xref: /openbmc/qemu/hw/ppc/spapr_numa.c (revision edcc4e40)
1 /*
2  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3  *
4  * Copyright IBM Corp. 2020
5  *
6  * Authors:
7  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
18 
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
21 
22 /*
23  * Retrieves max_dist_ref_points of the current NUMA affinity.
24  */
25 static int get_max_dist_ref_points(SpaprMachineState *spapr)
26 {
27     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
28         return FORM2_DIST_REF_POINTS;
29     }
30 
31     return FORM1_DIST_REF_POINTS;
32 }
33 
34 /*
35  * Retrieves numa_assoc_size of the current NUMA affinity.
36  */
37 static int get_numa_assoc_size(SpaprMachineState *spapr)
38 {
39     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
40         return FORM2_NUMA_ASSOC_SIZE;
41     }
42 
43     return FORM1_NUMA_ASSOC_SIZE;
44 }
45 
46 /*
47  * Retrieves vcpu_assoc_size of the current NUMA affinity.
48  *
49  * vcpu_assoc_size is the size of ibm,associativity array
50  * for CPUs, which has an extra element (vcpu_id) in the end.
51  */
52 static int get_vcpu_assoc_size(SpaprMachineState *spapr)
53 {
54     return get_numa_assoc_size(spapr) + 1;
55 }
56 
57 /*
58  * Retrieves the ibm,associativity array of NUMA node 'node_id'
59  * for the current NUMA affinity.
60  */
61 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
62 {
63     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
64         return spapr->FORM2_assoc_array[node_id];
65     }
66     return spapr->FORM1_assoc_array[node_id];
67 }
68 
69 /*
70  * Wrapper that returns node distance from ms->numa_state->nodes
71  * after handling edge cases where the distance might be absent.
72  */
73 static int get_numa_distance(MachineState *ms, int src, int dst)
74 {
75     NodeInfo *numa_info = ms->numa_state->nodes;
76     int ret = numa_info[src].distance[dst];
77 
78     if (ret != 0) {
79         return ret;
80     }
81 
82     /*
83      * In case QEMU adds a default NUMA single node when the user
84      * did not add any, or where the user did not supply distances,
85      * the distance will be absent (zero). Return local/remote
86      * distance in this case.
87      */
88     if (src == dst) {
89         return NUMA_DISTANCE_MIN;
90     }
91 
92     return NUMA_DISTANCE_DEFAULT;
93 }
94 
95 static bool spapr_numa_is_symmetrical(MachineState *ms)
96 {
97     int nb_numa_nodes = ms->numa_state->num_nodes;
98     int src, dst;
99 
100     for (src = 0; src < nb_numa_nodes; src++) {
101         for (dst = src; dst < nb_numa_nodes; dst++) {
102             if (get_numa_distance(ms, src, dst) !=
103                 get_numa_distance(ms, dst, src)) {
104                 return false;
105             }
106         }
107     }
108 
109     return true;
110 }
111 
112 /*
113  * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
114  * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
115  * called from vPHB reset handler so we initialize the counter here.
116  * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
117  * must be equally distant from any other node.
118  * The final value of spapr->gpu_numa_id is going to be written to
119  * max-associativity-domains in spapr_build_fdt().
120  */
121 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
122 {
123     return MAX(1, machine->numa_state->num_nodes);
124 }
125 
126 /*
127  * This function will translate the user distances into
128  * what the kernel understand as possible values: 10
129  * (local distance), 20, 40, 80 and 160, and return the equivalent
130  * NUMA level for each. Current heuristic is:
131  *  - local distance (10) returns numa_level = 0x4, meaning there is
132  *    no rounding for local distance
133  *  - distances between 11 and 30 inclusive -> rounded to 20,
134  *    numa_level = 0x3
135  *  - distances between 31 and 60 inclusive -> rounded to 40,
136  *    numa_level = 0x2
137  *  - distances between 61 and 120 inclusive -> rounded to 80,
138  *    numa_level = 0x1
139  *  - everything above 120 returns numa_level = 0 to indicate that
140  *    there is no match. This will be calculated as disntace = 160
141  *    by the kernel (as of v5.9)
142  */
143 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
144 {
145     if (distance == 10) {
146         return 0x4;
147     } else if (distance > 11 && distance <= 30) {
148         return 0x3;
149     } else if (distance > 31 && distance <= 60) {
150         return 0x2;
151     } else if (distance > 61 && distance <= 120) {
152         return 0x1;
153     }
154 
155     return 0;
156 }
157 
158 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
159 {
160     MachineState *ms = MACHINE(spapr);
161     int nb_numa_nodes = ms->numa_state->num_nodes;
162     int src, dst, i, j;
163 
164     /*
165      * Fill all associativity domains of non-zero NUMA nodes with
166      * node_id. This is required because the default value (0) is
167      * considered a match with associativity domains of node 0.
168      */
169     for (i = 1; i < nb_numa_nodes; i++) {
170         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
171             spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
172         }
173     }
174 
175     for (src = 0; src < nb_numa_nodes; src++) {
176         for (dst = src; dst < nb_numa_nodes; dst++) {
177             /*
178              * This is how the associativity domain between A and B
179              * is calculated:
180              *
181              * - get the distance D between them
182              * - get the correspondent NUMA level 'n_level' for D
183              * - all associativity arrays were initialized with their own
184              * numa_ids, and we're calculating the distance in node_id
185              * ascending order, starting from node id 0 (the first node
186              * retrieved by numa_state). This will have a cascade effect in
187              * the algorithm because the associativity domains that node 0
188              * defines will be carried over to other nodes, and node 1
189              * associativities will be carried over after taking node 0
190              * associativities into account, and so on. This happens because
191              * we'll assign assoc_src as the associativity domain of dst
192              * as well, for all NUMA levels beyond and including n_level.
193              *
194              * The PPC kernel expects the associativity domains of node 0 to
195              * be always 0, and this algorithm will grant that by default.
196              */
197             uint8_t distance = get_numa_distance(ms, src, dst);
198             uint8_t n_level = spapr_numa_get_numa_level(distance);
199             uint32_t assoc_src;
200 
201             /*
202              * n_level = 0 means that the distance is greater than our last
203              * rounded value (120). In this case there is no NUMA level match
204              * between src and dst and we can skip the remaining of the loop.
205              *
206              * The Linux kernel will assume that the distance between src and
207              * dst, in this case of no match, is 10 (local distance) doubled
208              * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
209              * levels (4), so this gives us 10*2*2*2*2 = 160.
210              *
211              * This logic can be seen in the Linux kernel source code, as of
212              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
213              */
214             if (n_level == 0) {
215                 continue;
216             }
217 
218             /*
219              * We must assign all assoc_src to dst, starting from n_level
220              * and going up to 0x1.
221              */
222             for (i = n_level; i > 0; i--) {
223                 assoc_src = spapr->FORM1_assoc_array[src][i];
224                 spapr->FORM1_assoc_array[dst][i] = assoc_src;
225             }
226         }
227     }
228 
229 }
230 
231 static void spapr_numa_FORM1_affinity_check(MachineState *machine)
232 {
233     int i;
234 
235     /*
236      * Check we don't have a memory-less/cpu-less NUMA node
237      * Firmware relies on the existing memory/cpu topology to provide the
238      * NUMA topology to the kernel.
239      * And the linux kernel needs to know the NUMA topology at start
240      * to be able to hotplug CPUs later.
241      */
242     if (machine->numa_state->num_nodes) {
243         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
244             /* check for memory-less node */
245             if (machine->numa_state->nodes[i].node_mem == 0) {
246                 CPUState *cs;
247                 int found = 0;
248                 /* check for cpu-less node */
249                 CPU_FOREACH(cs) {
250                     PowerPCCPU *cpu = POWERPC_CPU(cs);
251                     if (cpu->node_id == i) {
252                         found = 1;
253                         break;
254                     }
255                 }
256                 /* memory-less and cpu-less node */
257                 if (!found) {
258                     error_report(
259 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
260                     exit(EXIT_FAILURE);
261                 }
262             }
263         }
264     }
265 
266     if (!spapr_numa_is_symmetrical(machine)) {
267         error_report(
268 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
269         exit(EXIT_FAILURE);
270     }
271 }
272 
273 /*
274  * Set NUMA machine state data based on FORM1 affinity semantics.
275  */
276 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
277                                            MachineState *machine)
278 {
279     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
280     int nb_numa_nodes = machine->numa_state->num_nodes;
281     int i, j, max_nodes_with_gpus;
282 
283     /*
284      * For all associativity arrays: first position is the size,
285      * position FORM1_DIST_REF_POINTS is always the numa_id,
286      * represented by the index 'i'.
287      *
288      * This will break on sparse NUMA setups, when/if QEMU starts
289      * to support it, because there will be no more guarantee that
290      * 'i' will be a valid node_id set by the user.
291      */
292     for (i = 0; i < nb_numa_nodes; i++) {
293         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
294         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
295     }
296 
297     /*
298      * Initialize NVLink GPU associativity arrays. We know that
299      * the first GPU will take the first available NUMA id, and
300      * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
301      * At this point we're not sure if there are GPUs or not, but
302      * let's initialize the associativity arrays and allow NVLink
303      * GPUs to be handled like regular NUMA nodes later on.
304      */
305     max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
306 
307     for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
308         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
309 
310         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
311             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
312                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
313             spapr->FORM1_assoc_array[i][j] = gpu_assoc;
314         }
315 
316         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
317     }
318 
319     /*
320      * Guests pseries-5.1 and older uses zeroed associativity domains,
321      * i.e. no domain definition based on NUMA distance input.
322      *
323      * Same thing with guests that have only one NUMA node.
324      */
325     if (smc->pre_5_2_numa_associativity ||
326         machine->numa_state->num_nodes <= 1) {
327         return;
328     }
329 
330     spapr_numa_define_FORM1_domains(spapr);
331 }
332 
333 /*
334  * Init NUMA FORM2 machine state data
335  */
336 static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
337 {
338     int i;
339 
340     /*
341      * For all resources but CPUs, FORM2 associativity arrays will
342      * be a size 2 array with the following format:
343      *
344      * ibm,associativity = {1, numa_id}
345      *
346      * CPUs will write an additional 'vcpu_id' on top of the arrays
347      * being initialized here. 'numa_id' is represented by the
348      * index 'i' of the loop.
349      *
350      * Given that this initialization is also valid for GPU associativity
351      * arrays, handle everything in one single step by populating the
352      * arrays up to NUMA_NODES_MAX_NUM.
353      */
354     for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
355         spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
356         spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
357     }
358 }
359 
360 void spapr_numa_associativity_init(SpaprMachineState *spapr,
361                                    MachineState *machine)
362 {
363     spapr_numa_FORM1_affinity_init(spapr, machine);
364     spapr_numa_FORM2_affinity_init(spapr);
365 }
366 
367 void spapr_numa_associativity_check(SpaprMachineState *spapr)
368 {
369     /*
370      * FORM2 does not have any restrictions we need to handle
371      * at CAS time, for now.
372      */
373     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
374         return;
375     }
376 
377     spapr_numa_FORM1_affinity_check(MACHINE(spapr));
378 }
379 
380 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
381                                        int offset, int nodeid)
382 {
383     const uint32_t *associativity = get_associativity(spapr, nodeid);
384 
385     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
386                       associativity,
387                       get_numa_assoc_size(spapr) * sizeof(uint32_t))));
388 }
389 
390 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
391                                            PowerPCCPU *cpu)
392 {
393     const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
394     int max_distance_ref_points = get_max_dist_ref_points(spapr);
395     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
396     uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
397     int index = spapr_get_vcpu_id(cpu);
398 
399     /*
400      * VCPUs have an extra 'cpu_id' value in ibm,associativity
401      * compared to other resources. Increment the size at index
402      * 0, put cpu_id last, then copy the remaining associativity
403      * domains.
404      */
405     vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
406     vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
407     memcpy(vcpu_assoc + 1, associativity + 1,
408            (vcpu_assoc_size - 2) * sizeof(uint32_t));
409 
410     return vcpu_assoc;
411 }
412 
413 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
414                             int offset, PowerPCCPU *cpu)
415 {
416     g_autofree uint32_t *vcpu_assoc = NULL;
417     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
418 
419     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
420 
421     /* Advertise NUMA via ibm,associativity */
422     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
423                        vcpu_assoc_size * sizeof(uint32_t));
424 }
425 
426 
427 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
428                                          int offset)
429 {
430     MachineState *machine = MACHINE(spapr);
431     int max_distance_ref_points = get_max_dist_ref_points(spapr);
432     int nb_numa_nodes = machine->numa_state->num_nodes;
433     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
434     uint32_t *int_buf, *cur_index, buf_len;
435     int ret, i;
436 
437     /* ibm,associativity-lookup-arrays */
438     buf_len = (nr_nodes * max_distance_ref_points + 2) * sizeof(uint32_t);
439     cur_index = int_buf = g_malloc0(buf_len);
440     int_buf[0] = cpu_to_be32(nr_nodes);
441      /* Number of entries per associativity list */
442     int_buf[1] = cpu_to_be32(max_distance_ref_points);
443     cur_index += 2;
444     for (i = 0; i < nr_nodes; i++) {
445         /*
446          * For the lookup-array we use the ibm,associativity array of the
447          * current NUMA affinity, without the first element (size).
448          */
449         const uint32_t *associativity = get_associativity(spapr, i);
450         memcpy(cur_index, ++associativity,
451                sizeof(uint32_t) * max_distance_ref_points);
452         cur_index += max_distance_ref_points;
453     }
454     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
455                       (cur_index - int_buf) * sizeof(uint32_t));
456     g_free(int_buf);
457 
458     return ret;
459 }
460 
461 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
462                                            void *fdt, int rtas)
463 {
464     MachineState *ms = MACHINE(spapr);
465     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
466     uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
467                                    spapr_numa_initial_nvgpu_numa_id(ms);
468     uint32_t refpoints[] = {
469         cpu_to_be32(0x4),
470         cpu_to_be32(0x3),
471         cpu_to_be32(0x2),
472         cpu_to_be32(0x1),
473     };
474     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
475     uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
476     uint32_t maxdomains[] = {
477         cpu_to_be32(4),
478         cpu_to_be32(maxdomain),
479         cpu_to_be32(maxdomain),
480         cpu_to_be32(maxdomain),
481         cpu_to_be32(maxdomain)
482     };
483 
484     if (smc->pre_5_2_numa_associativity ||
485         ms->numa_state->num_nodes <= 1) {
486         uint32_t legacy_refpoints[] = {
487             cpu_to_be32(0x4),
488             cpu_to_be32(0x4),
489             cpu_to_be32(0x2),
490         };
491         uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
492         uint32_t legacy_maxdomains[] = {
493             cpu_to_be32(4),
494             cpu_to_be32(legacy_maxdomain),
495             cpu_to_be32(legacy_maxdomain),
496             cpu_to_be32(legacy_maxdomain),
497             cpu_to_be32(spapr->gpu_numa_id),
498         };
499 
500         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
501         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
502 
503         nr_refpoints = 3;
504 
505         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
506         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
507 
508         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
509         if (smc->pre_5_1_assoc_refpoints) {
510             nr_refpoints = 2;
511         }
512     }
513 
514     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
515                      refpoints, nr_refpoints * sizeof(refpoints[0])));
516 
517     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
518                      maxdomains, sizeof(maxdomains)));
519 }
520 
521 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
522                                                void *fdt, int rtas)
523 {
524     MachineState *ms = MACHINE(spapr);
525     int nb_numa_nodes = ms->numa_state->num_nodes;
526     int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
527     g_autofree uint32_t *lookup_index_table = NULL;
528     g_autofree uint8_t *distance_table = NULL;
529     int src, dst, i, distance_table_size;
530 
531     /*
532      * ibm,numa-lookup-index-table: array with length and a
533      * list of NUMA ids present in the guest.
534      */
535     lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
536     lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
537 
538     for (i = 0; i < nb_numa_nodes; i++) {
539         lookup_index_table[i + 1] = cpu_to_be32(i);
540     }
541 
542     _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
543                      lookup_index_table,
544                      (nb_numa_nodes + 1) * sizeof(uint32_t)));
545 
546     /*
547      * ibm,numa-distance-table: contains all node distances. First
548      * element is the size of the table as uint32, followed up
549      * by all the uint8 distances from the first NUMA node, then all
550      * distances from the second NUMA node and so on.
551      *
552      * ibm,numa-lookup-index-table is used by guest to navigate this
553      * array because NUMA ids can be sparse (node 0 is the first,
554      * node 8 is the second ...).
555      */
556     distance_table_size = distance_table_entries * sizeof(uint8_t) +
557                           sizeof(uint32_t);
558     distance_table = g_new0(uint8_t, distance_table_size);
559     stl_be_p(distance_table, distance_table_entries);
560 
561     /* Skip the uint32_t array length at the start */
562     i = sizeof(uint32_t);
563 
564     for (src = 0; src < nb_numa_nodes; src++) {
565         for (dst = 0; dst < nb_numa_nodes; dst++) {
566             distance_table[i++] = get_numa_distance(ms, src, dst);
567         }
568     }
569 
570     _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
571                      distance_table, distance_table_size));
572 }
573 
574 /*
575  * This helper could be compressed in a single function with
576  * FORM1 logic since we're setting the same DT values, with the
577  * difference being a call to spapr_numa_FORM2_write_rtas_tables()
578  * in the end. The separation was made to avoid clogging FORM1 code
579  * which already has to deal with compat modes from previous
580  * QEMU machine types.
581  */
582 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
583                                            void *fdt, int rtas)
584 {
585     MachineState *ms = MACHINE(spapr);
586     uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
587                                    spapr_numa_initial_nvgpu_numa_id(ms);
588 
589     /*
590      * In FORM2, ibm,associativity-reference-points will point to
591      * the element in the ibm,associativity array that contains the
592      * primary domain index (for FORM2, the first element).
593      *
594      * This value (in our case, the numa-id) is then used as an index
595      * to retrieve all other attributes of the node (distance,
596      * bandwidth, latency) via ibm,numa-lookup-index-table and other
597      * ibm,numa-*-table properties.
598      */
599     uint32_t refpoints[] = { cpu_to_be32(1) };
600 
601     uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
602     uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
603 
604     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
605                      refpoints, sizeof(refpoints)));
606 
607     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
608                      maxdomains, sizeof(maxdomains)));
609 
610     spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
611 }
612 
613 /*
614  * Helper that writes ibm,associativity-reference-points and
615  * max-associativity-domains in the RTAS pointed by @rtas
616  * in the DT @fdt.
617  */
618 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
619 {
620     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
621         spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
622         return;
623     }
624 
625     spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
626 }
627 
628 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
629                                               SpaprMachineState *spapr,
630                                               target_ulong opcode,
631                                               target_ulong *args)
632 {
633     g_autofree uint32_t *vcpu_assoc = NULL;
634     target_ulong flags = args[0];
635     target_ulong procno = args[1];
636     PowerPCCPU *tcpu;
637     int idx, assoc_idx;
638     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
639 
640     /* only support procno from H_REGISTER_VPA */
641     if (flags != 0x1) {
642         return H_FUNCTION;
643     }
644 
645     tcpu = spapr_find_cpu(procno);
646     if (tcpu == NULL) {
647         return H_P2;
648     }
649 
650     /*
651      * Given that we want to be flexible with the sizes and indexes,
652      * we must consider that there is a hard limit of how many
653      * associativities domain we can fit in R4 up to R9, which would be
654      * 12 associativity domains for vcpus. Assert and bail if that's
655      * not the case.
656      */
657     g_assert((vcpu_assoc_size - 1) <= 12);
658 
659     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
660     /* assoc_idx starts at 1 to skip associativity size */
661     assoc_idx = 1;
662 
663 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
664                              ((uint64_t)(b) & 0xffffffff))
665 
666     for (idx = 0; idx < 6; idx++) {
667         int32_t a, b;
668 
669         /*
670          * vcpu_assoc[] will contain the associativity domains for tcpu,
671          * including tcpu->node_id and procno, meaning that we don't
672          * need to use these variables here.
673          *
674          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
675          * macro. The ternary will fill the remaining registers with -1
676          * after we went through vcpu_assoc[].
677          */
678         a = assoc_idx < vcpu_assoc_size ?
679             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
680         b = assoc_idx < vcpu_assoc_size ?
681             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
682 
683         args[idx] = ASSOCIATIVITY(a, b);
684     }
685 #undef ASSOCIATIVITY
686 
687     return H_SUCCESS;
688 }
689 
690 static void spapr_numa_register_types(void)
691 {
692     /* Virtual Processor Home Node */
693     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
694                              h_home_node_associativity);
695 }
696 
697 type_init(spapr_numa_register_types)
698