xref: /openbmc/qemu/hw/ppc/spapr_numa.c (revision afa3b3c9)
1 /*
2  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3  *
4  * Copyright IBM Corp. 2020
5  *
6  * Authors:
7  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
18 
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
21 
22 static bool spapr_numa_is_symmetrical(MachineState *ms)
23 {
24     int src, dst;
25     int nb_numa_nodes = ms->numa_state->num_nodes;
26     NodeInfo *numa_info = ms->numa_state->nodes;
27 
28     for (src = 0; src < nb_numa_nodes; src++) {
29         for (dst = src; dst < nb_numa_nodes; dst++) {
30             if (numa_info[src].distance[dst] !=
31                 numa_info[dst].distance[src]) {
32                 return false;
33             }
34         }
35     }
36 
37     return true;
38 }
39 
40 /*
41  * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
42  * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
43  * called from vPHB reset handler so we initialize the counter here.
44  * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
45  * must be equally distant from any other node.
46  * The final value of spapr->gpu_numa_id is going to be written to
47  * max-associativity-domains in spapr_build_fdt().
48  */
49 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
50 {
51     return MAX(1, machine->numa_state->num_nodes);
52 }
53 
54 /*
55  * This function will translate the user distances into
56  * what the kernel understand as possible values: 10
57  * (local distance), 20, 40, 80 and 160, and return the equivalent
58  * NUMA level for each. Current heuristic is:
59  *  - local distance (10) returns numa_level = 0x4, meaning there is
60  *    no rounding for local distance
61  *  - distances between 11 and 30 inclusive -> rounded to 20,
62  *    numa_level = 0x3
63  *  - distances between 31 and 60 inclusive -> rounded to 40,
64  *    numa_level = 0x2
65  *  - distances between 61 and 120 inclusive -> rounded to 80,
66  *    numa_level = 0x1
67  *  - everything above 120 returns numa_level = 0 to indicate that
68  *    there is no match. This will be calculated as disntace = 160
69  *    by the kernel (as of v5.9)
70  */
71 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
72 {
73     if (distance == 10) {
74         return 0x4;
75     } else if (distance > 11 && distance <= 30) {
76         return 0x3;
77     } else if (distance > 31 && distance <= 60) {
78         return 0x2;
79     } else if (distance > 61 && distance <= 120) {
80         return 0x1;
81     }
82 
83     return 0;
84 }
85 
86 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
87 {
88     MachineState *ms = MACHINE(spapr);
89     NodeInfo *numa_info = ms->numa_state->nodes;
90     int nb_numa_nodes = ms->numa_state->num_nodes;
91     int src, dst, i, j;
92 
93     /*
94      * Fill all associativity domains of non-zero NUMA nodes with
95      * node_id. This is required because the default value (0) is
96      * considered a match with associativity domains of node 0.
97      */
98     for (i = 1; i < nb_numa_nodes; i++) {
99         for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
100             spapr->numa_assoc_array[i][j] = cpu_to_be32(i);
101         }
102     }
103 
104     for (src = 0; src < nb_numa_nodes; src++) {
105         for (dst = src; dst < nb_numa_nodes; dst++) {
106             /*
107              * This is how the associativity domain between A and B
108              * is calculated:
109              *
110              * - get the distance D between them
111              * - get the correspondent NUMA level 'n_level' for D
112              * - all associativity arrays were initialized with their own
113              * numa_ids, and we're calculating the distance in node_id
114              * ascending order, starting from node id 0 (the first node
115              * retrieved by numa_state). This will have a cascade effect in
116              * the algorithm because the associativity domains that node 0
117              * defines will be carried over to other nodes, and node 1
118              * associativities will be carried over after taking node 0
119              * associativities into account, and so on. This happens because
120              * we'll assign assoc_src as the associativity domain of dst
121              * as well, for all NUMA levels beyond and including n_level.
122              *
123              * The PPC kernel expects the associativity domains of node 0 to
124              * be always 0, and this algorithm will grant that by default.
125              */
126             uint8_t distance = numa_info[src].distance[dst];
127             uint8_t n_level = spapr_numa_get_numa_level(distance);
128             uint32_t assoc_src;
129 
130             /*
131              * n_level = 0 means that the distance is greater than our last
132              * rounded value (120). In this case there is no NUMA level match
133              * between src and dst and we can skip the remaining of the loop.
134              *
135              * The Linux kernel will assume that the distance between src and
136              * dst, in this case of no match, is 10 (local distance) doubled
137              * for each NUMA it didn't match. We have MAX_DISTANCE_REF_POINTS
138              * levels (4), so this gives us 10*2*2*2*2 = 160.
139              *
140              * This logic can be seen in the Linux kernel source code, as of
141              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
142              */
143             if (n_level == 0) {
144                 continue;
145             }
146 
147             /*
148              * We must assign all assoc_src to dst, starting from n_level
149              * and going up to 0x1.
150              */
151             for (i = n_level; i > 0; i--) {
152                 assoc_src = spapr->numa_assoc_array[src][i];
153                 spapr->numa_assoc_array[dst][i] = assoc_src;
154             }
155         }
156     }
157 
158 }
159 
160 /*
161  * Set NUMA machine state data based on FORM1 affinity semantics.
162  */
163 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
164                                            MachineState *machine)
165 {
166     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
167     int nb_numa_nodes = machine->numa_state->num_nodes;
168     int i, j, max_nodes_with_gpus;
169 
170     /*
171      * For all associativity arrays: first position is the size,
172      * position MAX_DISTANCE_REF_POINTS is always the numa_id,
173      * represented by the index 'i'.
174      *
175      * This will break on sparse NUMA setups, when/if QEMU starts
176      * to support it, because there will be no more guarantee that
177      * 'i' will be a valid node_id set by the user.
178      */
179     for (i = 0; i < nb_numa_nodes; i++) {
180         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
181         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
182     }
183 
184     /*
185      * Initialize NVLink GPU associativity arrays. We know that
186      * the first GPU will take the first available NUMA id, and
187      * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
188      * At this point we're not sure if there are GPUs or not, but
189      * let's initialize the associativity arrays and allow NVLink
190      * GPUs to be handled like regular NUMA nodes later on.
191      */
192     max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
193 
194     for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
195         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
196 
197         for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
198             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
199                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
200             spapr->numa_assoc_array[i][j] = gpu_assoc;
201         }
202 
203         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
204     }
205 
206     /*
207      * Guests pseries-5.1 and older uses zeroed associativity domains,
208      * i.e. no domain definition based on NUMA distance input.
209      *
210      * Same thing with guests that have only one NUMA node.
211      */
212     if (smc->pre_5_2_numa_associativity ||
213         machine->numa_state->num_nodes <= 1) {
214         return;
215     }
216 
217     if (!spapr_numa_is_symmetrical(machine)) {
218         error_report("Asymmetrical NUMA topologies aren't supported "
219                      "in the pSeries machine");
220         exit(EXIT_FAILURE);
221     }
222 
223     spapr_numa_define_FORM1_domains(spapr);
224 }
225 
226 void spapr_numa_associativity_init(SpaprMachineState *spapr,
227                                    MachineState *machine)
228 {
229     spapr_numa_FORM1_affinity_init(spapr, machine);
230 }
231 
232 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
233                                        int offset, int nodeid)
234 {
235     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
236                       spapr->numa_assoc_array[nodeid],
237                       sizeof(spapr->numa_assoc_array[nodeid]))));
238 }
239 
240 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
241                                            PowerPCCPU *cpu)
242 {
243     uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE);
244     int index = spapr_get_vcpu_id(cpu);
245 
246     /*
247      * VCPUs have an extra 'cpu_id' value in ibm,associativity
248      * compared to other resources. Increment the size at index
249      * 0, put cpu_id last, then copy the remaining associativity
250      * domains.
251      */
252     vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1);
253     vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index);
254     memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
255            (VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t));
256 
257     return vcpu_assoc;
258 }
259 
260 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
261                             int offset, PowerPCCPU *cpu)
262 {
263     g_autofree uint32_t *vcpu_assoc = NULL;
264 
265     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
266 
267     /* Advertise NUMA via ibm,associativity */
268     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
269                        VCPU_ASSOC_SIZE * sizeof(uint32_t));
270 }
271 
272 
273 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
274                                          int offset)
275 {
276     MachineState *machine = MACHINE(spapr);
277     int nb_numa_nodes = machine->numa_state->num_nodes;
278     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
279     uint32_t *int_buf, *cur_index, buf_len;
280     int ret, i;
281 
282     /* ibm,associativity-lookup-arrays */
283     buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t);
284     cur_index = int_buf = g_malloc0(buf_len);
285     int_buf[0] = cpu_to_be32(nr_nodes);
286      /* Number of entries per associativity list */
287     int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
288     cur_index += 2;
289     for (i = 0; i < nr_nodes; i++) {
290         /*
291          * For the lookup-array we use the ibm,associativity array,
292          * from numa_assoc_array. without the first element (size).
293          */
294         uint32_t *associativity = spapr->numa_assoc_array[i];
295         memcpy(cur_index, ++associativity,
296                sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS);
297         cur_index += MAX_DISTANCE_REF_POINTS;
298     }
299     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
300                       (cur_index - int_buf) * sizeof(uint32_t));
301     g_free(int_buf);
302 
303     return ret;
304 }
305 
306 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
307                                            void *fdt, int rtas)
308 {
309     MachineState *ms = MACHINE(spapr);
310     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
311     uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
312                                    spapr_numa_initial_nvgpu_numa_id(ms);
313     uint32_t refpoints[] = {
314         cpu_to_be32(0x4),
315         cpu_to_be32(0x3),
316         cpu_to_be32(0x2),
317         cpu_to_be32(0x1),
318     };
319     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
320     uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
321     uint32_t maxdomains[] = {
322         cpu_to_be32(4),
323         cpu_to_be32(maxdomain),
324         cpu_to_be32(maxdomain),
325         cpu_to_be32(maxdomain),
326         cpu_to_be32(maxdomain)
327     };
328 
329     if (smc->pre_5_2_numa_associativity ||
330         ms->numa_state->num_nodes <= 1) {
331         uint32_t legacy_refpoints[] = {
332             cpu_to_be32(0x4),
333             cpu_to_be32(0x4),
334             cpu_to_be32(0x2),
335         };
336         uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
337         uint32_t legacy_maxdomains[] = {
338             cpu_to_be32(4),
339             cpu_to_be32(legacy_maxdomain),
340             cpu_to_be32(legacy_maxdomain),
341             cpu_to_be32(legacy_maxdomain),
342             cpu_to_be32(spapr->gpu_numa_id),
343         };
344 
345         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
346         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
347 
348         nr_refpoints = 3;
349 
350         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
351         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
352 
353         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
354         if (smc->pre_5_1_assoc_refpoints) {
355             nr_refpoints = 2;
356         }
357     }
358 
359     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
360                      refpoints, nr_refpoints * sizeof(refpoints[0])));
361 
362     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
363                      maxdomains, sizeof(maxdomains)));
364 }
365 
366 /*
367  * Helper that writes ibm,associativity-reference-points and
368  * max-associativity-domains in the RTAS pointed by @rtas
369  * in the DT @fdt.
370  */
371 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
372 {
373     spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
374 }
375 
376 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
377                                               SpaprMachineState *spapr,
378                                               target_ulong opcode,
379                                               target_ulong *args)
380 {
381     g_autofree uint32_t *vcpu_assoc = NULL;
382     target_ulong flags = args[0];
383     target_ulong procno = args[1];
384     PowerPCCPU *tcpu;
385     int idx, assoc_idx;
386 
387     /* only support procno from H_REGISTER_VPA */
388     if (flags != 0x1) {
389         return H_FUNCTION;
390     }
391 
392     tcpu = spapr_find_cpu(procno);
393     if (tcpu == NULL) {
394         return H_P2;
395     }
396 
397     /*
398      * Given that we want to be flexible with the sizes and indexes,
399      * we must consider that there is a hard limit of how many
400      * associativities domain we can fit in R4 up to R9, which would be
401      * 12 associativity domains for vcpus. Assert and bail if that's
402      * not the case.
403      */
404     G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12);
405 
406     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
407     /* assoc_idx starts at 1 to skip associativity size */
408     assoc_idx = 1;
409 
410 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
411                              ((uint64_t)(b) & 0xffffffff))
412 
413     for (idx = 0; idx < 6; idx++) {
414         int32_t a, b;
415 
416         /*
417          * vcpu_assoc[] will contain the associativity domains for tcpu,
418          * including tcpu->node_id and procno, meaning that we don't
419          * need to use these variables here.
420          *
421          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
422          * macro. The ternary will fill the remaining registers with -1
423          * after we went through vcpu_assoc[].
424          */
425         a = assoc_idx < VCPU_ASSOC_SIZE ?
426             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
427         b = assoc_idx < VCPU_ASSOC_SIZE ?
428             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
429 
430         args[idx] = ASSOCIATIVITY(a, b);
431     }
432 #undef ASSOCIATIVITY
433 
434     return H_SUCCESS;
435 }
436 
437 static void spapr_numa_register_types(void)
438 {
439     /* Virtual Processor Home Node */
440     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
441                              h_home_node_associativity);
442 }
443 
444 type_init(spapr_numa_register_types)
445