1 /* 2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling 3 * 4 * Copyright IBM Corp. 2020 5 * 6 * Authors: 7 * Daniel Henrique Barboza <danielhb413@gmail.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qemu-common.h" 15 #include "hw/ppc/spapr_numa.h" 16 #include "hw/pci-host/spapr.h" 17 #include "hw/ppc/fdt.h" 18 19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */ 20 #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1)) 21 22 /* 23 * Retrieves max_dist_ref_points of the current NUMA affinity. 24 */ 25 static int get_max_dist_ref_points(SpaprMachineState *spapr) 26 { 27 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 28 return FORM2_DIST_REF_POINTS; 29 } 30 31 return FORM1_DIST_REF_POINTS; 32 } 33 34 /* 35 * Retrieves numa_assoc_size of the current NUMA affinity. 36 */ 37 static int get_numa_assoc_size(SpaprMachineState *spapr) 38 { 39 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 40 return FORM2_NUMA_ASSOC_SIZE; 41 } 42 43 return FORM1_NUMA_ASSOC_SIZE; 44 } 45 46 /* 47 * Retrieves vcpu_assoc_size of the current NUMA affinity. 48 * 49 * vcpu_assoc_size is the size of ibm,associativity array 50 * for CPUs, which has an extra element (vcpu_id) in the end. 51 */ 52 static int get_vcpu_assoc_size(SpaprMachineState *spapr) 53 { 54 return get_numa_assoc_size(spapr) + 1; 55 } 56 57 /* 58 * Retrieves the ibm,associativity array of NUMA node 'node_id' 59 * for the current NUMA affinity. 60 */ 61 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id) 62 { 63 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 64 return spapr->FORM2_assoc_array[node_id]; 65 } 66 return spapr->FORM1_assoc_array[node_id]; 67 } 68 69 /* 70 * Wrapper that returns node distance from ms->numa_state->nodes 71 * after handling edge cases where the distance might be absent. 72 */ 73 static int get_numa_distance(MachineState *ms, int src, int dst) 74 { 75 NodeInfo *numa_info = ms->numa_state->nodes; 76 int ret = numa_info[src].distance[dst]; 77 78 if (ret != 0) { 79 return ret; 80 } 81 82 /* 83 * In case QEMU adds a default NUMA single node when the user 84 * did not add any, or where the user did not supply distances, 85 * the distance will be absent (zero). Return local/remote 86 * distance in this case. 87 */ 88 if (src == dst) { 89 return NUMA_DISTANCE_MIN; 90 } 91 92 return NUMA_DISTANCE_DEFAULT; 93 } 94 95 static bool spapr_numa_is_symmetrical(MachineState *ms) 96 { 97 int nb_numa_nodes = ms->numa_state->num_nodes; 98 int src, dst; 99 100 for (src = 0; src < nb_numa_nodes; src++) { 101 for (dst = src; dst < nb_numa_nodes; dst++) { 102 if (get_numa_distance(ms, src, dst) != 103 get_numa_distance(ms, dst, src)) { 104 return false; 105 } 106 } 107 } 108 109 return true; 110 } 111 112 /* 113 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 114 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 115 * called from vPHB reset handler so we initialize the counter here. 116 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 117 * must be equally distant from any other node. 118 * The final value of spapr->gpu_numa_id is going to be written to 119 * max-associativity-domains in spapr_build_fdt(). 120 */ 121 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine) 122 { 123 return MAX(1, machine->numa_state->num_nodes); 124 } 125 126 /* 127 * This function will translate the user distances into 128 * what the kernel understand as possible values: 10 129 * (local distance), 20, 40, 80 and 160, and return the equivalent 130 * NUMA level for each. Current heuristic is: 131 * - local distance (10) returns numa_level = 0x4, meaning there is 132 * no rounding for local distance 133 * - distances between 11 and 30 inclusive -> rounded to 20, 134 * numa_level = 0x3 135 * - distances between 31 and 60 inclusive -> rounded to 40, 136 * numa_level = 0x2 137 * - distances between 61 and 120 inclusive -> rounded to 80, 138 * numa_level = 0x1 139 * - everything above 120 returns numa_level = 0 to indicate that 140 * there is no match. This will be calculated as disntace = 160 141 * by the kernel (as of v5.9) 142 */ 143 static uint8_t spapr_numa_get_numa_level(uint8_t distance) 144 { 145 if (distance == 10) { 146 return 0x4; 147 } else if (distance > 11 && distance <= 30) { 148 return 0x3; 149 } else if (distance > 31 && distance <= 60) { 150 return 0x2; 151 } else if (distance > 61 && distance <= 120) { 152 return 0x1; 153 } 154 155 return 0; 156 } 157 158 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr) 159 { 160 MachineState *ms = MACHINE(spapr); 161 int nb_numa_nodes = ms->numa_state->num_nodes; 162 int src, dst, i, j; 163 164 /* 165 * Fill all associativity domains of non-zero NUMA nodes with 166 * node_id. This is required because the default value (0) is 167 * considered a match with associativity domains of node 0. 168 */ 169 for (i = 1; i < nb_numa_nodes; i++) { 170 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { 171 spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i); 172 } 173 } 174 175 for (src = 0; src < nb_numa_nodes; src++) { 176 for (dst = src; dst < nb_numa_nodes; dst++) { 177 /* 178 * This is how the associativity domain between A and B 179 * is calculated: 180 * 181 * - get the distance D between them 182 * - get the correspondent NUMA level 'n_level' for D 183 * - all associativity arrays were initialized with their own 184 * numa_ids, and we're calculating the distance in node_id 185 * ascending order, starting from node id 0 (the first node 186 * retrieved by numa_state). This will have a cascade effect in 187 * the algorithm because the associativity domains that node 0 188 * defines will be carried over to other nodes, and node 1 189 * associativities will be carried over after taking node 0 190 * associativities into account, and so on. This happens because 191 * we'll assign assoc_src as the associativity domain of dst 192 * as well, for all NUMA levels beyond and including n_level. 193 * 194 * The PPC kernel expects the associativity domains of node 0 to 195 * be always 0, and this algorithm will grant that by default. 196 */ 197 uint8_t distance = get_numa_distance(ms, src, dst); 198 uint8_t n_level = spapr_numa_get_numa_level(distance); 199 uint32_t assoc_src; 200 201 /* 202 * n_level = 0 means that the distance is greater than our last 203 * rounded value (120). In this case there is no NUMA level match 204 * between src and dst and we can skip the remaining of the loop. 205 * 206 * The Linux kernel will assume that the distance between src and 207 * dst, in this case of no match, is 10 (local distance) doubled 208 * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS 209 * levels (4), so this gives us 10*2*2*2*2 = 160. 210 * 211 * This logic can be seen in the Linux kernel source code, as of 212 * v5.9, in arch/powerpc/mm/numa.c, function __node_distance(). 213 */ 214 if (n_level == 0) { 215 continue; 216 } 217 218 /* 219 * We must assign all assoc_src to dst, starting from n_level 220 * and going up to 0x1. 221 */ 222 for (i = n_level; i > 0; i--) { 223 assoc_src = spapr->FORM1_assoc_array[src][i]; 224 spapr->FORM1_assoc_array[dst][i] = assoc_src; 225 } 226 } 227 } 228 229 } 230 231 static void spapr_numa_FORM1_affinity_check(MachineState *machine) 232 { 233 int i; 234 235 /* 236 * Check we don't have a memory-less/cpu-less NUMA node 237 * Firmware relies on the existing memory/cpu topology to provide the 238 * NUMA topology to the kernel. 239 * And the linux kernel needs to know the NUMA topology at start 240 * to be able to hotplug CPUs later. 241 */ 242 if (machine->numa_state->num_nodes) { 243 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 244 /* check for memory-less node */ 245 if (machine->numa_state->nodes[i].node_mem == 0) { 246 CPUState *cs; 247 int found = 0; 248 /* check for cpu-less node */ 249 CPU_FOREACH(cs) { 250 PowerPCCPU *cpu = POWERPC_CPU(cs); 251 if (cpu->node_id == i) { 252 found = 1; 253 break; 254 } 255 } 256 /* memory-less and cpu-less node */ 257 if (!found) { 258 error_report( 259 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i); 260 exit(EXIT_FAILURE); 261 } 262 } 263 } 264 } 265 266 if (!spapr_numa_is_symmetrical(machine)) { 267 error_report( 268 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA"); 269 exit(EXIT_FAILURE); 270 } 271 } 272 273 /* 274 * Set NUMA machine state data based on FORM1 affinity semantics. 275 */ 276 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr, 277 MachineState *machine) 278 { 279 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 280 int nb_numa_nodes = machine->numa_state->num_nodes; 281 int i, j, max_nodes_with_gpus; 282 283 /* 284 * For all associativity arrays: first position is the size, 285 * position FORM1_DIST_REF_POINTS is always the numa_id, 286 * represented by the index 'i'. 287 * 288 * This will break on sparse NUMA setups, when/if QEMU starts 289 * to support it, because there will be no more guarantee that 290 * 'i' will be a valid node_id set by the user. 291 */ 292 for (i = 0; i < nb_numa_nodes; i++) { 293 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); 294 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); 295 } 296 297 /* 298 * Initialize NVLink GPU associativity arrays. We know that 299 * the first GPU will take the first available NUMA id, and 300 * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine. 301 * At this point we're not sure if there are GPUs or not, but 302 * let's initialize the associativity arrays and allow NVLink 303 * GPUs to be handled like regular NUMA nodes later on. 304 */ 305 max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM; 306 307 for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) { 308 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); 309 310 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { 311 uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ? 312 SPAPR_GPU_NUMA_ID : cpu_to_be32(i); 313 spapr->FORM1_assoc_array[i][j] = gpu_assoc; 314 } 315 316 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); 317 } 318 319 /* 320 * Guests pseries-5.1 and older uses zeroed associativity domains, 321 * i.e. no domain definition based on NUMA distance input. 322 * 323 * Same thing with guests that have only one NUMA node. 324 */ 325 if (smc->pre_5_2_numa_associativity || 326 machine->numa_state->num_nodes <= 1) { 327 return; 328 } 329 330 spapr_numa_define_FORM1_domains(spapr); 331 } 332 333 /* 334 * Init NUMA FORM2 machine state data 335 */ 336 static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr) 337 { 338 int i; 339 340 /* 341 * For all resources but CPUs, FORM2 associativity arrays will 342 * be a size 2 array with the following format: 343 * 344 * ibm,associativity = {1, numa_id} 345 * 346 * CPUs will write an additional 'vcpu_id' on top of the arrays 347 * being initialized here. 'numa_id' is represented by the 348 * index 'i' of the loop. 349 * 350 * Given that this initialization is also valid for GPU associativity 351 * arrays, handle everything in one single step by populating the 352 * arrays up to NUMA_NODES_MAX_NUM. 353 */ 354 for (i = 0; i < NUMA_NODES_MAX_NUM; i++) { 355 spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1); 356 spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i); 357 } 358 } 359 360 void spapr_numa_associativity_init(SpaprMachineState *spapr, 361 MachineState *machine) 362 { 363 spapr_numa_FORM1_affinity_init(spapr, machine); 364 spapr_numa_FORM2_affinity_init(spapr); 365 } 366 367 void spapr_numa_associativity_check(SpaprMachineState *spapr) 368 { 369 /* 370 * FORM2 does not have any restrictions we need to handle 371 * at CAS time, for now. 372 */ 373 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 374 return; 375 } 376 377 spapr_numa_FORM1_affinity_check(MACHINE(spapr)); 378 } 379 380 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt, 381 int offset, int nodeid) 382 { 383 const uint32_t *associativity = get_associativity(spapr, nodeid); 384 385 _FDT((fdt_setprop(fdt, offset, "ibm,associativity", 386 associativity, 387 get_numa_assoc_size(spapr) * sizeof(uint32_t)))); 388 } 389 390 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr, 391 PowerPCCPU *cpu) 392 { 393 const uint32_t *associativity = get_associativity(spapr, cpu->node_id); 394 int max_distance_ref_points = get_max_dist_ref_points(spapr); 395 int vcpu_assoc_size = get_vcpu_assoc_size(spapr); 396 uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size); 397 int index = spapr_get_vcpu_id(cpu); 398 399 /* 400 * VCPUs have an extra 'cpu_id' value in ibm,associativity 401 * compared to other resources. Increment the size at index 402 * 0, put cpu_id last, then copy the remaining associativity 403 * domains. 404 */ 405 vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1); 406 vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index); 407 memcpy(vcpu_assoc + 1, associativity + 1, 408 (vcpu_assoc_size - 2) * sizeof(uint32_t)); 409 410 return vcpu_assoc; 411 } 412 413 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt, 414 int offset, PowerPCCPU *cpu) 415 { 416 g_autofree uint32_t *vcpu_assoc = NULL; 417 int vcpu_assoc_size = get_vcpu_assoc_size(spapr); 418 419 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu); 420 421 /* Advertise NUMA via ibm,associativity */ 422 return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc, 423 vcpu_assoc_size * sizeof(uint32_t)); 424 } 425 426 427 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt, 428 int offset) 429 { 430 MachineState *machine = MACHINE(spapr); 431 int max_distance_ref_points = get_max_dist_ref_points(spapr); 432 int nb_numa_nodes = machine->numa_state->num_nodes; 433 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 434 uint32_t *int_buf, *cur_index, buf_len; 435 int ret, i; 436 437 /* ibm,associativity-lookup-arrays */ 438 buf_len = (nr_nodes * max_distance_ref_points + 2) * sizeof(uint32_t); 439 cur_index = int_buf = g_malloc0(buf_len); 440 int_buf[0] = cpu_to_be32(nr_nodes); 441 /* Number of entries per associativity list */ 442 int_buf[1] = cpu_to_be32(max_distance_ref_points); 443 cur_index += 2; 444 for (i = 0; i < nr_nodes; i++) { 445 /* 446 * For the lookup-array we use the ibm,associativity array of the 447 * current NUMA affinity, without the first element (size). 448 */ 449 const uint32_t *associativity = get_associativity(spapr, i); 450 memcpy(cur_index, ++associativity, 451 sizeof(uint32_t) * max_distance_ref_points); 452 cur_index += max_distance_ref_points; 453 } 454 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 455 (cur_index - int_buf) * sizeof(uint32_t)); 456 g_free(int_buf); 457 458 return ret; 459 } 460 461 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr, 462 void *fdt, int rtas) 463 { 464 MachineState *ms = MACHINE(spapr); 465 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 466 uint32_t number_nvgpus_nodes = spapr->gpu_numa_id - 467 spapr_numa_initial_nvgpu_numa_id(ms); 468 uint32_t refpoints[] = { 469 cpu_to_be32(0x4), 470 cpu_to_be32(0x3), 471 cpu_to_be32(0x2), 472 cpu_to_be32(0x1), 473 }; 474 uint32_t nr_refpoints = ARRAY_SIZE(refpoints); 475 uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes; 476 uint32_t maxdomains[] = { 477 cpu_to_be32(4), 478 cpu_to_be32(maxdomain), 479 cpu_to_be32(maxdomain), 480 cpu_to_be32(maxdomain), 481 cpu_to_be32(maxdomain) 482 }; 483 484 if (smc->pre_5_2_numa_associativity || 485 ms->numa_state->num_nodes <= 1) { 486 uint32_t legacy_refpoints[] = { 487 cpu_to_be32(0x4), 488 cpu_to_be32(0x4), 489 cpu_to_be32(0x2), 490 }; 491 uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0; 492 uint32_t legacy_maxdomains[] = { 493 cpu_to_be32(4), 494 cpu_to_be32(legacy_maxdomain), 495 cpu_to_be32(legacy_maxdomain), 496 cpu_to_be32(legacy_maxdomain), 497 cpu_to_be32(spapr->gpu_numa_id), 498 }; 499 500 G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints)); 501 G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains)); 502 503 nr_refpoints = 3; 504 505 memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints)); 506 memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains)); 507 508 /* pseries-5.0 and older reference-points array is {0x4, 0x4} */ 509 if (smc->pre_5_1_assoc_refpoints) { 510 nr_refpoints = 2; 511 } 512 } 513 514 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 515 refpoints, nr_refpoints * sizeof(refpoints[0]))); 516 517 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 518 maxdomains, sizeof(maxdomains))); 519 } 520 521 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr, 522 void *fdt, int rtas) 523 { 524 MachineState *ms = MACHINE(spapr); 525 int nb_numa_nodes = ms->numa_state->num_nodes; 526 int distance_table_entries = nb_numa_nodes * nb_numa_nodes; 527 g_autofree uint32_t *lookup_index_table = NULL; 528 g_autofree uint8_t *distance_table = NULL; 529 int src, dst, i, distance_table_size; 530 531 /* 532 * ibm,numa-lookup-index-table: array with length and a 533 * list of NUMA ids present in the guest. 534 */ 535 lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1); 536 lookup_index_table[0] = cpu_to_be32(nb_numa_nodes); 537 538 for (i = 0; i < nb_numa_nodes; i++) { 539 lookup_index_table[i + 1] = cpu_to_be32(i); 540 } 541 542 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table", 543 lookup_index_table, 544 (nb_numa_nodes + 1) * sizeof(uint32_t))); 545 546 /* 547 * ibm,numa-distance-table: contains all node distances. First 548 * element is the size of the table as uint32, followed up 549 * by all the uint8 distances from the first NUMA node, then all 550 * distances from the second NUMA node and so on. 551 * 552 * ibm,numa-lookup-index-table is used by guest to navigate this 553 * array because NUMA ids can be sparse (node 0 is the first, 554 * node 8 is the second ...). 555 */ 556 distance_table_size = distance_table_entries * sizeof(uint8_t) + 557 sizeof(uint32_t); 558 distance_table = g_new0(uint8_t, distance_table_size); 559 stl_be_p(distance_table, distance_table_entries); 560 561 /* Skip the uint32_t array length at the start */ 562 i = sizeof(uint32_t); 563 564 for (src = 0; src < nb_numa_nodes; src++) { 565 for (dst = 0; dst < nb_numa_nodes; dst++) { 566 distance_table[i++] = get_numa_distance(ms, src, dst); 567 } 568 } 569 570 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table", 571 distance_table, distance_table_size)); 572 } 573 574 /* 575 * This helper could be compressed in a single function with 576 * FORM1 logic since we're setting the same DT values, with the 577 * difference being a call to spapr_numa_FORM2_write_rtas_tables() 578 * in the end. The separation was made to avoid clogging FORM1 code 579 * which already has to deal with compat modes from previous 580 * QEMU machine types. 581 */ 582 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr, 583 void *fdt, int rtas) 584 { 585 MachineState *ms = MACHINE(spapr); 586 uint32_t number_nvgpus_nodes = spapr->gpu_numa_id - 587 spapr_numa_initial_nvgpu_numa_id(ms); 588 589 /* 590 * In FORM2, ibm,associativity-reference-points will point to 591 * the element in the ibm,associativity array that contains the 592 * primary domain index (for FORM2, the first element). 593 * 594 * This value (in our case, the numa-id) is then used as an index 595 * to retrieve all other attributes of the node (distance, 596 * bandwidth, latency) via ibm,numa-lookup-index-table and other 597 * ibm,numa-*-table properties. 598 */ 599 uint32_t refpoints[] = { cpu_to_be32(1) }; 600 601 uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes; 602 uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) }; 603 604 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 605 refpoints, sizeof(refpoints))); 606 607 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 608 maxdomains, sizeof(maxdomains))); 609 610 spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas); 611 } 612 613 /* 614 * Helper that writes ibm,associativity-reference-points and 615 * max-associativity-domains in the RTAS pointed by @rtas 616 * in the DT @fdt. 617 */ 618 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) 619 { 620 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 621 spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas); 622 return; 623 } 624 625 spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas); 626 } 627 628 static target_ulong h_home_node_associativity(PowerPCCPU *cpu, 629 SpaprMachineState *spapr, 630 target_ulong opcode, 631 target_ulong *args) 632 { 633 g_autofree uint32_t *vcpu_assoc = NULL; 634 target_ulong flags = args[0]; 635 target_ulong procno = args[1]; 636 PowerPCCPU *tcpu; 637 int idx, assoc_idx; 638 int vcpu_assoc_size = get_vcpu_assoc_size(spapr); 639 640 /* only support procno from H_REGISTER_VPA */ 641 if (flags != 0x1) { 642 return H_FUNCTION; 643 } 644 645 tcpu = spapr_find_cpu(procno); 646 if (tcpu == NULL) { 647 return H_P2; 648 } 649 650 /* 651 * Given that we want to be flexible with the sizes and indexes, 652 * we must consider that there is a hard limit of how many 653 * associativities domain we can fit in R4 up to R9, which would be 654 * 12 associativity domains for vcpus. Assert and bail if that's 655 * not the case. 656 */ 657 g_assert((vcpu_assoc_size - 1) <= 12); 658 659 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu); 660 /* assoc_idx starts at 1 to skip associativity size */ 661 assoc_idx = 1; 662 663 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ 664 ((uint64_t)(b) & 0xffffffff)) 665 666 for (idx = 0; idx < 6; idx++) { 667 int32_t a, b; 668 669 /* 670 * vcpu_assoc[] will contain the associativity domains for tcpu, 671 * including tcpu->node_id and procno, meaning that we don't 672 * need to use these variables here. 673 * 674 * We'll read 2 values at a time to fill up the ASSOCIATIVITY() 675 * macro. The ternary will fill the remaining registers with -1 676 * after we went through vcpu_assoc[]. 677 */ 678 a = assoc_idx < vcpu_assoc_size ? 679 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; 680 b = assoc_idx < vcpu_assoc_size ? 681 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; 682 683 args[idx] = ASSOCIATIVITY(a, b); 684 } 685 #undef ASSOCIATIVITY 686 687 return H_SUCCESS; 688 } 689 690 static void spapr_numa_register_types(void) 691 { 692 /* Virtual Processor Home Node */ 693 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, 694 h_home_node_associativity); 695 } 696 697 type_init(spapr_numa_register_types) 698