1 /* 2 * QEMU sPAPR PCI host originated from Uninorth PCI host 3 * 4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. 5 * Copyright (C) 2011 David Gibson, IBM Corporation. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "hw/hw.h" 26 #include "hw/pci/pci.h" 27 #include "hw/pci/msi.h" 28 #include "hw/pci/msix.h" 29 #include "hw/pci/pci_host.h" 30 #include "hw/ppc/spapr.h" 31 #include "hw/pci-host/spapr.h" 32 #include "exec/address-spaces.h" 33 #include <libfdt.h> 34 #include "trace.h" 35 #include "qemu/error-report.h" 36 37 #include "hw/pci/pci_bus.h" 38 39 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ 40 #define RTAS_QUERY_FN 0 41 #define RTAS_CHANGE_FN 1 42 #define RTAS_RESET_FN 2 43 #define RTAS_CHANGE_MSI_FN 3 44 #define RTAS_CHANGE_MSIX_FN 4 45 46 /* Interrupt types to return on RTAS_CHANGE_* */ 47 #define RTAS_TYPE_MSI 1 48 #define RTAS_TYPE_MSIX 2 49 50 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid) 51 { 52 sPAPRPHBState *sphb; 53 54 QLIST_FOREACH(sphb, &spapr->phbs, list) { 55 if (sphb->buid != buid) { 56 continue; 57 } 58 return sphb; 59 } 60 61 return NULL; 62 } 63 64 static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid, 65 uint32_t config_addr) 66 { 67 sPAPRPHBState *sphb = find_phb(spapr, buid); 68 PCIHostState *phb = PCI_HOST_BRIDGE(sphb); 69 int bus_num = (config_addr >> 16) & 0xFF; 70 int devfn = (config_addr >> 8) & 0xFF; 71 72 if (!phb) { 73 return NULL; 74 } 75 76 return pci_find_device(phb->bus, bus_num, devfn); 77 } 78 79 static uint32_t rtas_pci_cfgaddr(uint32_t arg) 80 { 81 /* This handles the encoding of extended config space addresses */ 82 return ((arg >> 20) & 0xf00) | (arg & 0xff); 83 } 84 85 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid, 86 uint32_t addr, uint32_t size, 87 target_ulong rets) 88 { 89 PCIDevice *pci_dev; 90 uint32_t val; 91 92 if ((size != 1) && (size != 2) && (size != 4)) { 93 /* access must be 1, 2 or 4 bytes */ 94 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 95 return; 96 } 97 98 pci_dev = find_dev(spapr, buid, addr); 99 addr = rtas_pci_cfgaddr(addr); 100 101 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 102 /* Access must be to a valid device, within bounds and 103 * naturally aligned */ 104 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 105 return; 106 } 107 108 val = pci_host_config_read_common(pci_dev, addr, 109 pci_config_size(pci_dev), size); 110 111 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 112 rtas_st(rets, 1, val); 113 } 114 115 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 116 uint32_t token, uint32_t nargs, 117 target_ulong args, 118 uint32_t nret, target_ulong rets) 119 { 120 uint64_t buid; 121 uint32_t size, addr; 122 123 if ((nargs != 4) || (nret != 2)) { 124 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 125 return; 126 } 127 128 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 129 size = rtas_ld(args, 3); 130 addr = rtas_ld(args, 0); 131 132 finish_read_pci_config(spapr, buid, addr, size, rets); 133 } 134 135 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 136 uint32_t token, uint32_t nargs, 137 target_ulong args, 138 uint32_t nret, target_ulong rets) 139 { 140 uint32_t size, addr; 141 142 if ((nargs != 2) || (nret != 2)) { 143 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 144 return; 145 } 146 147 size = rtas_ld(args, 1); 148 addr = rtas_ld(args, 0); 149 150 finish_read_pci_config(spapr, 0, addr, size, rets); 151 } 152 153 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid, 154 uint32_t addr, uint32_t size, 155 uint32_t val, target_ulong rets) 156 { 157 PCIDevice *pci_dev; 158 159 if ((size != 1) && (size != 2) && (size != 4)) { 160 /* access must be 1, 2 or 4 bytes */ 161 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 162 return; 163 } 164 165 pci_dev = find_dev(spapr, buid, addr); 166 addr = rtas_pci_cfgaddr(addr); 167 168 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { 169 /* Access must be to a valid device, within bounds and 170 * naturally aligned */ 171 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 172 return; 173 } 174 175 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), 176 val, size); 177 178 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 179 } 180 181 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 182 uint32_t token, uint32_t nargs, 183 target_ulong args, 184 uint32_t nret, target_ulong rets) 185 { 186 uint64_t buid; 187 uint32_t val, size, addr; 188 189 if ((nargs != 5) || (nret != 1)) { 190 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 191 return; 192 } 193 194 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 195 val = rtas_ld(args, 4); 196 size = rtas_ld(args, 3); 197 addr = rtas_ld(args, 0); 198 199 finish_write_pci_config(spapr, buid, addr, size, val, rets); 200 } 201 202 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, 203 uint32_t token, uint32_t nargs, 204 target_ulong args, 205 uint32_t nret, target_ulong rets) 206 { 207 uint32_t val, size, addr; 208 209 if ((nargs != 3) || (nret != 1)) { 210 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 211 return; 212 } 213 214 215 val = rtas_ld(args, 2); 216 size = rtas_ld(args, 1); 217 addr = rtas_ld(args, 0); 218 219 finish_write_pci_config(spapr, 0, addr, size, val, rets); 220 } 221 222 /* 223 * Find an entry with config_addr or returns the empty one if not found AND 224 * alloc_new is set. 225 * At the moment the msi_table entries are never released so there is 226 * no point to look till the end of the list if we need to find the free entry. 227 */ 228 static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr, 229 bool alloc_new) 230 { 231 int i; 232 233 for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) { 234 if (!phb->msi_table[i].nvec) { 235 break; 236 } 237 if (phb->msi_table[i].config_addr == config_addr) { 238 return i; 239 } 240 } 241 if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) { 242 trace_spapr_pci_msi("Allocating new MSI config", i, config_addr); 243 return i; 244 } 245 246 return -1; 247 } 248 249 /* 250 * Set MSI/MSIX message data. 251 * This is required for msi_notify()/msix_notify() which 252 * will write at the addresses via spapr_msi_write(). 253 */ 254 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, 255 unsigned first_irq, unsigned req_num) 256 { 257 unsigned i; 258 MSIMessage msg = { .address = addr, .data = first_irq }; 259 260 if (!msix) { 261 msi_set_message(pdev, msg); 262 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); 263 return; 264 } 265 266 for (i = 0; i < req_num; ++i, ++msg.data) { 267 msix_set_message(pdev, i, msg); 268 trace_spapr_pci_msi_setup(pdev->name, i, msg.address); 269 } 270 } 271 272 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr, 273 uint32_t token, uint32_t nargs, 274 target_ulong args, uint32_t nret, 275 target_ulong rets) 276 { 277 uint32_t config_addr = rtas_ld(args, 0); 278 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 279 unsigned int func = rtas_ld(args, 3); 280 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ 281 unsigned int seq_num = rtas_ld(args, 5); 282 unsigned int ret_intr_type; 283 int ndev, irq, max_irqs = 0; 284 sPAPRPHBState *phb = NULL; 285 PCIDevice *pdev = NULL; 286 287 switch (func) { 288 case RTAS_CHANGE_MSI_FN: 289 case RTAS_CHANGE_FN: 290 ret_intr_type = RTAS_TYPE_MSI; 291 break; 292 case RTAS_CHANGE_MSIX_FN: 293 ret_intr_type = RTAS_TYPE_MSIX; 294 break; 295 default: 296 error_report("rtas_ibm_change_msi(%u) is not implemented", func); 297 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 298 return; 299 } 300 301 /* Fins sPAPRPHBState */ 302 phb = find_phb(spapr, buid); 303 if (phb) { 304 pdev = find_dev(spapr, buid, config_addr); 305 } 306 if (!phb || !pdev) { 307 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 308 return; 309 } 310 311 /* Releasing MSIs */ 312 if (!req_num) { 313 ndev = spapr_msicfg_find(phb, config_addr, false); 314 if (ndev < 0) { 315 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr); 316 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 317 return; 318 } 319 trace_spapr_pci_msi("Released MSIs", ndev, config_addr); 320 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 321 rtas_st(rets, 1, 0); 322 return; 323 } 324 325 /* Enabling MSI */ 326 327 /* Find a device number in the map to add or reuse the existing one */ 328 ndev = spapr_msicfg_find(phb, config_addr, true); 329 if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) { 330 error_report("No free entry for a new MSI device"); 331 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 332 return; 333 } 334 trace_spapr_pci_msi("Configuring MSI", ndev, config_addr); 335 336 /* Check if the device supports as many IRQs as requested */ 337 if (ret_intr_type == RTAS_TYPE_MSI) { 338 max_irqs = msi_nr_vectors_allocated(pdev); 339 } else if (ret_intr_type == RTAS_TYPE_MSIX) { 340 max_irqs = pdev->msix_entries_nr; 341 } 342 if (!max_irqs) { 343 error_report("Requested interrupt type %d is not enabled for device#%d", 344 ret_intr_type, ndev); 345 rtas_st(rets, 0, -1); /* Hardware error */ 346 return; 347 } 348 /* Correct the number if the guest asked for too many */ 349 if (req_num > max_irqs) { 350 req_num = max_irqs; 351 } 352 353 /* Check if there is an old config and MSI number has not changed */ 354 if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) { 355 /* Unexpected behaviour */ 356 error_report("Cannot reuse MSI config for device#%d", ndev); 357 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 358 return; 359 } 360 361 /* There is no cached config, allocate MSIs */ 362 if (!phb->msi_table[ndev].nvec) { 363 irq = spapr_allocate_irq_block(req_num, false, 364 ret_intr_type == RTAS_TYPE_MSI); 365 if (irq < 0) { 366 error_report("Cannot allocate MSIs for device#%d", ndev); 367 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 368 return; 369 } 370 phb->msi_table[ndev].irq = irq; 371 phb->msi_table[ndev].nvec = req_num; 372 phb->msi_table[ndev].config_addr = config_addr; 373 } 374 375 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ 376 spapr_msi_setmsg(pdev, spapr->msi_win_addr, ret_intr_type == RTAS_TYPE_MSIX, 377 phb->msi_table[ndev].irq, req_num); 378 379 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 380 rtas_st(rets, 1, req_num); 381 rtas_st(rets, 2, ++seq_num); 382 rtas_st(rets, 3, ret_intr_type); 383 384 trace_spapr_pci_rtas_ibm_change_msi(func, req_num); 385 } 386 387 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, 388 sPAPREnvironment *spapr, 389 uint32_t token, 390 uint32_t nargs, 391 target_ulong args, 392 uint32_t nret, 393 target_ulong rets) 394 { 395 uint32_t config_addr = rtas_ld(args, 0); 396 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); 397 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); 398 int ndev; 399 sPAPRPHBState *phb = NULL; 400 401 /* Fins sPAPRPHBState */ 402 phb = find_phb(spapr, buid); 403 if (!phb) { 404 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 405 return; 406 } 407 408 /* Find device descriptor and start IRQ */ 409 ndev = spapr_msicfg_find(phb, config_addr, false); 410 if (ndev < 0) { 411 trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr); 412 rtas_st(rets, 0, RTAS_OUT_HW_ERROR); 413 return; 414 } 415 416 intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num; 417 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, 418 intr_src_num); 419 420 rtas_st(rets, 0, RTAS_OUT_SUCCESS); 421 rtas_st(rets, 1, intr_src_num); 422 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ 423 } 424 425 static int pci_spapr_swizzle(int slot, int pin) 426 { 427 return (slot + pin) % PCI_NUM_PINS; 428 } 429 430 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) 431 { 432 /* 433 * Here we need to convert pci_dev + irq_num to some unique value 434 * which is less than number of IRQs on the specific bus (4). We 435 * use standard PCI swizzling, that is (slot number + pin number) 436 * % 4. 437 */ 438 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); 439 } 440 441 static void pci_spapr_set_irq(void *opaque, int irq_num, int level) 442 { 443 /* 444 * Here we use the number returned by pci_spapr_map_irq to find a 445 * corresponding qemu_irq. 446 */ 447 sPAPRPHBState *phb = opaque; 448 449 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); 450 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); 451 } 452 453 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) 454 { 455 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); 456 PCIINTxRoute route; 457 458 route.mode = PCI_INTX_ENABLED; 459 route.irq = sphb->lsi_table[pin].irq; 460 461 return route; 462 } 463 464 /* 465 * MSI/MSIX memory region implementation. 466 * The handler handles both MSI and MSIX. 467 * For MSI-X, the vector number is encoded as a part of the address, 468 * data is set to 0. 469 * For MSI, the vector number is encoded in least bits in data. 470 */ 471 static void spapr_msi_write(void *opaque, hwaddr addr, 472 uint64_t data, unsigned size) 473 { 474 uint32_t irq = data; 475 476 trace_spapr_pci_msi_write(addr, data, irq); 477 478 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq)); 479 } 480 481 static const MemoryRegionOps spapr_msi_ops = { 482 /* There is no .read as the read result is undefined by PCI spec */ 483 .read = NULL, 484 .write = spapr_msi_write, 485 .endianness = DEVICE_LITTLE_ENDIAN 486 }; 487 488 void spapr_pci_msi_init(sPAPREnvironment *spapr, hwaddr addr) 489 { 490 uint64_t window_size = 4096; 491 492 /* 493 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, 494 * we need to allocate some memory to catch those writes coming 495 * from msi_notify()/msix_notify(). 496 * As MSIMessage:addr is going to be the same and MSIMessage:data 497 * is going to be a VIRQ number, 4 bytes of the MSI MR will only 498 * be used. 499 * 500 * For KVM we want to ensure that this memory is a full page so that 501 * our memory slot is of page size granularity. 502 */ 503 #ifdef CONFIG_KVM 504 if (kvm_enabled()) { 505 window_size = getpagesize(); 506 } 507 #endif 508 509 spapr->msi_win_addr = addr; 510 memory_region_init_io(&spapr->msiwindow, NULL, &spapr_msi_ops, spapr, 511 "msi", window_size); 512 memory_region_add_subregion(get_system_memory(), spapr->msi_win_addr, 513 &spapr->msiwindow); 514 } 515 516 /* 517 * PHB PCI device 518 */ 519 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) 520 { 521 sPAPRPHBState *phb = opaque; 522 523 return &phb->iommu_as; 524 } 525 526 static void spapr_phb_realize(DeviceState *dev, Error **errp) 527 { 528 SysBusDevice *s = SYS_BUS_DEVICE(dev); 529 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); 530 PCIHostState *phb = PCI_HOST_BRIDGE(s); 531 sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s); 532 char *namebuf; 533 int i; 534 PCIBus *bus; 535 536 if (sphb->index != -1) { 537 hwaddr windows_base; 538 539 if ((sphb->buid != -1) || (sphb->dma_liobn != -1) 540 || (sphb->mem_win_addr != -1) 541 || (sphb->io_win_addr != -1)) { 542 error_setg(errp, "Either \"index\" or other parameters must" 543 " be specified for PAPR PHB, not both"); 544 return; 545 } 546 547 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index; 548 sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index; 549 550 windows_base = SPAPR_PCI_WINDOW_BASE 551 + sphb->index * SPAPR_PCI_WINDOW_SPACING; 552 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF; 553 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF; 554 } 555 556 if (sphb->buid == -1) { 557 error_setg(errp, "BUID not specified for PHB"); 558 return; 559 } 560 561 if (sphb->dma_liobn == -1) { 562 error_setg(errp, "LIOBN not specified for PHB"); 563 return; 564 } 565 566 if (sphb->mem_win_addr == -1) { 567 error_setg(errp, "Memory window address not specified for PHB"); 568 return; 569 } 570 571 if (sphb->io_win_addr == -1) { 572 error_setg(errp, "IO window address not specified for PHB"); 573 return; 574 } 575 576 if (find_phb(spapr, sphb->buid)) { 577 error_setg(errp, "PCI host bridges must have unique BUIDs"); 578 return; 579 } 580 581 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); 582 583 namebuf = alloca(strlen(sphb->dtbusname) + 32); 584 585 /* Initialize memory regions */ 586 sprintf(namebuf, "%s.mmio", sphb->dtbusname); 587 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); 588 589 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname); 590 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb), 591 namebuf, &sphb->memspace, 592 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); 593 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, 594 &sphb->memwindow); 595 596 /* Initialize IO regions */ 597 sprintf(namebuf, "%s.io", sphb->dtbusname); 598 memory_region_init(&sphb->iospace, OBJECT(sphb), 599 namebuf, SPAPR_PCI_IO_WIN_SIZE); 600 601 sprintf(namebuf, "%s.io-alias", sphb->dtbusname); 602 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, 603 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); 604 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, 605 &sphb->iowindow); 606 607 bus = pci_register_bus(dev, NULL, 608 pci_spapr_set_irq, pci_spapr_map_irq, sphb, 609 &sphb->memspace, &sphb->iospace, 610 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); 611 phb->bus = bus; 612 613 /* 614 * Initialize PHB address space. 615 * By default there will be at least one subregion for default 616 * 32bit DMA window. 617 * Later the guest might want to create another DMA window 618 * which will become another memory subregion. 619 */ 620 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname); 621 622 memory_region_init(&sphb->iommu_root, OBJECT(sphb), 623 namebuf, UINT64_MAX); 624 address_space_init(&sphb->iommu_as, &sphb->iommu_root, 625 sphb->dtbusname); 626 627 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); 628 629 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); 630 631 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); 632 633 /* Initialize the LSI table */ 634 for (i = 0; i < PCI_NUM_PINS; i++) { 635 uint32_t irq; 636 637 irq = spapr_allocate_lsi(0); 638 if (!irq) { 639 error_setg(errp, "spapr_allocate_lsi failed"); 640 return; 641 } 642 643 sphb->lsi_table[i].irq = irq; 644 } 645 646 if (!info->finish_realize) { 647 error_setg(errp, "finish_realize not defined"); 648 return; 649 } 650 651 info->finish_realize(sphb, errp); 652 } 653 654 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp) 655 { 656 sPAPRTCETable *tcet; 657 658 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn, 659 0, 660 SPAPR_TCE_PAGE_SHIFT, 661 0x40000000 >> SPAPR_TCE_PAGE_SHIFT); 662 if (!tcet) { 663 error_setg(errp, "Unable to create TCE table for %s", 664 sphb->dtbusname); 665 return ; 666 } 667 668 /* Register default 32bit DMA window */ 669 memory_region_add_subregion(&sphb->iommu_root, 0, 670 spapr_tce_get_iommu(tcet)); 671 } 672 673 static int spapr_phb_children_reset(Object *child, void *opaque) 674 { 675 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); 676 677 if (dev) { 678 device_reset(dev); 679 } 680 681 return 0; 682 } 683 684 static void spapr_phb_reset(DeviceState *qdev) 685 { 686 /* Reset the IOMMU state */ 687 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); 688 } 689 690 static Property spapr_phb_properties[] = { 691 DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1), 692 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1), 693 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1), 694 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1), 695 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, 696 SPAPR_PCI_MMIO_WIN_SIZE), 697 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1), 698 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, 699 SPAPR_PCI_IO_WIN_SIZE), 700 DEFINE_PROP_END_OF_LIST(), 701 }; 702 703 static const VMStateDescription vmstate_spapr_pci_lsi = { 704 .name = "spapr_pci/lsi", 705 .version_id = 1, 706 .minimum_version_id = 1, 707 .fields = (VMStateField[]) { 708 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi), 709 710 VMSTATE_END_OF_LIST() 711 }, 712 }; 713 714 static const VMStateDescription vmstate_spapr_pci_msi = { 715 .name = "spapr_pci/lsi", 716 .version_id = 1, 717 .minimum_version_id = 1, 718 .fields = (VMStateField[]) { 719 VMSTATE_UINT32(config_addr, struct spapr_pci_msi), 720 VMSTATE_UINT32(irq, struct spapr_pci_msi), 721 VMSTATE_UINT32(nvec, struct spapr_pci_msi), 722 723 VMSTATE_END_OF_LIST() 724 }, 725 }; 726 727 static const VMStateDescription vmstate_spapr_pci = { 728 .name = "spapr_pci", 729 .version_id = 1, 730 .minimum_version_id = 1, 731 .fields = (VMStateField[]) { 732 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState), 733 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState), 734 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState), 735 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState), 736 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState), 737 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState), 738 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, 739 vmstate_spapr_pci_lsi, struct spapr_pci_lsi), 740 VMSTATE_STRUCT_ARRAY(msi_table, sPAPRPHBState, SPAPR_MSIX_MAX_DEVS, 0, 741 vmstate_spapr_pci_msi, struct spapr_pci_msi), 742 743 VMSTATE_END_OF_LIST() 744 }, 745 }; 746 747 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, 748 PCIBus *rootbus) 749 { 750 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); 751 752 return sphb->dtbusname; 753 } 754 755 static void spapr_phb_class_init(ObjectClass *klass, void *data) 756 { 757 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 758 DeviceClass *dc = DEVICE_CLASS(klass); 759 sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass); 760 761 hc->root_bus_path = spapr_phb_root_bus_path; 762 dc->realize = spapr_phb_realize; 763 dc->props = spapr_phb_properties; 764 dc->reset = spapr_phb_reset; 765 dc->vmsd = &vmstate_spapr_pci; 766 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 767 dc->cannot_instantiate_with_device_add_yet = false; 768 spc->finish_realize = spapr_phb_finish_realize; 769 } 770 771 static const TypeInfo spapr_phb_info = { 772 .name = TYPE_SPAPR_PCI_HOST_BRIDGE, 773 .parent = TYPE_PCI_HOST_BRIDGE, 774 .instance_size = sizeof(sPAPRPHBState), 775 .class_init = spapr_phb_class_init, 776 .class_size = sizeof(sPAPRPHBClass), 777 }; 778 779 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index) 780 { 781 DeviceState *dev; 782 783 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 784 qdev_prop_set_uint32(dev, "index", index); 785 qdev_init_nofail(dev); 786 787 return PCI_HOST_BRIDGE(dev); 788 } 789 790 /* Macros to operate with address in OF binding to PCI */ 791 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) 792 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ 793 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ 794 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ 795 #define b_ss(x) b_x((x), 24, 2) /* the space code */ 796 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ 797 #define b_ddddd(x) b_x((x), 11, 5) /* device number */ 798 #define b_fff(x) b_x((x), 8, 3) /* function number */ 799 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ 800 801 typedef struct sPAPRTCEDT { 802 void *fdt; 803 int node_off; 804 } sPAPRTCEDT; 805 806 static int spapr_phb_children_dt(Object *child, void *opaque) 807 { 808 sPAPRTCEDT *p = opaque; 809 sPAPRTCETable *tcet; 810 811 tcet = (sPAPRTCETable *) object_dynamic_cast(child, TYPE_SPAPR_TCE_TABLE); 812 if (!tcet) { 813 return 0; 814 } 815 816 spapr_dma_dt(p->fdt, p->node_off, "ibm,dma-window", 817 tcet->liobn, tcet->bus_offset, 818 tcet->nb_table << tcet->page_shift); 819 /* Stop after the first window */ 820 821 return 1; 822 } 823 824 int spapr_populate_pci_dt(sPAPRPHBState *phb, 825 uint32_t xics_phandle, 826 void *fdt) 827 { 828 int bus_off, i, j; 829 char nodename[256]; 830 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; 831 struct { 832 uint32_t hi; 833 uint64_t child; 834 uint64_t parent; 835 uint64_t size; 836 } QEMU_PACKED ranges[] = { 837 { 838 cpu_to_be32(b_ss(1)), cpu_to_be64(0), 839 cpu_to_be64(phb->io_win_addr), 840 cpu_to_be64(memory_region_size(&phb->iospace)), 841 }, 842 { 843 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), 844 cpu_to_be64(phb->mem_win_addr), 845 cpu_to_be64(memory_region_size(&phb->memwindow)), 846 }, 847 }; 848 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; 849 uint32_t interrupt_map_mask[] = { 850 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; 851 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; 852 853 /* Start populating the FDT */ 854 sprintf(nodename, "pci@%" PRIx64, phb->buid); 855 bus_off = fdt_add_subnode(fdt, 0, nodename); 856 if (bus_off < 0) { 857 return bus_off; 858 } 859 860 #define _FDT(exp) \ 861 do { \ 862 int ret = (exp); \ 863 if (ret < 0) { \ 864 return ret; \ 865 } \ 866 } while (0) 867 868 /* Write PHB properties */ 869 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); 870 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); 871 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); 872 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); 873 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); 874 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); 875 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); 876 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges))); 877 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); 878 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); 879 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS)); 880 881 /* Build the interrupt-map, this must matches what is done 882 * in pci_spapr_map_irq 883 */ 884 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", 885 &interrupt_map_mask, sizeof(interrupt_map_mask))); 886 for (i = 0; i < PCI_SLOT_MAX; i++) { 887 for (j = 0; j < PCI_NUM_PINS; j++) { 888 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; 889 int lsi_num = pci_spapr_swizzle(i, j); 890 891 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); 892 irqmap[1] = 0; 893 irqmap[2] = 0; 894 irqmap[3] = cpu_to_be32(j+1); 895 irqmap[4] = cpu_to_be32(xics_phandle); 896 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); 897 irqmap[6] = cpu_to_be32(0x8); 898 } 899 } 900 /* Write interrupt map */ 901 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 902 sizeof(interrupt_map))); 903 904 object_child_foreach(OBJECT(phb), spapr_phb_children_dt, 905 &((sPAPRTCEDT){ .fdt = fdt, .node_off = bus_off })); 906 907 return 0; 908 } 909 910 void spapr_pci_rtas_init(void) 911 { 912 spapr_rtas_register("read-pci-config", rtas_read_pci_config); 913 spapr_rtas_register("write-pci-config", rtas_write_pci_config); 914 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config); 915 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config); 916 if (msi_supported) { 917 spapr_rtas_register("ibm,query-interrupt-source-number", 918 rtas_ibm_query_interrupt_source_number); 919 spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi); 920 } 921 } 922 923 static void spapr_pci_register_types(void) 924 { 925 type_register_static(&spapr_phb_info); 926 } 927 928 type_init(spapr_pci_register_types) 929