621 uint32_t option; 622 uint64_t buid; 623 int ret; 624 625 if ((nargs != 4) || (nret != 1)) { 626 goto param_error_exit; 627 } 628 629 buid = rtas_ldq(args, 1); 630 option = rtas_ld(args, 3); 631 sphb = spapr_pci_find_phb(spapr, buid); 632 if (!sphb) { 633 goto param_error_exit; 634 } 635 636 if (!spapr_phb_eeh_available(sphb)) { 637 goto param_error_exit; 638 } 639 640 ret = spapr_phb_vfio_eeh_reset(sphb, option); 641 rtas_st(rets, 0, ret); 642 return; 643 644 param_error_exit: 645 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 646 } 647 648 static void rtas_ibm_configure_pe(PowerPCCPU *cpu, 649 sPAPRMachineState *spapr, 650 uint32_t token, uint32_t nargs, 651 target_ulong args, uint32_t nret, 652 target_ulong rets) 653 { 654 sPAPRPHBState *sphb; 655 uint64_t buid; 656 int ret; 657 658 if ((nargs != 3) || (nret != 1)) { 659 goto param_error_exit; 660 } 661 662 buid = rtas_ldq(args, 1); 663 sphb = spapr_pci_find_phb(spapr, buid); 664 if (!sphb) { 665 goto param_error_exit; 666 } 667 668 if (!spapr_phb_eeh_available(sphb)) { 669 goto param_error_exit; 670 } 671 672 ret = spapr_phb_vfio_eeh_configure(sphb); 673 rtas_st(rets, 0, ret); 674 return; 675 676 param_error_exit: 677 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 678 } 679 680 /* To support it later */ 681 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, 682 sPAPRMachineState *spapr, 683 uint32_t token, uint32_t nargs, 684 target_ulong args, uint32_t nret, 685 target_ulong rets) 686 { 687 sPAPRPHBState *sphb; 688 int option; 689 uint64_t buid; 690 691 if ((nargs != 8) || (nret != 1)) { 692 goto param_error_exit; 693 } 694 695 buid = rtas_ldq(args, 1); 696 sphb = spapr_pci_find_phb(spapr, buid); 697 if (!sphb) { 698 goto param_error_exit; 699 } 700 701 if (!spapr_phb_eeh_available(sphb)) { 702 goto param_error_exit; 703 } 704 705 option = rtas_ld(args, 7); 706 switch (option) { 707 case RTAS_SLOT_TEMP_ERR_LOG: 708 case RTAS_SLOT_PERM_ERR_LOG: 709 break; 710 default: 711 goto param_error_exit; 712 } 713 714 /* We don't have error log yet */ 715 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); 716 return; 717 718 param_error_exit: 719 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 720 } 721 722 static int pci_spapr_swizzle(int slot, int pin) 723 { 724 return (slot + pin) % PCI_NUM_PINS; 725 } 726 727 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) 728 { 729 /* 730 * Here we need to convert pci_dev + irq_num to some unique value 731 * which is less than number of IRQs on the specific bus (4). We 732 * use standard PCI swizzling, that is (slot number + pin number) 733 * % 4. 734 */ 735 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); 736 } 737 738 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 739 { 740 /* 741 * Here we use the number returned by pci_spapr_map_irq to find a 742 * corresponding qemu_irq. 743 */ 744 sPAPRPHBState *phb = opaque; 745 746 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 747 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); 748 } 749 750 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 751 { 752 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 753 PCIINTxRoute route; 754 755 route.mode = PCI_INTX_ENABLED; 756 route.irq = sphb->lsi_table[pin].irq; 757 758 return route; 759 } 760 761 /* 762 * MSI/MSIX memory region implementation. 763 * The handler handles both MSI and MSIX. 764 * The vector number is encoded in least bits in data. 765 */ 766 static void spapr_msi_write(void *opaque, hwaddr addr, 767 uint64_t data, unsigned size) 768 { 769 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 770 uint32_t irq = data; 771 772 trace_spapr_pci_msi_write(addr, data, irq); 773 774 qemu_irq_pulse(spapr_qirq(spapr, irq)); 775 } 776 777 static const MemoryRegionOps spapr_msi_ops = { 778 /* There is no .read as the read result is undefined by PCI spec */ 779 .read = NULL, 780 .write = spapr_msi_write, 781 .endianness = DEVICE_LITTLE_ENDIAN 782 }; 783 784 /* 785 * PHB PCI device 786 */ 787 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 788 { 789 sPAPRPHBState *phb = opaque; 790 791 return &phb->iommu_as; 792 } 793 794 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 795 { 796 char *path = NULL, *buf = NULL, *host = NULL; 797 798 /* Get the PCI VFIO host id */ 799 host = object_property_get_str(OBJECT(pdev), "host", NULL); 800 if (!host) { 801 goto err_out; 802 } 803 804 /* Construct the path of the file that will give us the DT location */ 805 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); 806 g_free(host); 807 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 808 goto err_out; 809 } 810 g_free(path); 811 812 /* Construct and read from host device tree the loc-code */ 813 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); 814 g_free(buf); 815 if (!g_file_get_contents(path, &buf, NULL, NULL)) { 816 goto err_out; 817 } 818 return buf; 819 820 err_out: 821 g_free(path); 822 return NULL; 823 } 824 825 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) 826 { 827 char *buf; 828 const char *devtype = "qemu"; 829 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 830 831 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { 832 buf = spapr_phb_vfio_get_loc_code(sphb, pdev); 833 if (buf) { 834 return buf; 835 } 836 devtype = "vfio"; 837 } 838 /* 839 * For emulated devices and VFIO-failure case, make up 840 * the loc-code. 841 */ 842 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", 843 devtype, pdev->name, sphb->index, busnr, 844 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 845 return buf; 846 } 847 848 /* Macros to operate with address in OF binding to PCI */ 849 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 850 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 851 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 852 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 853 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 854 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 855 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 856 #define b_fff(x) b_x((x), 8, 3) /* function number */ 857 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 858 859 /* for 'reg'/'assigned-addresses' OF properties */ 860 #define RESOURCE_CELLS_SIZE 2 861 #define RESOURCE_CELLS_ADDRESS 3 862 863 typedef struct ResourceFields { 864 uint32_t phys_hi; 865 uint32_t phys_mid; 866 uint32_t phys_lo; 867 uint32_t size_hi; 868 uint32_t size_lo; 869 } QEMU_PACKED ResourceFields; 870 871 typedef struct ResourceProps { 872 ResourceFields reg[8]; 873 ResourceFields assigned[7]; 874 uint32_t reg_len; 875 uint32_t assigned_len; 876 } ResourceProps; 877 878 /* fill in the 'reg'/'assigned-resources' OF properties for 879 * a PCI device. 'reg' describes resource requirements for a 880 * device's IO/MEM regions, 'assigned-addresses' describes the 881 * actual resource assignments. 882 * 883 * the properties are arrays of ('phys-addr', 'size') pairs describing 884 * the addressable regions of the PCI device, where 'phys-addr' is a 885 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to 886 * (phys.hi, phys.mid, phys.lo), and 'size' is a 887 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). 888 * 889 * phys.hi = 0xYYXXXXZZ, where: 890 * 0xYY = npt000ss 891 * ||| | 892 * ||| +-- space code 893 * ||| | 894 * ||| + 00 if configuration space 895 * ||| + 01 if IO region, 896 * ||| + 10 if 32-bit MEM region 897 * ||| + 11 if 64-bit MEM region 898 * ||| 899 * ||+------ for non-relocatable IO: 1 if aliased 900 * || for relocatable IO: 1 if below 64KB 901 * || for MEM: 1 if below 1MB 902 * |+------- 1 if region is prefetchable 903 * +-------- 1 if region is non-relocatable 904 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function 905 * bits respectively 906 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding 907 * to the region 908 * 909 * phys.mid and phys.lo correspond respectively to the hi/lo portions 910 * of the actual address of the region. 911 * 912 * how the phys-addr/size values are used differ slightly between 913 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has 914 * an additional description for the config space region of the 915 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0 916 * to describe the region as relocatable, with an address-mapping 917 * that corresponds directly to the PHB's address space for the 918 * resource. 'assigned-addresses' always has n=1 set with an absolute 919 * address assigned for the resource. in general, 'assigned-addresses' 920 * won't be populated, since addresses for PCI devices are generally 921 * unmapped initially and left to the guest to assign. 922 * 923 * note also that addresses defined in these properties are, at least 924 * for PAPR guests, relative to the PHBs IO/MEM windows, and 925 * correspond directly to the addresses in the BARs. 926 * 927 * in accordance with PCI Bus Binding to Open Firmware, 928 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, 929 * Appendix C. 930 */ 931 static void populate_resource_props(PCIDevice *d, ResourceProps *rp) 932 { 933 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); 934 uint32_t dev_id = (b_bbbbbbbb(bus_num) | 935 b_ddddd(PCI_SLOT(d->devfn)) | 936 b_fff(PCI_FUNC(d->devfn))); 937 ResourceFields *reg, *assigned; 938 int i, reg_idx = 0, assigned_idx = 0; 939 940 /* config space region */ 941 reg = &rp->reg[reg_idx++]; 942 reg->phys_hi = cpu_to_be32(dev_id); 943 reg->phys_mid = 0; 944 reg->phys_lo = 0; 945 reg->size_hi = 0; 946 reg->size_lo = 0; 947 948 for (i = 0; i < PCI_NUM_REGIONS; i++) { 949 if (!d->io_regions[i].size) { 950 continue; 951 } 952 953 reg = &rp->reg[reg_idx++]; 954 955 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); 956 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { 957 reg->phys_hi |= cpu_to_be32(b_ss(1)); 958 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 959 reg->phys_hi |= cpu_to_be32(b_ss(3)); 960 } else { 961 reg->phys_hi |= cpu_to_be32(b_ss(2)); 962 } 963 reg->phys_mid = 0; 964 reg->phys_lo = 0; 965 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); 966 reg->size_lo = cpu_to_be32(d->io_regions[i].size); 967 968 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) { 969 continue; 970 } 971 972 assigned = &rp->assigned[assigned_idx++]; 973 assigned->phys_hi = cpu_to_be32(be32_to_cpu(reg->phys_hi) | b_n(1)); 974 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32); 975 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr); 976 assigned->size_hi = reg->size_hi; 977 assigned->size_lo = reg->size_lo; 978 } 979 980 rp->reg_len = reg_idx * sizeof(ResourceFields); 981 rp->assigned_len = assigned_idx * sizeof(ResourceFields); 982 } 983 984 typedef struct PCIClass PCIClass; 985 typedef struct PCISubClass PCISubClass; 986 typedef struct PCIIFace PCIIFace; 987 988 struct PCIIFace { 989 int iface; 990 const char *name; 991 }; 992 993 struct PCISubClass { 994 int subclass; 995 const char *name; 996 const PCIIFace *iface; 997 }; 998 999 struct PCIClass { 1000 const char *name; 1001 const PCISubClass *subc; 1002 }; 1003 1004 static const PCISubClass undef_subclass[] = { 1005 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, 1006 { 0xFF, NULL, NULL }, 1007 }; 1008 1009 static const PCISubClass mass_subclass[] = { 1010 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, 1011 { PCI_CLASS_STORAGE_IDE, "ide", NULL }, 1012 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, 1013 { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, 1014 { PCI_CLASS_STORAGE_RAID, "raid", NULL }, 1015 { PCI_CLASS_STORAGE_ATA, "ata", NULL }, 1016 { PCI_CLASS_STORAGE_SATA, "sata", NULL }, 1017 { PCI_CLASS_STORAGE_SAS, "sas", NULL }, 1018 { 0xFF, NULL, NULL }, 1019 }; 1020 1021 static const PCISubClass net_subclass[] = { 1022 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, 1023 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, 1024 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, 1025 { PCI_CLASS_NETWORK_ATM, "atm", NULL }, 1026 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, 1027 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, 1028 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, 1029 { 0xFF, NULL, NULL }, 1030 }; 1031 1032 static const PCISubClass displ_subclass[] = { 1033 { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, 1034 { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, 1035 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, 1036 { 0xFF, NULL, NULL }, 1037 }; 1038 1039 static const PCISubClass media_subclass[] = { 1040 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, 1041 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, 1042 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, 1043 { 0xFF, NULL, NULL }, 1044 }; 1045 1046 static const PCISubClass mem_subclass[] = { 1047 { PCI_CLASS_MEMORY_RAM, "memory", NULL }, 1048 { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, 1049 { 0xFF, NULL, NULL }, 1050 }; 1051 1052 static const PCISubClass bridg_subclass[] = { 1053 { PCI_CLASS_BRIDGE_HOST, "host", NULL }, 1054 { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, 1055 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, 1056 { PCI_CLASS_BRIDGE_MC, "mca", NULL }, 1057 { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, 1058 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, 1059 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, 1060 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, 1061 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, 1062 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, 1063 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, 1064 { 0xFF, NULL, NULL }, 1065 }; 1066 1067 static const PCISubClass comm_subclass[] = { 1068 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, 1069 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, 1070 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, 1071 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, 1072 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, 1073 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, 1074 { 0xFF, NULL, NULL, }, 1075 }; 1076 1077 static const PCIIFace pic_iface[] = { 1078 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, 1079 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, 1080 { 0xFF, NULL }, 1081 }; 1082 1083 static const PCISubClass sys_subclass[] = { 1084 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, 1085 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, 1086 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, 1087 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, 1088 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, 1089 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, 1090 { 0xFF, NULL, NULL }, 1091 }; 1092 1093 static const PCISubClass inp_subclass[] = { 1094 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, 1095 { PCI_CLASS_INPUT_PEN, "pen", NULL }, 1096 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, 1097 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, 1098 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, 1099 { 0xFF, NULL, NULL }, 1100 }; 1101 1102 static const PCISubClass dock_subclass[] = { 1103 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, 1104 { 0xFF, NULL, NULL }, 1105 }; 1106 1107 static const PCISubClass cpu_subclass[] = { 1108 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, 1109 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, 1110 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, 1111 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, 1112 { 0xFF, NULL, NULL }, 1113 }; 1114 1115 static const PCIIFace usb_iface[] = { 1116 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, 1117 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, 1118 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, 1119 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, 1120 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, 1121 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, 1122 { 0xFF, NULL }, 1123 }; 1124 1125 static const PCISubClass ser_subclass[] = { 1126 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, 1127 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, 1128 { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, 1129 { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, 1130 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, 1131 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, 1132 { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, 1133 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, 1134 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, 1135 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, 1136 { 0xFF, NULL, NULL }, 1137 }; 1138 1139 static const PCISubClass wrl_subclass[] = { 1140 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, 1141 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, 1142 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, 1143 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, 1144 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, 1145 { 0xFF, NULL, NULL }, 1146 }; 1147 1148 static const PCISubClass sat_subclass[] = { 1149 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, 1150 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, 1151 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, 1152 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, 1153 { 0xFF, NULL, NULL }, 1154 }; 1155 1156 static const PCISubClass crypt_subclass[] = { 1157 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, 1158 { PCI_CLASS_CRYPT_ENTERTAINMENT, 1159 "entertainment-encryption", NULL }, 1160 { 0xFF, NULL, NULL }, 1161 }; 1162 1163 static const PCISubClass spc_subclass[] = { 1164 { PCI_CLASS_SP_DPIO, "dpio", NULL }, 1165 { PCI_CLASS_SP_PERF, "counter", NULL }, 1166 { PCI_CLASS_SP_SYNCH, "measurement", NULL }, 1167 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, 1168 { 0xFF, NULL, NULL }, 1169 }; 1170 1171 static const PCIClass pci_classes[] = { 1172 { "legacy-device", undef_subclass }, 1173 { "mass-storage", mass_subclass }, 1174 { "network", net_subclass }, 1175 { "display", displ_subclass, }, 1176 { "multimedia-device", media_subclass }, 1177 { "memory-controller", mem_subclass }, 1178 { "unknown-bridge", bridg_subclass }, 1179 { "communication-controller", comm_subclass}, 1180 { "system-peripheral", sys_subclass }, 1181 { "input-controller", inp_subclass }, 1182 { "docking-station", dock_subclass }, 1183 { "cpu", cpu_subclass }, 1184 { "serial-bus", ser_subclass }, 1185 { "wireless-controller", wrl_subclass }, 1186 { "intelligent-io", NULL }, 1187 { "satellite-device", sat_subclass }, 1188 { "encryption", crypt_subclass }, 1189 { "data-processing-controller", spc_subclass }, 1190 }; 1191 1192 static const char *pci_find_device_name(uint8_t class, uint8_t subclass, 1193 uint8_t iface) 1194 { 1195 const PCIClass *pclass; 1196 const PCISubClass *psubclass; 1197 const PCIIFace *piface; 1198 const char *name; 1199 1200 if (class >= ARRAY_SIZE(pci_classes)) { 1201 return "pci"; 1202 } 1203 1204 pclass = pci_classes + class; 1205 name = pclass->name; 1206 1207 if (pclass->subc == NULL) { 1208 return name; 1209 } 1210 1211 psubclass = pclass->subc; 1212 while ((psubclass->subclass & 0xff) != 0xff) { 1213 if ((psubclass->subclass & 0xff) == subclass) { 1214 name = psubclass->name; 1215 break; 1216 } 1217 psubclass++; 1218 } 1219 1220 piface = psubclass->iface; 1221 if (piface == NULL) { 1222 return name; 1223 } 1224 while ((piface->iface & 0xff) != 0xff) { 1225 if ((piface->iface & 0xff) == iface) { 1226 name = piface->name; 1227 break; 1228 } 1229 piface++; 1230 } 1231 1232 return name; 1233 } 1234 1235 static gchar *pci_get_node_name(PCIDevice *dev) 1236 { 1237 int slot = PCI_SLOT(dev->devfn); 1238 int func = PCI_FUNC(dev->devfn); 1239 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1240 const char *name; 1241 1242 name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, 1243 ccode & 0xff); 1244 1245 if (func != 0) { 1246 return g_strdup_printf("%s@%x,%x", name, slot, func); 1247 } else { 1248 return g_strdup_printf("%s@%x", name, slot); 1249 } 1250 } 1251 1252 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 1253 PCIDevice *pdev); 1254 1255 static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset, 1256 sPAPRPHBState *sphb) 1257 { 1258 ResourceProps rp; 1259 bool is_bridge = false; 1260 int pci_status; 1261 char *buf = NULL; 1262 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev); 1263 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); 1264 uint32_t max_msi, max_msix; 1265 1266 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) == 1267 PCI_HEADER_TYPE_BRIDGE) { 1268 is_bridge = true; 1269 } 1270 1271 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ 1272 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", 1273 pci_default_read_config(dev, PCI_VENDOR_ID, 2))); 1274 _FDT(fdt_setprop_cell(fdt, offset, "device-id", 1275 pci_default_read_config(dev, PCI_DEVICE_ID, 2))); 1276 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", 1277 pci_default_read_config(dev, PCI_REVISION_ID, 1))); 1278 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); 1279 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) { 1280 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", 1281 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1))); 1282 } 1283 1284 if (!is_bridge) { 1285 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", 1286 pci_default_read_config(dev, PCI_MIN_GNT, 1))); 1287 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", 1288 pci_default_read_config(dev, PCI_MAX_LAT, 1))); 1289 } 1290 1291 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) { 1292 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", 1293 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2))); 1294 } 1295 1296 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) { 1297 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", 1298 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2))); 1299 } 1300 1301 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", 1302 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1))); 1303 1304 /* the following fdt cells are masked off the pci status register */ 1305 pci_status = pci_default_read_config(dev, PCI_STATUS, 2); 1306 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", 1307 PCI_STATUS_DEVSEL_MASK & pci_status)); 1308 1309 if (pci_status & PCI_STATUS_FAST_BACK) { 1310 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); 1311 } 1312 if (pci_status & PCI_STATUS_66MHZ) { 1313 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); 1314 } 1315 if (pci_status & PCI_STATUS_UDF) { 1316 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); 1317 } 1318 1319 _FDT(fdt_setprop_string(fdt, offset, "name", 1320 pci_find_device_name((ccode >> 16) & 0xff, 1321 (ccode >> 8) & 0xff, 1322 ccode & 0xff))); 1323 1324 buf = spapr_phb_get_loc_code(sphb, dev); 1325 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf)); 1326 g_free(buf); 1327 1328 if (drc_index) { 1329 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)); 1330 } 1331 1332 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 1333 RESOURCE_CELLS_ADDRESS)); 1334 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1335 RESOURCE_CELLS_SIZE)); 1336 1337 if (msi_present(dev)) { 1338 max_msi = msi_nr_vectors_allocated(dev); 1339 if (max_msi) { 1340 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); 1341 } 1342 } 1343 if (msix_present(dev)) { 1344 max_msix = dev->msix_entries_nr; 1345 if (max_msix) { 1346 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); 1347 } 1348 } 1349 1350 populate_resource_props(dev, &rp); 1351 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); 1352 _FDT(fdt_setprop(fdt, offset, "assigned-addresses", 1353 (uint8_t *)rp.assigned, rp.assigned_len)); 1354 1355 if (sphb->pcie_ecs && pci_is_express(dev)) { 1356 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); 1357 } 1358 } 1359 1360 /* create OF node for pci device and required OF DT properties */ 1361 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev, 1362 void *fdt, int node_offset) 1363 { 1364 int offset; 1365 gchar *nodename; 1366 1367 nodename = pci_get_node_name(dev); 1368 _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename)); 1369 g_free(nodename); 1370 1371 spapr_populate_pci_child_dt(dev, fdt, offset, phb); 1372 1373 return offset; 1374 } 1375 1376 /* Callback to be called during DRC release. */ 1377 void spapr_phb_remove_pci_device_cb(DeviceState *dev) 1378 { 1379 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 1380 1381 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 1382 } 1383 1384 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb, 1385 uint32_t busnr, 1386 int32_t devfn) 1387 { 1388 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, 1389 (phb->index << 16) | (busnr << 8) | devfn); 1390 } 1391 1392 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb, 1393 PCIDevice *pdev) 1394 { 1395 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); 1396 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn); 1397 } 1398 1399 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, 1400 PCIDevice *pdev) 1401 { 1402 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1403 1404 if (!drc) { 1405 return 0; 1406 } 1407 1408 return spapr_drc_index(drc); 1409 } 1410 1411 static void spapr_pci_plug(HotplugHandler *plug_handler, 1412 DeviceState *plugged_dev, Error **errp) 1413 { 1414 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1415 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1416 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1417 Error *local_err = NULL; 1418 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1419 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1420 void *fdt = NULL; 1421 int fdt_start_offset, fdt_size; 1422 1423 /* if DR is disabled we don't need to do anything in the case of 1424 * hotplug or coldplug callbacks 1425 */ 1426 if (!phb->dr_enabled) { 1427 /* if this is a hotplug operation initiated by the user 1428 * we need to let them know it's not enabled 1429 */ 1430 if (plugged_dev->hotplugged) { 1431 error_setg(&local_err, QERR_BUS_NO_HOTPLUG, 1432 object_get_typename(OBJECT(phb))); 1433 } 1434 goto out; 1435 } 1436 1437 g_assert(drc); 1438 1439 /* Following the QEMU convention used for PCIe multifunction 1440 * hotplug, we do not allow functions to be hotplugged to a 1441 * slot that already has function 0 present 1442 */ 1443 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && 1444 PCI_FUNC(pdev->devfn) != 0) { 1445 error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s," 1446 " additional functions can no longer be exposed to guest.", 1447 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); 1448 goto out; 1449 } 1450 1451 fdt = create_device_tree(&fdt_size); 1452 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0); 1453 1454 spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err); 1455 if (local_err) { 1456 goto out; 1457 } 1458 1459 /* If this is function 0, signal hotplug for all the device functions. 1460 * Otherwise defer sending the hotplug event. 1461 */ 1462 if (!spapr_drc_hotplugged(plugged_dev)) { 1463 spapr_drc_reset(drc); 1464 } else if (PCI_FUNC(pdev->devfn) == 0) { 1465 int i; 1466 1467 for (i = 0; i < 8; i++) { 1468 sPAPRDRConnector *func_drc; 1469 sPAPRDRConnectorClass *func_drck; 1470 sPAPRDREntitySense state; 1471 1472 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1473 PCI_DEVFN(slotnr, i)); 1474 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1475 state = func_drck->dr_entity_sense(func_drc); 1476 1477 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1478 spapr_hotplug_req_add_by_index(func_drc); 1479 } 1480 } 1481 } 1482 1483 out: 1484 if (local_err) { 1485 error_propagate(errp, local_err); 1486 g_free(fdt); 1487 } 1488 } 1489 1490 static void spapr_pci_unplug(HotplugHandler *plug_handler, 1491 DeviceState *plugged_dev, Error **errp) 1492 { 1493 /* some version guests do not wait for completion of a device 1494 * cleanup (generally done asynchronously by the kernel) before 1495 * signaling to QEMU that the device is safe, but instead sleep 1496 * for some 'safe' period of time. unfortunately on a busy host 1497 * this sleep isn't guaranteed to be long enough, resulting in 1498 * bad things like IRQ lines being left asserted during final 1499 * device removal. to deal with this we call reset just prior 1500 * to finalizing the device, which will put the device back into 1501 * an 'idle' state, as the device cleanup code expects. 1502 */ 1503 pci_device_reset(PCI_DEVICE(plugged_dev)); 1504 object_unparent(OBJECT(plugged_dev)); 1505 } 1506 1507 static void spapr_pci_unplug_request(HotplugHandler *plug_handler, 1508 DeviceState *plugged_dev, Error **errp) 1509 { 1510 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); 1511 PCIDevice *pdev = PCI_DEVICE(plugged_dev); 1512 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); 1513 1514 if (!phb->dr_enabled) { 1515 error_setg(errp, QERR_BUS_NO_HOTPLUG, 1516 object_get_typename(OBJECT(phb))); 1517 return; 1518 } 1519 1520 g_assert(drc); 1521 g_assert(drc->dev == plugged_dev); 1522 1523 if (!spapr_drc_unplug_requested(drc)) { 1524 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); 1525 uint32_t slotnr = PCI_SLOT(pdev->devfn); 1526 sPAPRDRConnector *func_drc; 1527 sPAPRDRConnectorClass *func_drck; 1528 sPAPRDREntitySense state; 1529 int i; 1530 1531 /* ensure any other present functions are pending unplug */ 1532 if (PCI_FUNC(pdev->devfn) == 0) { 1533 for (i = 1; i < 8; i++) { 1534 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1535 PCI_DEVFN(slotnr, i)); 1536 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1537 state = func_drck->dr_entity_sense(func_drc); 1538 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT 1539 && !spapr_drc_unplug_requested(func_drc)) { 1540 error_setg(errp, 1541 "PCI: slot %d, function %d still present. " 1542 "Must unplug all non-0 functions first.", 1543 slotnr, i); 1544 return; 1545 } 1546 } 1547 } 1548 1549 spapr_drc_detach(drc); 1550 1551 /* if this isn't func 0, defer unplug event. otherwise signal removal 1552 * for all present functions 1553 */ 1554 if (PCI_FUNC(pdev->devfn) == 0) { 1555 for (i = 7; i >= 0; i--) { 1556 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), 1557 PCI_DEVFN(slotnr, i)); 1558 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); 1559 state = func_drck->dr_entity_sense(func_drc); 1560 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { 1561 spapr_hotplug_req_remove_by_index(func_drc); 1562 } 1563 } 1564 } 1565 } 1566 } 1567 1568 static void spapr_phb_realize(DeviceState *dev, Error **errp) 1569 { 1570 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 1571 * tries to add a sPAPR PHB to a non-pseries machine. 1572 */ 1573 sPAPRMachineState *spapr = 1574 (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(), 1575 TYPE_SPAPR_MACHINE); 1576 sPAPRMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL; 1577 SysBusDevice *s = SYS_BUS_DEVICE(dev); 1578 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 1579 PCIHostState *phb = PCI_HOST_BRIDGE(s); 1580 char *namebuf; 1581 int i; 1582 PCIBus *bus; 1583 uint64_t msi_window_size = 4096; 1584 sPAPRTCETable *tcet; 1585 const unsigned windows_supported = 1586 sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1; 1587 1588 if (!spapr) { 1589 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine"); 1590 return; 1591 } 1592 1593 if (sphb->index != (uint32_t)-1) { 1594 Error *local_err = NULL; 1595 1596 smc->phb_placement(spapr, sphb->index, 1597 &sphb->buid, &sphb->io_win_addr, 1598 &sphb->mem_win_addr, &sphb->mem64_win_addr, 1599 windows_supported, sphb->dma_liobn, &local_err); 1600 if (local_err) { 1601 error_propagate(errp, local_err); 1602 return; 1603 } 1604 } else { 1605 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 1606 return; 1607 } 1608 1609 if (sphb->mem64_win_size != 0) { 1610 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1611 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx 1612 " (max 2 GiB)", sphb->mem_win_size); 1613 return; 1614 } 1615 1616 /* 64-bit window defaults to identity mapping */ 1617 sphb->mem64_win_pciaddr = sphb->mem64_win_addr; 1618 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { 1619 /* 1620 * For compatibility with old configuration, if no 64-bit MMIO 1621 * window is specified, but the ordinary (32-bit) memory 1622 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit 1623 * window, with a 64-bit MMIO window following on immediately 1624 * afterwards 1625 */ 1626 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; 1627 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; 1628 sphb->mem64_win_pciaddr = 1629 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; 1630 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; 1631 } 1632 1633 if (spapr_pci_find_phb(spapr, sphb->buid)) { 1634 error_setg(errp, "PCI host bridges must have unique BUIDs"); 1635 return; 1636 } 1637 1638 if (sphb->numa_node != -1 && 1639 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) { 1640 error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); 1641 return; 1642 } 1643 1644 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 1645 1646 /* Initialize memory regions */ 1647 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname); 1648 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 1649 g_free(namebuf); 1650 1651 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname); 1652 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), 1653 namebuf, &sphb->memspace, 1654 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 1655 g_free(namebuf); 1656 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 1657 &sphb->mem32window); 1658 1659 if (sphb->mem64_win_size != 0) { 1660 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname); 1661 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), 1662 namebuf, &sphb->memspace, 1663 sphb->mem64_win_pciaddr, sphb->mem64_win_size); 1664 g_free(namebuf); 1665 1666 memory_region_add_subregion(get_system_memory(), 1667 sphb->mem64_win_addr, 1668 &sphb->mem64window); 1669 } 1670 1671 /* Initialize IO regions */ 1672 namebuf = g_strdup_printf("%s.io", sphb->dtbusname); 1673 memory_region_init(&sphb->iospace, OBJECT(sphb), 1674 namebuf, SPAPR_PCI_IO_WIN_SIZE); 1675 g_free(namebuf); 1676 1677 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname); 1678 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 1679 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 1680 g_free(namebuf); 1681 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 1682 &sphb->iowindow); 1683 1684 bus = pci_register_root_bus(dev, NULL, 1685 pci_spapr_set_irq, pci_spapr_map_irq, sphb, 1686 &sphb->memspace, &sphb->iospace, 1687 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); 1688 phb->bus = bus; 1689 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb), NULL); 1690 1691 /* 1692 * Initialize PHB address space. 1693 * By default there will be at least one subregion for default 1694 * 32bit DMA window. 1695 * Later the guest might want to create another DMA window 1696 * which will become another memory subregion. 1697 */ 1698 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname); 1699 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 1700 namebuf, UINT64_MAX); 1701 g_free(namebuf); 1702 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 1703 sphb->dtbusname); 1704 1705 /* 1706 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 1707 * we need to allocate some memory to catch those writes coming 1708 * from msi_notify()/msix_notify(). 1709 * As MSIMessage:addr is going to be the same and MSIMessage:data 1710 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 1711 * be used. 1712 * 1713 * For KVM we want to ensure that this memory is a full page so that 1714 * our memory slot is of page size granularity. 1715 */ 1716 #ifdef CONFIG_KVM 1717 if (kvm_enabled()) { 1718 msi_window_size = getpagesize(); 1719 } 1720 #endif 1721 1722 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, 1723 "msi", msi_window_size); 1724 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, 1725 &sphb->msiwindow); 1726 1727 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 1728 1729 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 1730 1731 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 1732 1733 /* Initialize the LSI table */ 1734 for (i = 0; i < PCI_NUM_PINS; i++) { 1735 uint32_t irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i; 1736 Error *local_err = NULL; 1737 1738 if (smc->legacy_irq_allocation) { 1739 irq = spapr_irq_findone(spapr, &local_err); 1740 if (local_err) { 1741 error_propagate_prepend(errp, local_err, 1742 "can't allocate LSIs: "); 1743 return; 1744 } 1745 } 1746 1747 spapr_irq_claim(spapr, irq, true, &local_err); 1748 if (local_err) { 1749 error_propagate_prepend(errp, local_err, "can't allocate LSIs: "); 1750 return; 1751 } 1752 1753 sphb->lsi_table[i].irq = irq; 1754 } 1755 1756 /* allocate connectors for child PCI devices */ 1757 if (sphb->dr_enabled) { 1758 for (i = 0; i < PCI_SLOT_MAX * 8; i++) { 1759 spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI, 1760 (sphb->index << 16) | i); 1761 } 1762 } 1763 1764 /* DMA setup */ 1765 for (i = 0; i < windows_supported; ++i) { 1766 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); 1767 if (!tcet) { 1768 error_setg(errp, "Creating window#%d failed for %s", 1769 i, sphb->dtbusname); 1770 return; 1771 } 1772 memory_region_add_subregion(&sphb->iommu_root, 0, 1773 spapr_tce_get_iommu(tcet)); 1774 } 1775 1776 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); 1777 } 1778 1779 static int spapr_phb_children_reset(Object *child, void *opaque) 1780 { 1781 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 1782 1783 if (dev) { 1784 device_reset(dev); 1785 } 1786 1787 return 0; 1788 } 1789 1790 void spapr_phb_dma_reset(sPAPRPHBState *sphb) 1791 { 1792 int i; 1793 sPAPRTCETable *tcet; 1794 1795 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { 1796 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); 1797 1798 if (tcet && tcet->nb_table) { 1799 spapr_tce_table_disable(tcet); 1800 } 1801 } 1802 1803 /* Register default 32bit DMA window */ 1804 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); 1805 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, 1806 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); 1807 } 1808 1809 static void spapr_phb_reset(DeviceState *qdev) 1810 { 1811 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); 1812 1813 spapr_phb_dma_reset(sphb); 1814 1815 /* Reset the IOMMU state */ 1816 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 1817 1818 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { 1819 spapr_phb_vfio_reset(qdev); 1820 } 1821 } 1822 1823 static Property spapr_phb_properties[] = { 1824 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1), 1825 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, 1826 SPAPR_PCI_MEM32_WIN_SIZE), 1827 DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size, 1828 SPAPR_PCI_MEM64_WIN_SIZE), 1829 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, 1830 SPAPR_PCI_IO_WIN_SIZE), 1831 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled, 1832 true), 1833 /* Default DMA window is 0..1GB */ 1834 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0), 1835 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000), 1836 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr, 1837 0x800000000000000ULL), 1838 DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true), 1839 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask, 1840 (1ULL << 12) | (1ULL << 16)), 1841 DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1), 1842 DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState, 1843 pre_2_8_migration, false), 1844 DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState, 1845 pcie_ecs, true), 1846 DEFINE_PROP_END_OF_LIST(), 1847 }; 1848 1849 static const VMStateDescription vmstate_spapr_pci_lsi = { 1850 .name = "spapr_pci/lsi", 1851 .version_id = 1, 1852 .minimum_version_id = 1, 1853 .fields = (VMStateField[]) { 1854 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL), 1855 1856 VMSTATE_END_OF_LIST() 1857 }, 1858 }; 1859 1860 static const VMStateDescription vmstate_spapr_pci_msi = { 1861 .name = "spapr_pci/msi", 1862 .version_id = 1, 1863 .minimum_version_id = 1, 1864 .fields = (VMStateField []) { 1865 VMSTATE_UINT32(key, spapr_pci_msi_mig), 1866 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), 1867 VMSTATE_UINT32(value.num, spapr_pci_msi_mig), 1868 VMSTATE_END_OF_LIST() 1869 }, 1870 }; 1871 1872 static int spapr_pci_pre_save(void *opaque) 1873 { 1874 sPAPRPHBState *sphb = opaque; 1875 GHashTableIter iter; 1876 gpointer key, value; 1877 int i; 1878 1879 if (sphb->pre_2_8_migration) { 1880 sphb->mig_liobn = sphb->dma_liobn[0]; 1881 sphb->mig_mem_win_addr = sphb->mem_win_addr; 1882 sphb->mig_mem_win_size = sphb->mem_win_size; 1883 sphb->mig_io_win_addr = sphb->io_win_addr; 1884 sphb->mig_io_win_size = sphb->io_win_size; 1885 1886 if ((sphb->mem64_win_size != 0) 1887 && (sphb->mem64_win_addr 1888 == (sphb->mem_win_addr + sphb->mem_win_size))) { 1889 sphb->mig_mem_win_size += sphb->mem64_win_size; 1890 } 1891 } 1892 1893 g_free(sphb->msi_devs); 1894 sphb->msi_devs = NULL; 1895 sphb->msi_devs_num = g_hash_table_size(sphb->msi); 1896 if (!sphb->msi_devs_num) { 1897 return 0; 1898 } 1899 sphb->msi_devs = g_new(spapr_pci_msi_mig, sphb->msi_devs_num); 1900 1901 g_hash_table_iter_init(&iter, sphb->msi); 1902 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { 1903 sphb->msi_devs[i].key = *(uint32_t *) key; 1904 sphb->msi_devs[i].value = *(spapr_pci_msi *) value; 1905 } 1906 1907 return 0; 1908 } 1909 1910 static int spapr_pci_post_load(void *opaque, int version_id) 1911 { 1912 sPAPRPHBState *sphb = opaque; 1913 gpointer key, value; 1914 int i; 1915 1916 for (i = 0; i < sphb->msi_devs_num; ++i) { 1917 key = g_memdup(&sphb->msi_devs[i].key, 1918 sizeof(sphb->msi_devs[i].key)); 1919 value = g_memdup(&sphb->msi_devs[i].value, 1920 sizeof(sphb->msi_devs[i].value)); 1921 g_hash_table_insert(sphb->msi, key, value); 1922 } 1923 g_free(sphb->msi_devs); 1924 sphb->msi_devs = NULL; 1925 sphb->msi_devs_num = 0; 1926 1927 return 0; 1928 } 1929 1930 static bool pre_2_8_migration(void *opaque, int version_id) 1931 { 1932 sPAPRPHBState *sphb = opaque; 1933 1934 return sphb->pre_2_8_migration; 1935 } 1936 1937 static const VMStateDescription vmstate_spapr_pci = { 1938 .name = "spapr_pci", 1939 .version_id = 2, 1940 .minimum_version_id = 2, 1941 .pre_save = spapr_pci_pre_save, 1942 .post_load = spapr_pci_post_load, 1943 .fields = (VMStateField[]) { 1944 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL), 1945 VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration), 1946 VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration), 1947 VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration), 1948 VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration), 1949 VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration), 1950 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, 1951 vmstate_spapr_pci_lsi, struct spapr_pci_lsi), 1952 VMSTATE_INT32(msi_devs_num, sPAPRPHBState), 1953 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0, 1954 vmstate_spapr_pci_msi, spapr_pci_msi_mig), 1955 VMSTATE_END_OF_LIST() 1956 }, 1957 }; 1958 1959 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 1960 PCIBus *rootbus) 1961 { 1962 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 1963 1964 return sphb->dtbusname; 1965 } 1966 1967 static void spapr_phb_class_init(ObjectClass *klass, void *data) 1968 { 1969 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 1970 DeviceClass *dc = DEVICE_CLASS(klass); 1971 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); 1972 1973 hc->root_bus_path = spapr_phb_root_bus_path; 1974 dc->realize = spapr_phb_realize; 1975 dc->props = spapr_phb_properties; 1976 dc->reset = spapr_phb_reset; 1977 dc->vmsd = &vmstate_spapr_pci; 1978 /* Supported by TYPE_SPAPR_MACHINE */ 1979 dc->user_creatable = true; 1980 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1981 hp->plug = spapr_pci_plug; 1982 hp->unplug = spapr_pci_unplug; 1983 hp->unplug_request = spapr_pci_unplug_request; 1984 } 1985 1986 static const TypeInfo spapr_phb_info = { 1987 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 1988 .parent = TYPE_PCI_HOST_BRIDGE, 1989 .instance_size = sizeof(sPAPRPHBState), 1990 .class_init = spapr_phb_class_init, 1991 .interfaces = (InterfaceInfo[]) { 1992 { TYPE_HOTPLUG_HANDLER }, 1993 { } 1994 } 1995 }; 1996 1997 typedef struct sPAPRFDT { 1998 void *fdt; 1999 int node_off; 2000 sPAPRPHBState *sphb; 2001 } sPAPRFDT; 2002 2003 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev, 2004 void *opaque) 2005 { 2006 PCIBus *sec_bus; 2007 sPAPRFDT *p = opaque; 2008 int offset; 2009 sPAPRFDT s_fdt; 2010 2011 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off); 2012 if (!offset) { 2013 error_report("Failed to create pci child device tree node"); 2014 return; 2015 } 2016 2017 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2018 PCI_HEADER_TYPE_BRIDGE)) { 2019 return; 2020 } 2021 2022 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2023 if (!sec_bus) { 2024 return; 2025 } 2026 2027 s_fdt.fdt = p->fdt; 2028 s_fdt.node_off = offset; 2029 s_fdt.sphb = p->sphb; 2030 pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus), 2031 spapr_populate_pci_devices_dt, 2032 &s_fdt); 2033 } 2034 2035 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, 2036 void *opaque) 2037 { 2038 unsigned int *bus_no = opaque; 2039 PCIBus *sec_bus = NULL; 2040 2041 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != 2042 PCI_HEADER_TYPE_BRIDGE)) { 2043 return; 2044 } 2045 2046 (*bus_no)++; 2047 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1); 2048 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); 2049 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2050 2051 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); 2052 if (!sec_bus) { 2053 return; 2054 } 2055 2056 pci_for_each_device(sec_bus, pci_bus_num(sec_bus), 2057 spapr_phb_pci_enumerate_bridge, bus_no); 2058 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); 2059 } 2060 2061 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb) 2062 { 2063 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2064 unsigned int bus_no = 0; 2065 2066 pci_for_each_device(bus, pci_bus_num(bus), 2067 spapr_phb_pci_enumerate_bridge, 2068 &bus_no); 2069 2070 } 2071 2072 int spapr_populate_pci_dt(sPAPRPHBState *phb, uint32_t intc_phandle, void *fdt, 2073 uint32_t nr_msis) 2074 { 2075 int bus_off, i, j, ret; 2076 gchar *nodename; 2077 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 2078 struct { 2079 uint32_t hi; 2080 uint64_t child; 2081 uint64_t parent; 2082 uint64_t size; 2083 } QEMU_PACKED ranges[] = { 2084 { 2085 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 2086 cpu_to_be64(phb->io_win_addr), 2087 cpu_to_be64(memory_region_size(&phb->iospace)), 2088 }, 2089 { 2090 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 2091 cpu_to_be64(phb->mem_win_addr), 2092 cpu_to_be64(phb->mem_win_size), 2093 }, 2094 { 2095 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), 2096 cpu_to_be64(phb->mem64_win_addr), 2097 cpu_to_be64(phb->mem64_win_size), 2098 }, 2099 }; 2100 const unsigned sizeof_ranges = 2101 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); 2102 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 2103 uint32_t interrupt_map_mask[] = { 2104 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 2105 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 2106 uint32_t ddw_applicable[] = { 2107 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), 2108 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), 2109 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) 2110 }; 2111 uint32_t ddw_extensions[] = { 2112 cpu_to_be32(1), 2113 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) 2114 }; 2115 uint32_t associativity[] = {cpu_to_be32(0x4), 2116 cpu_to_be32(0x0), 2117 cpu_to_be32(0x0), 2118 cpu_to_be32(0x0), 2119 cpu_to_be32(phb->numa_node)}; 2120 sPAPRTCETable *tcet; 2121 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; 2122 sPAPRFDT s_fdt; 2123 2124 /* Start populating the FDT */ 2125 nodename = g_strdup_printf("pci@%" PRIx64, phb->buid); 2126 _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename)); 2127 g_free(nodename); 2128 2129 /* Write PHB properties */ 2130 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 2131 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 2132 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); 2133 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); 2134 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 2135 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 2136 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 2137 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); 2138 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 2139 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 2140 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", nr_msis)); 2141 2142 /* Dynamic DMA window */ 2143 if (phb->ddw_enabled) { 2144 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, 2145 sizeof(ddw_applicable))); 2146 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", 2147 &ddw_extensions, sizeof(ddw_extensions))); 2148 } 2149 2150 /* Advertise NUMA via ibm,associativity */ 2151 if (phb->numa_node != -1) { 2152 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity, 2153 sizeof(associativity))); 2154 } 2155 2156 /* Build the interrupt-map, this must matches what is done 2157 * in pci_spapr_map_irq 2158 */ 2159 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 2160 &interrupt_map_mask, sizeof(interrupt_map_mask))); 2161 for (i = 0; i < PCI_SLOT_MAX; i++) { 2162 for (j = 0; j < PCI_NUM_PINS; j++) { 2163 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 2164 int lsi_num = pci_spapr_swizzle(i, j); 2165 2166 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 2167 irqmap[1] = 0; 2168 irqmap[2] = 0; 2169 irqmap[3] = cpu_to_be32(j+1); 2170 irqmap[4] = cpu_to_be32(intc_phandle); 2171 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true); 2172 } 2173 } 2174 /* Write interrupt map */ 2175 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 2176 sizeof(interrupt_map))); 2177 2178 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); 2179 if (!tcet) { 2180 return -1; 2181 } 2182 spapr_dma_dt(fdt, bus_off, "ibm,dma-window", 2183 tcet->liobn, tcet->bus_offset, 2184 tcet->nb_table << tcet->page_shift); 2185 2186 /* Walk the bridges and program the bus numbers*/ 2187 spapr_phb_pci_enumerate(phb); 2188 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); 2189 2190 /* Populate tree nodes with PCI devices attached */ 2191 s_fdt.fdt = fdt; 2192 s_fdt.node_off = bus_off; 2193 s_fdt.sphb = phb; 2194 pci_for_each_device_reverse(bus, pci_bus_num(bus), 2195 spapr_populate_pci_devices_dt, 2196 &s_fdt); 2197 2198 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb), 2199 SPAPR_DR_CONNECTOR_TYPE_PCI); 2200 if (ret) { 2201 return ret; 2202 } 2203 2204 return 0; 2205 } 2206 2207 void spapr_pci_rtas_init(void) 2208 { 2209 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", 2210 rtas_read_pci_config); 2211 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", 2212 rtas_write_pci_config); 2213 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", 2214 rtas_ibm_read_pci_config); 2215 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", 2216 rtas_ibm_write_pci_config); 2217 if (msi_nonbroken) { 2218 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, 2219 "ibm,query-interrupt-source-number", 2220 rtas_ibm_query_interrupt_source_number); 2221 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", 2222 rtas_ibm_change_msi); 2223 } 2224 2225 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, 2226 "ibm,set-eeh-option", 2227 rtas_ibm_set_eeh_option); 2228 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, 2229 "ibm,get-config-addr-info2", 2230 rtas_ibm_get_config_addr_info2); 2231 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, 2232 "ibm,read-slot-reset-state2", 2233 rtas_ibm_read_slot_reset_state2); 2234 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, 2235 "ibm,set-slot-reset", 2236 rtas_ibm_set_slot_reset); 2237 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, 2238 "ibm,configure-pe", 2239 rtas_ibm_configure_pe); 2240 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, 2241 "ibm,slot-error-detail", 2242 rtas_ibm_slot_error_detail); 2243 } 2244 2245 static void spapr_pci_register_types(void) 2246 { 2247 type_register_static(&spapr_phb_info); 2248 } 2249 2250 type_init(spapr_pci_register_types) 2251 2252 static int spapr_switch_one_vga(DeviceState *dev, void *opaque) 2253 { 2254 bool be = *(bool *)opaque; 2255 2256 if (object_dynamic_cast(OBJECT(dev), "VGA") 2257 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) { 2258 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer", 2259 &error_abort); 2260 } 2261 return 0; 2262 } 2263 2264 void spapr_pci_switch_vga(bool big_endian) 2265 { 2266 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 2267 sPAPRPHBState *sphb; 2268 2269 /* 2270 * For backward compatibility with existing guests, we switch 2271 * the endianness of the VGA controller when changing the guest 2272 * interrupt mode 2273 */ 2274 QLIST_FOREACH(sphb, &spapr->phbs, list) { 2275 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; 2276 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, 2277 &big_endian); 2278 } 2279 } 2280