xref: /openbmc/qemu/hw/ppc/spapr_numa.c (revision 491e884e)
1 /*
2  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3  *
4  * Copyright IBM Corp. 2020
5  *
6  * Authors:
7  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
18 
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
21 
22 static bool spapr_numa_is_symmetrical(MachineState *ms)
23 {
24     int src, dst;
25     int nb_numa_nodes = ms->numa_state->num_nodes;
26     NodeInfo *numa_info = ms->numa_state->nodes;
27 
28     for (src = 0; src < nb_numa_nodes; src++) {
29         for (dst = src; dst < nb_numa_nodes; dst++) {
30             if (numa_info[src].distance[dst] !=
31                 numa_info[dst].distance[src]) {
32                 return false;
33             }
34         }
35     }
36 
37     return true;
38 }
39 
40 void spapr_numa_associativity_init(SpaprMachineState *spapr,
41                                    MachineState *machine)
42 {
43     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
44     int nb_numa_nodes = machine->numa_state->num_nodes;
45     int i, j, max_nodes_with_gpus;
46 
47     /*
48      * For all associativity arrays: first position is the size,
49      * position MAX_DISTANCE_REF_POINTS is always the numa_id,
50      * represented by the index 'i'.
51      *
52      * This will break on sparse NUMA setups, when/if QEMU starts
53      * to support it, because there will be no more guarantee that
54      * 'i' will be a valid node_id set by the user.
55      */
56     for (i = 0; i < nb_numa_nodes; i++) {
57         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
58         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
59     }
60 
61     /*
62      * Initialize NVLink GPU associativity arrays. We know that
63      * the first GPU will take the first available NUMA id, and
64      * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
65      * At this point we're not sure if there are GPUs or not, but
66      * let's initialize the associativity arrays and allow NVLink
67      * GPUs to be handled like regular NUMA nodes later on.
68      */
69     max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
70 
71     for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
72         spapr->numa_assoc_array[i][0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
73 
74         for (j = 1; j < MAX_DISTANCE_REF_POINTS; j++) {
75             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
76                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
77             spapr->numa_assoc_array[i][j] = gpu_assoc;
78         }
79 
80         spapr->numa_assoc_array[i][MAX_DISTANCE_REF_POINTS] = cpu_to_be32(i);
81     }
82 
83     /*
84      * Legacy NUMA guests (pseries-5.1 and older, or guests with only
85      * 1 NUMA node) will not benefit from anything we're going to do
86      * after this point.
87      */
88     if (spapr_machine_using_legacy_numa(spapr)) {
89         return;
90     }
91 
92     if (!spapr_numa_is_symmetrical(machine)) {
93         error_report("Asymmetrical NUMA topologies aren't supported "
94                      "in the pSeries machine");
95         exit(EXIT_FAILURE);
96     }
97 
98 }
99 
100 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
101                                        int offset, int nodeid)
102 {
103     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
104                       spapr->numa_assoc_array[nodeid],
105                       sizeof(spapr->numa_assoc_array[nodeid]))));
106 }
107 
108 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
109                                            PowerPCCPU *cpu)
110 {
111     uint32_t *vcpu_assoc = g_new(uint32_t, VCPU_ASSOC_SIZE);
112     int index = spapr_get_vcpu_id(cpu);
113 
114     /*
115      * VCPUs have an extra 'cpu_id' value in ibm,associativity
116      * compared to other resources. Increment the size at index
117      * 0, put cpu_id last, then copy the remaining associativity
118      * domains.
119      */
120     vcpu_assoc[0] = cpu_to_be32(MAX_DISTANCE_REF_POINTS + 1);
121     vcpu_assoc[VCPU_ASSOC_SIZE - 1] = cpu_to_be32(index);
122     memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
123            (VCPU_ASSOC_SIZE - 2) * sizeof(uint32_t));
124 
125     return vcpu_assoc;
126 }
127 
128 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
129                             int offset, PowerPCCPU *cpu)
130 {
131     g_autofree uint32_t *vcpu_assoc = NULL;
132 
133     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
134 
135     /* Advertise NUMA via ibm,associativity */
136     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
137                        VCPU_ASSOC_SIZE * sizeof(uint32_t));
138 }
139 
140 
141 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
142                                          int offset)
143 {
144     MachineState *machine = MACHINE(spapr);
145     int nb_numa_nodes = machine->numa_state->num_nodes;
146     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
147     uint32_t *int_buf, *cur_index, buf_len;
148     int ret, i;
149 
150     /* ibm,associativity-lookup-arrays */
151     buf_len = (nr_nodes * MAX_DISTANCE_REF_POINTS + 2) * sizeof(uint32_t);
152     cur_index = int_buf = g_malloc0(buf_len);
153     int_buf[0] = cpu_to_be32(nr_nodes);
154      /* Number of entries per associativity list */
155     int_buf[1] = cpu_to_be32(MAX_DISTANCE_REF_POINTS);
156     cur_index += 2;
157     for (i = 0; i < nr_nodes; i++) {
158         /*
159          * For the lookup-array we use the ibm,associativity array,
160          * from numa_assoc_array. without the first element (size).
161          */
162         uint32_t *associativity = spapr->numa_assoc_array[i];
163         memcpy(cur_index, ++associativity,
164                sizeof(uint32_t) * MAX_DISTANCE_REF_POINTS);
165         cur_index += MAX_DISTANCE_REF_POINTS;
166     }
167     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
168                       (cur_index - int_buf) * sizeof(uint32_t));
169     g_free(int_buf);
170 
171     return ret;
172 }
173 
174 /*
175  * Helper that writes ibm,associativity-reference-points and
176  * max-associativity-domains in the RTAS pointed by @rtas
177  * in the DT @fdt.
178  */
179 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
180 {
181     MachineState *ms = MACHINE(spapr);
182     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
183     uint32_t refpoints[] = {
184         cpu_to_be32(0x4),
185         cpu_to_be32(0x3),
186         cpu_to_be32(0x2),
187         cpu_to_be32(0x1),
188     };
189     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
190     uint32_t maxdomain = ms->numa_state->num_nodes + spapr->gpu_numa_id;
191     uint32_t maxdomains[] = {
192         cpu_to_be32(4),
193         cpu_to_be32(maxdomain),
194         cpu_to_be32(maxdomain),
195         cpu_to_be32(maxdomain),
196         cpu_to_be32(maxdomain)
197     };
198 
199     if (spapr_machine_using_legacy_numa(spapr)) {
200         uint32_t legacy_refpoints[] = {
201             cpu_to_be32(0x4),
202             cpu_to_be32(0x4),
203             cpu_to_be32(0x2),
204         };
205         uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
206         uint32_t legacy_maxdomains[] = {
207             cpu_to_be32(4),
208             cpu_to_be32(legacy_maxdomain),
209             cpu_to_be32(legacy_maxdomain),
210             cpu_to_be32(legacy_maxdomain),
211             cpu_to_be32(spapr->gpu_numa_id),
212         };
213 
214         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
215         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
216 
217         nr_refpoints = 3;
218 
219         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
220         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
221 
222         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
223         if (smc->pre_5_1_assoc_refpoints) {
224             nr_refpoints = 2;
225         }
226     }
227 
228     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
229                      refpoints, nr_refpoints * sizeof(refpoints[0])));
230 
231     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
232                      maxdomains, sizeof(maxdomains)));
233 }
234 
235 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
236                                               SpaprMachineState *spapr,
237                                               target_ulong opcode,
238                                               target_ulong *args)
239 {
240     g_autofree uint32_t *vcpu_assoc = NULL;
241     target_ulong flags = args[0];
242     target_ulong procno = args[1];
243     PowerPCCPU *tcpu;
244     int idx, assoc_idx;
245 
246     /* only support procno from H_REGISTER_VPA */
247     if (flags != 0x1) {
248         return H_FUNCTION;
249     }
250 
251     tcpu = spapr_find_cpu(procno);
252     if (tcpu == NULL) {
253         return H_P2;
254     }
255 
256     /*
257      * Given that we want to be flexible with the sizes and indexes,
258      * we must consider that there is a hard limit of how many
259      * associativities domain we can fit in R4 up to R9, which would be
260      * 12 associativity domains for vcpus. Assert and bail if that's
261      * not the case.
262      */
263     G_STATIC_ASSERT((VCPU_ASSOC_SIZE - 1) <= 12);
264 
265     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
266     /* assoc_idx starts at 1 to skip associativity size */
267     assoc_idx = 1;
268 
269 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
270                              ((uint64_t)(b) & 0xffffffff))
271 
272     for (idx = 0; idx < 6; idx++) {
273         int32_t a, b;
274 
275         /*
276          * vcpu_assoc[] will contain the associativity domains for tcpu,
277          * including tcpu->node_id and procno, meaning that we don't
278          * need to use these variables here.
279          *
280          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
281          * macro. The ternary will fill the remaining registers with -1
282          * after we went through vcpu_assoc[].
283          */
284         a = assoc_idx < VCPU_ASSOC_SIZE ?
285             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
286         b = assoc_idx < VCPU_ASSOC_SIZE ?
287             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
288 
289         args[idx] = ASSOCIATIVITY(a, b);
290     }
291 #undef ASSOCIATIVITY
292 
293     return H_SUCCESS;
294 }
295 
296 static void spapr_numa_register_types(void)
297 {
298     /* Virtual Processor Home Node */
299     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
300                              h_home_node_associativity);
301 }
302 
303 type_init(spapr_numa_register_types)
304