1 /* 2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling 3 * 4 * Copyright IBM Corp. 2020 5 * 6 * Authors: 7 * Daniel Henrique Barboza <danielhb413@gmail.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "hw/ppc/spapr_numa.h" 15 #include "hw/pci-host/spapr.h" 16 #include "hw/ppc/fdt.h" 17 18 /* Moved from hw/ppc/spapr_pci_nvlink2.c */ 19 #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1)) 20 21 /* 22 * Retrieves max_dist_ref_points of the current NUMA affinity. 23 */ 24 static int get_max_dist_ref_points(SpaprMachineState *spapr) 25 { 26 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 27 return FORM2_DIST_REF_POINTS; 28 } 29 30 return FORM1_DIST_REF_POINTS; 31 } 32 33 /* 34 * Retrieves numa_assoc_size of the current NUMA affinity. 35 */ 36 static int get_numa_assoc_size(SpaprMachineState *spapr) 37 { 38 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 39 return FORM2_NUMA_ASSOC_SIZE; 40 } 41 42 return FORM1_NUMA_ASSOC_SIZE; 43 } 44 45 /* 46 * Retrieves vcpu_assoc_size of the current NUMA affinity. 47 * 48 * vcpu_assoc_size is the size of ibm,associativity array 49 * for CPUs, which has an extra element (vcpu_id) in the end. 50 */ 51 static int get_vcpu_assoc_size(SpaprMachineState *spapr) 52 { 53 return get_numa_assoc_size(spapr) + 1; 54 } 55 56 /* 57 * Retrieves the ibm,associativity array of NUMA node 'node_id' 58 * for the current NUMA affinity. 59 */ 60 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id) 61 { 62 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 63 return spapr->FORM2_assoc_array[node_id]; 64 } 65 return spapr->FORM1_assoc_array[node_id]; 66 } 67 68 /* 69 * Wrapper that returns node distance from ms->numa_state->nodes 70 * after handling edge cases where the distance might be absent. 71 */ 72 static int get_numa_distance(MachineState *ms, int src, int dst) 73 { 74 NodeInfo *numa_info = ms->numa_state->nodes; 75 int ret = numa_info[src].distance[dst]; 76 77 if (ret != 0) { 78 return ret; 79 } 80 81 /* 82 * In case QEMU adds a default NUMA single node when the user 83 * did not add any, or where the user did not supply distances, 84 * the distance will be absent (zero). Return local/remote 85 * distance in this case. 86 */ 87 if (src == dst) { 88 return NUMA_DISTANCE_MIN; 89 } 90 91 return NUMA_DISTANCE_DEFAULT; 92 } 93 94 static bool spapr_numa_is_symmetrical(MachineState *ms) 95 { 96 int nb_numa_nodes = ms->numa_state->num_nodes; 97 int src, dst; 98 99 for (src = 0; src < nb_numa_nodes; src++) { 100 for (dst = src; dst < nb_numa_nodes; dst++) { 101 if (get_numa_distance(ms, src, dst) != 102 get_numa_distance(ms, dst, src)) { 103 return false; 104 } 105 } 106 } 107 108 return true; 109 } 110 111 /* 112 * This function will translate the user distances into 113 * what the kernel understand as possible values: 10 114 * (local distance), 20, 40, 80 and 160, and return the equivalent 115 * NUMA level for each. Current heuristic is: 116 * - local distance (10) returns numa_level = 0x4, meaning there is 117 * no rounding for local distance 118 * - distances between 11 and 30 inclusive -> rounded to 20, 119 * numa_level = 0x3 120 * - distances between 31 and 60 inclusive -> rounded to 40, 121 * numa_level = 0x2 122 * - distances between 61 and 120 inclusive -> rounded to 80, 123 * numa_level = 0x1 124 * - everything above 120 returns numa_level = 0 to indicate that 125 * there is no match. This will be calculated as disntace = 160 126 * by the kernel (as of v5.9) 127 */ 128 static uint8_t spapr_numa_get_numa_level(uint8_t distance) 129 { 130 if (distance == 10) { 131 return 0x4; 132 } else if (distance > 11 && distance <= 30) { 133 return 0x3; 134 } else if (distance > 31 && distance <= 60) { 135 return 0x2; 136 } else if (distance > 61 && distance <= 120) { 137 return 0x1; 138 } 139 140 return 0; 141 } 142 143 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr) 144 { 145 MachineState *ms = MACHINE(spapr); 146 int nb_numa_nodes = ms->numa_state->num_nodes; 147 int src, dst, i, j; 148 149 /* 150 * Fill all associativity domains of non-zero NUMA nodes with 151 * node_id. This is required because the default value (0) is 152 * considered a match with associativity domains of node 0. 153 */ 154 for (i = 1; i < nb_numa_nodes; i++) { 155 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { 156 spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i); 157 } 158 } 159 160 for (src = 0; src < nb_numa_nodes; src++) { 161 for (dst = src; dst < nb_numa_nodes; dst++) { 162 /* 163 * This is how the associativity domain between A and B 164 * is calculated: 165 * 166 * - get the distance D between them 167 * - get the correspondent NUMA level 'n_level' for D 168 * - all associativity arrays were initialized with their own 169 * numa_ids, and we're calculating the distance in node_id 170 * ascending order, starting from node id 0 (the first node 171 * retrieved by numa_state). This will have a cascade effect in 172 * the algorithm because the associativity domains that node 0 173 * defines will be carried over to other nodes, and node 1 174 * associativities will be carried over after taking node 0 175 * associativities into account, and so on. This happens because 176 * we'll assign assoc_src as the associativity domain of dst 177 * as well, for all NUMA levels beyond and including n_level. 178 * 179 * The PPC kernel expects the associativity domains of node 0 to 180 * be always 0, and this algorithm will grant that by default. 181 */ 182 uint8_t distance = get_numa_distance(ms, src, dst); 183 uint8_t n_level = spapr_numa_get_numa_level(distance); 184 uint32_t assoc_src; 185 186 /* 187 * n_level = 0 means that the distance is greater than our last 188 * rounded value (120). In this case there is no NUMA level match 189 * between src and dst and we can skip the remaining of the loop. 190 * 191 * The Linux kernel will assume that the distance between src and 192 * dst, in this case of no match, is 10 (local distance) doubled 193 * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS 194 * levels (4), so this gives us 10*2*2*2*2 = 160. 195 * 196 * This logic can be seen in the Linux kernel source code, as of 197 * v5.9, in arch/powerpc/mm/numa.c, function __node_distance(). 198 */ 199 if (n_level == 0) { 200 continue; 201 } 202 203 /* 204 * We must assign all assoc_src to dst, starting from n_level 205 * and going up to 0x1. 206 */ 207 for (i = n_level; i > 0; i--) { 208 assoc_src = spapr->FORM1_assoc_array[src][i]; 209 spapr->FORM1_assoc_array[dst][i] = assoc_src; 210 } 211 } 212 } 213 214 } 215 216 static void spapr_numa_FORM1_affinity_check(MachineState *machine) 217 { 218 int i; 219 220 /* 221 * Check we don't have a memory-less/cpu-less NUMA node 222 * Firmware relies on the existing memory/cpu topology to provide the 223 * NUMA topology to the kernel. 224 * And the linux kernel needs to know the NUMA topology at start 225 * to be able to hotplug CPUs later. 226 */ 227 if (machine->numa_state->num_nodes) { 228 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 229 /* check for memory-less node */ 230 if (machine->numa_state->nodes[i].node_mem == 0) { 231 CPUState *cs; 232 int found = 0; 233 /* check for cpu-less node */ 234 CPU_FOREACH(cs) { 235 PowerPCCPU *cpu = POWERPC_CPU(cs); 236 if (cpu->node_id == i) { 237 found = 1; 238 break; 239 } 240 } 241 /* memory-less and cpu-less node */ 242 if (!found) { 243 error_report( 244 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i); 245 exit(EXIT_FAILURE); 246 } 247 } 248 } 249 } 250 251 if (!spapr_numa_is_symmetrical(machine)) { 252 error_report( 253 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA"); 254 exit(EXIT_FAILURE); 255 } 256 } 257 258 /* 259 * Set NUMA machine state data based on FORM1 affinity semantics. 260 */ 261 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr, 262 MachineState *machine) 263 { 264 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 265 int nb_numa_nodes = machine->numa_state->num_nodes; 266 int i, j; 267 268 /* 269 * For all associativity arrays: first position is the size, 270 * position FORM1_DIST_REF_POINTS is always the numa_id, 271 * represented by the index 'i'. 272 * 273 * This will break on sparse NUMA setups, when/if QEMU starts 274 * to support it, because there will be no more guarantee that 275 * 'i' will be a valid node_id set by the user. 276 */ 277 for (i = 0; i < nb_numa_nodes; i++) { 278 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); 279 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); 280 } 281 282 for (i = nb_numa_nodes; i < nb_numa_nodes; i++) { 283 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); 284 285 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { 286 uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ? 287 SPAPR_GPU_NUMA_ID : cpu_to_be32(i); 288 spapr->FORM1_assoc_array[i][j] = gpu_assoc; 289 } 290 291 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); 292 } 293 294 /* 295 * Guests pseries-5.1 and older uses zeroed associativity domains, 296 * i.e. no domain definition based on NUMA distance input. 297 * 298 * Same thing with guests that have only one NUMA node. 299 */ 300 if (smc->pre_5_2_numa_associativity || 301 machine->numa_state->num_nodes <= 1) { 302 return; 303 } 304 305 spapr_numa_define_FORM1_domains(spapr); 306 } 307 308 /* 309 * Init NUMA FORM2 machine state data 310 */ 311 static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr) 312 { 313 int i; 314 315 /* 316 * For all resources but CPUs, FORM2 associativity arrays will 317 * be a size 2 array with the following format: 318 * 319 * ibm,associativity = {1, numa_id} 320 * 321 * CPUs will write an additional 'vcpu_id' on top of the arrays 322 * being initialized here. 'numa_id' is represented by the 323 * index 'i' of the loop. 324 */ 325 for (i = 0; i < NUMA_NODES_MAX_NUM; i++) { 326 spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1); 327 spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i); 328 } 329 } 330 331 void spapr_numa_associativity_init(SpaprMachineState *spapr, 332 MachineState *machine) 333 { 334 spapr_numa_FORM1_affinity_init(spapr, machine); 335 spapr_numa_FORM2_affinity_init(spapr); 336 } 337 338 void spapr_numa_associativity_check(SpaprMachineState *spapr) 339 { 340 /* 341 * FORM2 does not have any restrictions we need to handle 342 * at CAS time, for now. 343 */ 344 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 345 return; 346 } 347 348 spapr_numa_FORM1_affinity_check(MACHINE(spapr)); 349 } 350 351 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt, 352 int offset, int nodeid) 353 { 354 const uint32_t *associativity = get_associativity(spapr, nodeid); 355 356 _FDT((fdt_setprop(fdt, offset, "ibm,associativity", 357 associativity, 358 get_numa_assoc_size(spapr) * sizeof(uint32_t)))); 359 } 360 361 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr, 362 PowerPCCPU *cpu) 363 { 364 const uint32_t *associativity = get_associativity(spapr, cpu->node_id); 365 int max_distance_ref_points = get_max_dist_ref_points(spapr); 366 int vcpu_assoc_size = get_vcpu_assoc_size(spapr); 367 uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size); 368 int index = spapr_get_vcpu_id(cpu); 369 370 /* 371 * VCPUs have an extra 'cpu_id' value in ibm,associativity 372 * compared to other resources. Increment the size at index 373 * 0, put cpu_id last, then copy the remaining associativity 374 * domains. 375 */ 376 vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1); 377 vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index); 378 memcpy(vcpu_assoc + 1, associativity + 1, 379 (vcpu_assoc_size - 2) * sizeof(uint32_t)); 380 381 return vcpu_assoc; 382 } 383 384 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt, 385 int offset, PowerPCCPU *cpu) 386 { 387 g_autofree uint32_t *vcpu_assoc = NULL; 388 int vcpu_assoc_size = get_vcpu_assoc_size(spapr); 389 390 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu); 391 392 /* Advertise NUMA via ibm,associativity */ 393 return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc, 394 vcpu_assoc_size * sizeof(uint32_t)); 395 } 396 397 398 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt, 399 int offset) 400 { 401 MachineState *machine = MACHINE(spapr); 402 int max_distance_ref_points = get_max_dist_ref_points(spapr); 403 int nb_numa_nodes = machine->numa_state->num_nodes; 404 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 405 g_autofree uint32_t *int_buf = NULL; 406 uint32_t *cur_index; 407 int i; 408 409 /* ibm,associativity-lookup-arrays */ 410 int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2); 411 cur_index = int_buf; 412 int_buf[0] = cpu_to_be32(nr_nodes); 413 /* Number of entries per associativity list */ 414 int_buf[1] = cpu_to_be32(max_distance_ref_points); 415 cur_index += 2; 416 for (i = 0; i < nr_nodes; i++) { 417 /* 418 * For the lookup-array we use the ibm,associativity array of the 419 * current NUMA affinity, without the first element (size). 420 */ 421 const uint32_t *associativity = get_associativity(spapr, i); 422 memcpy(cur_index, ++associativity, 423 sizeof(uint32_t) * max_distance_ref_points); 424 cur_index += max_distance_ref_points; 425 } 426 427 return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", 428 int_buf, (cur_index - int_buf) * sizeof(uint32_t)); 429 } 430 431 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr, 432 void *fdt, int rtas) 433 { 434 MachineState *ms = MACHINE(spapr); 435 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 436 uint32_t refpoints[] = { 437 cpu_to_be32(0x4), 438 cpu_to_be32(0x3), 439 cpu_to_be32(0x2), 440 cpu_to_be32(0x1), 441 }; 442 uint32_t nr_refpoints = ARRAY_SIZE(refpoints); 443 uint32_t maxdomain = ms->numa_state->num_nodes; 444 uint32_t maxdomains[] = { 445 cpu_to_be32(4), 446 cpu_to_be32(maxdomain), 447 cpu_to_be32(maxdomain), 448 cpu_to_be32(maxdomain), 449 cpu_to_be32(maxdomain) 450 }; 451 452 if (smc->pre_5_2_numa_associativity || 453 ms->numa_state->num_nodes <= 1) { 454 uint32_t legacy_refpoints[] = { 455 cpu_to_be32(0x4), 456 cpu_to_be32(0x4), 457 cpu_to_be32(0x2), 458 }; 459 uint32_t legacy_maxdomains[] = { 460 cpu_to_be32(4), 461 cpu_to_be32(0), 462 cpu_to_be32(0), 463 cpu_to_be32(0), 464 cpu_to_be32(maxdomain ? maxdomain : 1), 465 }; 466 467 G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints)); 468 G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains)); 469 470 nr_refpoints = 3; 471 472 memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints)); 473 memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains)); 474 475 /* pseries-5.0 and older reference-points array is {0x4, 0x4} */ 476 if (smc->pre_5_1_assoc_refpoints) { 477 nr_refpoints = 2; 478 } 479 } 480 481 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 482 refpoints, nr_refpoints * sizeof(refpoints[0]))); 483 484 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 485 maxdomains, sizeof(maxdomains))); 486 } 487 488 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr, 489 void *fdt, int rtas) 490 { 491 MachineState *ms = MACHINE(spapr); 492 int nb_numa_nodes = ms->numa_state->num_nodes; 493 int distance_table_entries = nb_numa_nodes * nb_numa_nodes; 494 g_autofree uint32_t *lookup_index_table = NULL; 495 g_autofree uint8_t *distance_table = NULL; 496 int src, dst, i, distance_table_size; 497 498 /* 499 * ibm,numa-lookup-index-table: array with length and a 500 * list of NUMA ids present in the guest. 501 */ 502 lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1); 503 lookup_index_table[0] = cpu_to_be32(nb_numa_nodes); 504 505 for (i = 0; i < nb_numa_nodes; i++) { 506 lookup_index_table[i + 1] = cpu_to_be32(i); 507 } 508 509 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table", 510 lookup_index_table, 511 (nb_numa_nodes + 1) * sizeof(uint32_t))); 512 513 /* 514 * ibm,numa-distance-table: contains all node distances. First 515 * element is the size of the table as uint32, followed up 516 * by all the uint8 distances from the first NUMA node, then all 517 * distances from the second NUMA node and so on. 518 * 519 * ibm,numa-lookup-index-table is used by guest to navigate this 520 * array because NUMA ids can be sparse (node 0 is the first, 521 * node 8 is the second ...). 522 */ 523 distance_table_size = distance_table_entries * sizeof(uint8_t) + 524 sizeof(uint32_t); 525 distance_table = g_new0(uint8_t, distance_table_size); 526 stl_be_p(distance_table, distance_table_entries); 527 528 /* Skip the uint32_t array length at the start */ 529 i = sizeof(uint32_t); 530 531 for (src = 0; src < nb_numa_nodes; src++) { 532 for (dst = 0; dst < nb_numa_nodes; dst++) { 533 distance_table[i++] = get_numa_distance(ms, src, dst); 534 } 535 } 536 537 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table", 538 distance_table, distance_table_size)); 539 } 540 541 /* 542 * This helper could be compressed in a single function with 543 * FORM1 logic since we're setting the same DT values, with the 544 * difference being a call to spapr_numa_FORM2_write_rtas_tables() 545 * in the end. The separation was made to avoid clogging FORM1 code 546 * which already has to deal with compat modes from previous 547 * QEMU machine types. 548 */ 549 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr, 550 void *fdt, int rtas) 551 { 552 MachineState *ms = MACHINE(spapr); 553 554 /* 555 * In FORM2, ibm,associativity-reference-points will point to 556 * the element in the ibm,associativity array that contains the 557 * primary domain index (for FORM2, the first element). 558 * 559 * This value (in our case, the numa-id) is then used as an index 560 * to retrieve all other attributes of the node (distance, 561 * bandwidth, latency) via ibm,numa-lookup-index-table and other 562 * ibm,numa-*-table properties. 563 */ 564 uint32_t refpoints[] = { cpu_to_be32(1) }; 565 566 uint32_t maxdomain = ms->numa_state->num_nodes; 567 uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) }; 568 569 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 570 refpoints, sizeof(refpoints))); 571 572 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 573 maxdomains, sizeof(maxdomains))); 574 575 spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas); 576 } 577 578 /* 579 * Helper that writes ibm,associativity-reference-points and 580 * max-associativity-domains in the RTAS pointed by @rtas 581 * in the DT @fdt. 582 */ 583 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) 584 { 585 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { 586 spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas); 587 return; 588 } 589 590 spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas); 591 } 592 593 static target_ulong h_home_node_associativity(PowerPCCPU *cpu, 594 SpaprMachineState *spapr, 595 target_ulong opcode, 596 target_ulong *args) 597 { 598 g_autofree uint32_t *vcpu_assoc = NULL; 599 target_ulong flags = args[0]; 600 target_ulong procno = args[1]; 601 PowerPCCPU *tcpu; 602 int idx, assoc_idx; 603 int vcpu_assoc_size = get_vcpu_assoc_size(spapr); 604 605 /* only support procno from H_REGISTER_VPA */ 606 if (flags != 0x1) { 607 return H_FUNCTION; 608 } 609 610 tcpu = spapr_find_cpu(procno); 611 if (tcpu == NULL) { 612 return H_P2; 613 } 614 615 /* 616 * Given that we want to be flexible with the sizes and indexes, 617 * we must consider that there is a hard limit of how many 618 * associativities domain we can fit in R4 up to R9, which would be 619 * 12 associativity domains for vcpus. Assert and bail if that's 620 * not the case. 621 */ 622 g_assert((vcpu_assoc_size - 1) <= 12); 623 624 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu); 625 /* assoc_idx starts at 1 to skip associativity size */ 626 assoc_idx = 1; 627 628 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ 629 ((uint64_t)(b) & 0xffffffff)) 630 631 for (idx = 0; idx < 6; idx++) { 632 int32_t a, b; 633 634 /* 635 * vcpu_assoc[] will contain the associativity domains for tcpu, 636 * including tcpu->node_id and procno, meaning that we don't 637 * need to use these variables here. 638 * 639 * We'll read 2 values at a time to fill up the ASSOCIATIVITY() 640 * macro. The ternary will fill the remaining registers with -1 641 * after we went through vcpu_assoc[]. 642 */ 643 a = assoc_idx < vcpu_assoc_size ? 644 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; 645 b = assoc_idx < vcpu_assoc_size ? 646 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; 647 648 args[idx] = ASSOCIATIVITY(a, b); 649 } 650 #undef ASSOCIATIVITY 651 652 return H_SUCCESS; 653 } 654 655 static void spapr_numa_register_types(void) 656 { 657 /* Virtual Processor Home Node */ 658 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, 659 h_home_node_associativity); 660 } 661 662 type_init(spapr_numa_register_types) 663