1 /* 2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling 3 * 4 * Copyright IBM Corp. 2020 5 * 6 * Authors: 7 * Daniel Henrique Barboza <danielhb413@gmail.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "hw/ppc/spapr_numa.h" 15 #include "hw/pci-host/spapr.h" 16 #include "hw/ppc/fdt.h" 17 18 /* Moved from hw/ppc/spapr_pci_nvlink2.c */ 19 #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1)) 20 21 /* 22 * Retrieves max_dist_ref_points of the current NUMA affinity. 23 */ 24 static int get_max_dist_ref_points(SpaprMachineState *spapr) 25 { 26 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 27 return FORM2_DIST_REF_POINTS; 28 } 29 30 return FORM1_DIST_REF_POINTS; 31 } 32 33 /* 34 * Retrieves numa_assoc_size of the current NUMA affinity. 35 */ 36 static int get_numa_assoc_size(SpaprMachineState *spapr) 37 { 38 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 39 return FORM2_NUMA_ASSOC_SIZE; 40 } 41 42 return FORM1_NUMA_ASSOC_SIZE; 43 } 44 45 /* 46 * Retrieves vcpu_assoc_size of the current NUMA affinity. 47 * 48 * vcpu_assoc_size is the size of ibm,associativity array 49 * for CPUs, which has an extra element (vcpu_id) in the end. 50 */ 51 static int get_vcpu_assoc_size(SpaprMachineState *spapr) 52 { 53 return get_numa_assoc_size(spapr) + 1; 54 } 55 56 /* 57 * Retrieves the ibm,associativity array of NUMA node 'node_id' 58 * for the current NUMA affinity. 59 */ 60 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id) 61 { 62 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 63 return spapr->FORM2_assoc_array[node_id]; 64 } 65 return spapr->FORM1_assoc_array[node_id]; 66 } 67 68 /* 69 * Wrapper that returns node distance from ms->numa_state->nodes 70 * after handling edge cases where the distance might be absent. 71 */ 72 static int get_numa_distance(MachineState *ms, int src, int dst) 73 { 74 NodeInfo *numa_info = ms->numa_state->nodes; 75 int ret = numa_info[src].distance[dst]; 76 77 if (ret != 0) { 78 return ret; 79 } 80 81 /* 82 * In case QEMU adds a default NUMA single node when the user 83 * did not add any, or where the user did not supply distances, 84 * the distance will be absent (zero). Return local/remote 85 * distance in this case. 86 */ 87 if (src == dst) { 88 return NUMA_DISTANCE_MIN; 89 } 90 91 return NUMA_DISTANCE_DEFAULT; 92 } 93 94 static bool spapr_numa_is_symmetrical(MachineState *ms) 95 { 96 int nb_numa_nodes = ms->numa_state->num_nodes; 97 int src, dst; 98 99 for (src = 0; src < nb_numa_nodes; src++) { 100 for (dst = src; dst < nb_numa_nodes; dst++) { 101 if (get_numa_distance(ms, src, dst) != 102 get_numa_distance(ms, dst, src)) { 103 return false; 104 } 105 } 106 } 107 108 return true; 109 } 110 111 /* 112 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 113 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 114 * called from vPHB reset handler so we initialize the counter here. 115 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 116 * must be equally distant from any other node. 117 * The final value of spapr->gpu_numa_id is going to be written to 118 * max-associativity-domains in spapr_build_fdt(). 119 */ 120 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine) 121 { 122 return MAX(1, machine->numa_state->num_nodes); 123 } 124 125 /* 126 * This function will translate the user distances into 127 * what the kernel understand as possible values: 10 128 * (local distance), 20, 40, 80 and 160, and return the equivalent 129 * NUMA level for each. Current heuristic is: 130 * - local distance (10) returns numa_level = 0x4, meaning there is 131 * no rounding for local distance 132 * - distances between 11 and 30 inclusive -> rounded to 20, 133 * numa_level = 0x3 134 * - distances between 31 and 60 inclusive -> rounded to 40, 135 * numa_level = 0x2 136 * - distances between 61 and 120 inclusive -> rounded to 80, 137 * numa_level = 0x1 138 * - everything above 120 returns numa_level = 0 to indicate that 139 * there is no match. This will be calculated as disntace = 160 140 * by the kernel (as of v5.9) 141 */ 142 static uint8_t spapr_numa_get_numa_level(uint8_t distance) 143 { 144 if (distance == 10) { 145 return 0x4; 146 } else if (distance > 11 && distance <= 30) { 147 return 0x3; 148 } else if (distance > 31 && distance <= 60) { 149 return 0x2; 150 } else if (distance > 61 && distance <= 120) { 151 return 0x1; 152 } 153 154 return 0; 155 } 156 157 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr) 158 { 159 MachineState *ms = MACHINE(spapr); 160 int nb_numa_nodes = ms->numa_state->num_nodes; 161 int src, dst, i, j; 162 163 /* 164 * Fill all associativity domains of non-zero NUMA nodes with 165 * node_id. This is required because the default value (0) is 166 * considered a match with associativity domains of node 0. 167 */ 168 for (i = 1; i < nb_numa_nodes; i++) { 169 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { 170 spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i); 171 } 172 } 173 174 for (src = 0; src < nb_numa_nodes; src++) { 175 for (dst = src; dst < nb_numa_nodes; dst++) { 176 /* 177 * This is how the associativity domain between A and B 178 * is calculated: 179 * 180 * - get the distance D between them 181 * - get the correspondent NUMA level 'n_level' for D 182 * - all associativity arrays were initialized with their own 183 * numa_ids, and we're calculating the distance in node_id 184 * ascending order, starting from node id 0 (the first node 185 * retrieved by numa_state). This will have a cascade effect in 186 * the algorithm because the associativity domains that node 0 187 * defines will be carried over to other nodes, and node 1 188 * associativities will be carried over after taking node 0 189 * associativities into account, and so on. This happens because 190 * we'll assign assoc_src as the associativity domain of dst 191 * as well, for all NUMA levels beyond and including n_level. 192 * 193 * The PPC kernel expects the associativity domains of node 0 to 194 * be always 0, and this algorithm will grant that by default. 195 */ 196 uint8_t distance = get_numa_distance(ms, src, dst); 197 uint8_t n_level = spapr_numa_get_numa_level(distance); 198 uint32_t assoc_src; 199 200 /* 201 * n_level = 0 means that the distance is greater than our last 202 * rounded value (120). In this case there is no NUMA level match 203 * between src and dst and we can skip the remaining of the loop. 204 * 205 * The Linux kernel will assume that the distance between src and 206 * dst, in this case of no match, is 10 (local distance) doubled 207 * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS 208 * levels (4), so this gives us 10*2*2*2*2 = 160. 209 * 210 * This logic can be seen in the Linux kernel source code, as of 211 * v5.9, in arch/powerpc/mm/numa.c, function __node_distance(). 212 */ 213 if (n_level == 0) { 214 continue; 215 } 216 217 /* 218 * We must assign all assoc_src to dst, starting from n_level 219 * and going up to 0x1. 220 */ 221 for (i = n_level; i > 0; i--) { 222 assoc_src = spapr->FORM1_assoc_array[src][i]; 223 spapr->FORM1_assoc_array[dst][i] = assoc_src; 224 } 225 } 226 } 227 228 } 229 230 static void spapr_numa_FORM1_affinity_check(MachineState *machine) 231 { 232 int i; 233 234 /* 235 * Check we don't have a memory-less/cpu-less NUMA node 236 * Firmware relies on the existing memory/cpu topology to provide the 237 * NUMA topology to the kernel. 238 * And the linux kernel needs to know the NUMA topology at start 239 * to be able to hotplug CPUs later. 240 */ 241 if (machine->numa_state->num_nodes) { 242 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 243 /* check for memory-less node */ 244 if (machine->numa_state->nodes[i].node_mem == 0) { 245 CPUState *cs; 246 int found = 0; 247 /* check for cpu-less node */ 248 CPU_FOREACH(cs) { 249 PowerPCCPU *cpu = POWERPC_CPU(cs); 250 if (cpu->node_id == i) { 251 found = 1; 252 break; 253 } 254 } 255 /* memory-less and cpu-less node */ 256 if (!found) { 257 error_report( 258 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i); 259 exit(EXIT_FAILURE); 260 } 261 } 262 } 263 } 264 265 if (!spapr_numa_is_symmetrical(machine)) { 266 error_report( 267 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA"); 268 exit(EXIT_FAILURE); 269 } 270 } 271 272 /* 273 * Set NUMA machine state data based on FORM1 affinity semantics. 274 */ 275 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr, 276 MachineState *machine) 277 { 278 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 279 int nb_numa_nodes = machine->numa_state->num_nodes; 280 int i, j, max_nodes_with_gpus; 281 282 /* 283 * For all associativity arrays: first position is the size, 284 * position FORM1_DIST_REF_POINTS is always the numa_id, 285 * represented by the index 'i'. 286 * 287 * This will break on sparse NUMA setups, when/if QEMU starts 288 * to support it, because there will be no more guarantee that 289 * 'i' will be a valid node_id set by the user. 290 */ 291 for (i = 0; i < nb_numa_nodes; i++) { 292 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); 293 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); 294 } 295 296 /* 297 * Initialize NVLink GPU associativity arrays. We know that 298 * the first GPU will take the first available NUMA id, and 299 * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine. 300 * At this point we're not sure if there are GPUs or not, but 301 * let's initialize the associativity arrays and allow NVLink 302 * GPUs to be handled like regular NUMA nodes later on. 303 */ 304 max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM; 305 306 for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) { 307 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); 308 309 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { 310 uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ? 311 SPAPR_GPU_NUMA_ID : cpu_to_be32(i); 312 spapr->FORM1_assoc_array[i][j] = gpu_assoc; 313 } 314 315 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); 316 } 317 318 /* 319 * Guests pseries-5.1 and older uses zeroed associativity domains, 320 * i.e. no domain definition based on NUMA distance input. 321 * 322 * Same thing with guests that have only one NUMA node. 323 */ 324 if (smc->pre_5_2_numa_associativity || 325 machine->numa_state->num_nodes <= 1) { 326 return; 327 } 328 329 spapr_numa_define_FORM1_domains(spapr); 330 } 331 332 /* 333 * Init NUMA FORM2 machine state data 334 */ 335 static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr) 336 { 337 int i; 338 339 /* 340 * For all resources but CPUs, FORM2 associativity arrays will 341 * be a size 2 array with the following format: 342 * 343 * ibm,associativity = {1, numa_id} 344 * 345 * CPUs will write an additional 'vcpu_id' on top of the arrays 346 * being initialized here. 'numa_id' is represented by the 347 * index 'i' of the loop. 348 * 349 * Given that this initialization is also valid for GPU associativity 350 * arrays, handle everything in one single step by populating the 351 * arrays up to NUMA_NODES_MAX_NUM. 352 */ 353 for (i = 0; i < NUMA_NODES_MAX_NUM; i++) { 354 spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1); 355 spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i); 356 } 357 } 358 359 void spapr_numa_associativity_init(SpaprMachineState *spapr, 360 MachineState *machine) 361 { 362 spapr_numa_FORM1_affinity_init(spapr, machine); 363 spapr_numa_FORM2_affinity_init(spapr); 364 } 365 366 void spapr_numa_associativity_check(SpaprMachineState *spapr) 367 { 368 /* 369 * FORM2 does not have any restrictions we need to handle 370 * at CAS time, for now. 371 */ 372 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 373 return; 374 } 375 376 spapr_numa_FORM1_affinity_check(MACHINE(spapr)); 377 } 378 379 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt, 380 int offset, int nodeid) 381 { 382 const uint32_t *associativity = get_associativity(spapr, nodeid); 383 384 _FDT((fdt_setprop(fdt, offset, "ibm,associativity", 385 associativity, 386 get_numa_assoc_size(spapr) * sizeof(uint32_t)))); 387 } 388 389 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr, 390 PowerPCCPU *cpu) 391 { 392 const uint32_t *associativity = get_associativity(spapr, cpu->node_id); 393 int max_distance_ref_points = get_max_dist_ref_points(spapr); 394 int vcpu_assoc_size = get_vcpu_assoc_size(spapr); 395 uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size); 396 int index = spapr_get_vcpu_id(cpu); 397 398 /* 399 * VCPUs have an extra 'cpu_id' value in ibm,associativity 400 * compared to other resources. Increment the size at index 401 * 0, put cpu_id last, then copy the remaining associativity 402 * domains. 403 */ 404 vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1); 405 vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index); 406 memcpy(vcpu_assoc + 1, associativity + 1, 407 (vcpu_assoc_size - 2) * sizeof(uint32_t)); 408 409 return vcpu_assoc; 410 } 411 412 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt, 413 int offset, PowerPCCPU *cpu) 414 { 415 g_autofree uint32_t *vcpu_assoc = NULL; 416 int vcpu_assoc_size = get_vcpu_assoc_size(spapr); 417 418 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu); 419 420 /* Advertise NUMA via ibm,associativity */ 421 return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc, 422 vcpu_assoc_size * sizeof(uint32_t)); 423 } 424 425 426 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt, 427 int offset) 428 { 429 MachineState *machine = MACHINE(spapr); 430 int max_distance_ref_points = get_max_dist_ref_points(spapr); 431 int nb_numa_nodes = machine->numa_state->num_nodes; 432 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 433 g_autofree uint32_t *int_buf = NULL; 434 uint32_t *cur_index; 435 int i; 436 437 /* ibm,associativity-lookup-arrays */ 438 int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2); 439 cur_index = int_buf; 440 int_buf[0] = cpu_to_be32(nr_nodes); 441 /* Number of entries per associativity list */ 442 int_buf[1] = cpu_to_be32(max_distance_ref_points); 443 cur_index += 2; 444 for (i = 0; i < nr_nodes; i++) { 445 /* 446 * For the lookup-array we use the ibm,associativity array of the 447 * current NUMA affinity, without the first element (size). 448 */ 449 const uint32_t *associativity = get_associativity(spapr, i); 450 memcpy(cur_index, ++associativity, 451 sizeof(uint32_t) * max_distance_ref_points); 452 cur_index += max_distance_ref_points; 453 } 454 455 return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", 456 int_buf, (cur_index - int_buf) * sizeof(uint32_t)); 457 } 458 459 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr, 460 void *fdt, int rtas) 461 { 462 MachineState *ms = MACHINE(spapr); 463 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 464 uint32_t number_nvgpus_nodes = spapr->gpu_numa_id - 465 spapr_numa_initial_nvgpu_numa_id(ms); 466 uint32_t refpoints[] = { 467 cpu_to_be32(0x4), 468 cpu_to_be32(0x3), 469 cpu_to_be32(0x2), 470 cpu_to_be32(0x1), 471 }; 472 uint32_t nr_refpoints = ARRAY_SIZE(refpoints); 473 uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes; 474 uint32_t maxdomains[] = { 475 cpu_to_be32(4), 476 cpu_to_be32(maxdomain), 477 cpu_to_be32(maxdomain), 478 cpu_to_be32(maxdomain), 479 cpu_to_be32(maxdomain) 480 }; 481 482 if (smc->pre_5_2_numa_associativity || 483 ms->numa_state->num_nodes <= 1) { 484 uint32_t legacy_refpoints[] = { 485 cpu_to_be32(0x4), 486 cpu_to_be32(0x4), 487 cpu_to_be32(0x2), 488 }; 489 uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0; 490 uint32_t legacy_maxdomains[] = { 491 cpu_to_be32(4), 492 cpu_to_be32(legacy_maxdomain), 493 cpu_to_be32(legacy_maxdomain), 494 cpu_to_be32(legacy_maxdomain), 495 cpu_to_be32(spapr->gpu_numa_id), 496 }; 497 498 G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints)); 499 G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains)); 500 501 nr_refpoints = 3; 502 503 memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints)); 504 memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains)); 505 506 /* pseries-5.0 and older reference-points array is {0x4, 0x4} */ 507 if (smc->pre_5_1_assoc_refpoints) { 508 nr_refpoints = 2; 509 } 510 } 511 512 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 513 refpoints, nr_refpoints * sizeof(refpoints[0]))); 514 515 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 516 maxdomains, sizeof(maxdomains))); 517 } 518 519 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr, 520 void *fdt, int rtas) 521 { 522 MachineState *ms = MACHINE(spapr); 523 int nb_numa_nodes = ms->numa_state->num_nodes; 524 int distance_table_entries = nb_numa_nodes * nb_numa_nodes; 525 g_autofree uint32_t *lookup_index_table = NULL; 526 g_autofree uint8_t *distance_table = NULL; 527 int src, dst, i, distance_table_size; 528 529 /* 530 * ibm,numa-lookup-index-table: array with length and a 531 * list of NUMA ids present in the guest. 532 */ 533 lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1); 534 lookup_index_table[0] = cpu_to_be32(nb_numa_nodes); 535 536 for (i = 0; i < nb_numa_nodes; i++) { 537 lookup_index_table[i + 1] = cpu_to_be32(i); 538 } 539 540 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table", 541 lookup_index_table, 542 (nb_numa_nodes + 1) * sizeof(uint32_t))); 543 544 /* 545 * ibm,numa-distance-table: contains all node distances. First 546 * element is the size of the table as uint32, followed up 547 * by all the uint8 distances from the first NUMA node, then all 548 * distances from the second NUMA node and so on. 549 * 550 * ibm,numa-lookup-index-table is used by guest to navigate this 551 * array because NUMA ids can be sparse (node 0 is the first, 552 * node 8 is the second ...). 553 */ 554 distance_table_size = distance_table_entries * sizeof(uint8_t) + 555 sizeof(uint32_t); 556 distance_table = g_new0(uint8_t, distance_table_size); 557 stl_be_p(distance_table, distance_table_entries); 558 559 /* Skip the uint32_t array length at the start */ 560 i = sizeof(uint32_t); 561 562 for (src = 0; src < nb_numa_nodes; src++) { 563 for (dst = 0; dst < nb_numa_nodes; dst++) { 564 distance_table[i++] = get_numa_distance(ms, src, dst); 565 } 566 } 567 568 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table", 569 distance_table, distance_table_size)); 570 } 571 572 /* 573 * This helper could be compressed in a single function with 574 * FORM1 logic since we're setting the same DT values, with the 575 * difference being a call to spapr_numa_FORM2_write_rtas_tables() 576 * in the end. The separation was made to avoid clogging FORM1 code 577 * which already has to deal with compat modes from previous 578 * QEMU machine types. 579 */ 580 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr, 581 void *fdt, int rtas) 582 { 583 MachineState *ms = MACHINE(spapr); 584 uint32_t number_nvgpus_nodes = spapr->gpu_numa_id - 585 spapr_numa_initial_nvgpu_numa_id(ms); 586 587 /* 588 * In FORM2, ibm,associativity-reference-points will point to 589 * the element in the ibm,associativity array that contains the 590 * primary domain index (for FORM2, the first element). 591 * 592 * This value (in our case, the numa-id) is then used as an index 593 * to retrieve all other attributes of the node (distance, 594 * bandwidth, latency) via ibm,numa-lookup-index-table and other 595 * ibm,numa-*-table properties. 596 */ 597 uint32_t refpoints[] = { cpu_to_be32(1) }; 598 599 uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes; 600 uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) }; 601 602 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 603 refpoints, sizeof(refpoints))); 604 605 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 606 maxdomains, sizeof(maxdomains))); 607 608 spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas); 609 } 610 611 /* 612 * Helper that writes ibm,associativity-reference-points and 613 * max-associativity-domains in the RTAS pointed by @rtas 614 * in the DT @fdt. 615 */ 616 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) 617 { 618 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 619 spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas); 620 return; 621 } 622 623 spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas); 624 } 625 626 static target_ulong h_home_node_associativity(PowerPCCPU *cpu, 627 SpaprMachineState *spapr, 628 target_ulong opcode, 629 target_ulong *args) 630 { 631 g_autofree uint32_t *vcpu_assoc = NULL; 632 target_ulong flags = args[0]; 633 target_ulong procno = args[1]; 634 PowerPCCPU *tcpu; 635 int idx, assoc_idx; 636 int vcpu_assoc_size = get_vcpu_assoc_size(spapr); 637 638 /* only support procno from H_REGISTER_VPA */ 639 if (flags != 0x1) { 640 return H_FUNCTION; 641 } 642 643 tcpu = spapr_find_cpu(procno); 644 if (tcpu == NULL) { 645 return H_P2; 646 } 647 648 /* 649 * Given that we want to be flexible with the sizes and indexes, 650 * we must consider that there is a hard limit of how many 651 * associativities domain we can fit in R4 up to R9, which would be 652 * 12 associativity domains for vcpus. Assert and bail if that's 653 * not the case. 654 */ 655 g_assert((vcpu_assoc_size - 1) <= 12); 656 657 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu); 658 /* assoc_idx starts at 1 to skip associativity size */ 659 assoc_idx = 1; 660 661 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ 662 ((uint64_t)(b) & 0xffffffff)) 663 664 for (idx = 0; idx < 6; idx++) { 665 int32_t a, b; 666 667 /* 668 * vcpu_assoc[] will contain the associativity domains for tcpu, 669 * including tcpu->node_id and procno, meaning that we don't 670 * need to use these variables here. 671 * 672 * We'll read 2 values at a time to fill up the ASSOCIATIVITY() 673 * macro. The ternary will fill the remaining registers with -1 674 * after we went through vcpu_assoc[]. 675 */ 676 a = assoc_idx < vcpu_assoc_size ? 677 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; 678 b = assoc_idx < vcpu_assoc_size ? 679 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; 680 681 args[idx] = ASSOCIATIVITY(a, b); 682 } 683 #undef ASSOCIATIVITY 684 685 return H_SUCCESS; 686 } 687 688 static void spapr_numa_register_types(void) 689 { 690 /* Virtual Processor Home Node */ 691 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, 692 h_home_node_associativity); 693 } 694 695 type_init(spapr_numa_register_types) 696