xref: /openbmc/qemu/hw/ppc/spapr_numa.c (revision 3a6e4ce6)
1 /*
2  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3  *
4  * Copyright IBM Corp. 2020
5  *
6  * Authors:
7  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
18 
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
21 
22 /*
23  * Retrieves max_dist_ref_points of the current NUMA affinity.
24  */
25 static int get_max_dist_ref_points(SpaprMachineState *spapr)
26 {
27     return FORM1_DIST_REF_POINTS;
28 }
29 
30 /*
31  * Retrieves numa_assoc_size of the current NUMA affinity.
32  */
33 static int get_numa_assoc_size(SpaprMachineState *spapr)
34 {
35     return FORM1_NUMA_ASSOC_SIZE;
36 }
37 
38 /*
39  * Retrieves vcpu_assoc_size of the current NUMA affinity.
40  *
41  * vcpu_assoc_size is the size of ibm,associativity array
42  * for CPUs, which has an extra element (vcpu_id) in the end.
43  */
44 static int get_vcpu_assoc_size(SpaprMachineState *spapr)
45 {
46     return get_numa_assoc_size(spapr) + 1;
47 }
48 
49 static bool spapr_numa_is_symmetrical(MachineState *ms)
50 {
51     int src, dst;
52     int nb_numa_nodes = ms->numa_state->num_nodes;
53     NodeInfo *numa_info = ms->numa_state->nodes;
54 
55     for (src = 0; src < nb_numa_nodes; src++) {
56         for (dst = src; dst < nb_numa_nodes; dst++) {
57             if (numa_info[src].distance[dst] !=
58                 numa_info[dst].distance[src]) {
59                 return false;
60             }
61         }
62     }
63 
64     return true;
65 }
66 
67 /*
68  * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
69  * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
70  * called from vPHB reset handler so we initialize the counter here.
71  * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
72  * must be equally distant from any other node.
73  * The final value of spapr->gpu_numa_id is going to be written to
74  * max-associativity-domains in spapr_build_fdt().
75  */
76 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
77 {
78     return MAX(1, machine->numa_state->num_nodes);
79 }
80 
81 /*
82  * This function will translate the user distances into
83  * what the kernel understand as possible values: 10
84  * (local distance), 20, 40, 80 and 160, and return the equivalent
85  * NUMA level for each. Current heuristic is:
86  *  - local distance (10) returns numa_level = 0x4, meaning there is
87  *    no rounding for local distance
88  *  - distances between 11 and 30 inclusive -> rounded to 20,
89  *    numa_level = 0x3
90  *  - distances between 31 and 60 inclusive -> rounded to 40,
91  *    numa_level = 0x2
92  *  - distances between 61 and 120 inclusive -> rounded to 80,
93  *    numa_level = 0x1
94  *  - everything above 120 returns numa_level = 0 to indicate that
95  *    there is no match. This will be calculated as disntace = 160
96  *    by the kernel (as of v5.9)
97  */
98 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
99 {
100     if (distance == 10) {
101         return 0x4;
102     } else if (distance > 11 && distance <= 30) {
103         return 0x3;
104     } else if (distance > 31 && distance <= 60) {
105         return 0x2;
106     } else if (distance > 61 && distance <= 120) {
107         return 0x1;
108     }
109 
110     return 0;
111 }
112 
113 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
114 {
115     MachineState *ms = MACHINE(spapr);
116     NodeInfo *numa_info = ms->numa_state->nodes;
117     int nb_numa_nodes = ms->numa_state->num_nodes;
118     int src, dst, i, j;
119 
120     /*
121      * Fill all associativity domains of non-zero NUMA nodes with
122      * node_id. This is required because the default value (0) is
123      * considered a match with associativity domains of node 0.
124      */
125     for (i = 1; i < nb_numa_nodes; i++) {
126         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
127             spapr->numa_assoc_array[i][j] = cpu_to_be32(i);
128         }
129     }
130 
131     for (src = 0; src < nb_numa_nodes; src++) {
132         for (dst = src; dst < nb_numa_nodes; dst++) {
133             /*
134              * This is how the associativity domain between A and B
135              * is calculated:
136              *
137              * - get the distance D between them
138              * - get the correspondent NUMA level 'n_level' for D
139              * - all associativity arrays were initialized with their own
140              * numa_ids, and we're calculating the distance in node_id
141              * ascending order, starting from node id 0 (the first node
142              * retrieved by numa_state). This will have a cascade effect in
143              * the algorithm because the associativity domains that node 0
144              * defines will be carried over to other nodes, and node 1
145              * associativities will be carried over after taking node 0
146              * associativities into account, and so on. This happens because
147              * we'll assign assoc_src as the associativity domain of dst
148              * as well, for all NUMA levels beyond and including n_level.
149              *
150              * The PPC kernel expects the associativity domains of node 0 to
151              * be always 0, and this algorithm will grant that by default.
152              */
153             uint8_t distance = numa_info[src].distance[dst];
154             uint8_t n_level = spapr_numa_get_numa_level(distance);
155             uint32_t assoc_src;
156 
157             /*
158              * n_level = 0 means that the distance is greater than our last
159              * rounded value (120). In this case there is no NUMA level match
160              * between src and dst and we can skip the remaining of the loop.
161              *
162              * The Linux kernel will assume that the distance between src and
163              * dst, in this case of no match, is 10 (local distance) doubled
164              * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
165              * levels (4), so this gives us 10*2*2*2*2 = 160.
166              *
167              * This logic can be seen in the Linux kernel source code, as of
168              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
169              */
170             if (n_level == 0) {
171                 continue;
172             }
173 
174             /*
175              * We must assign all assoc_src to dst, starting from n_level
176              * and going up to 0x1.
177              */
178             for (i = n_level; i > 0; i--) {
179                 assoc_src = spapr->numa_assoc_array[src][i];
180                 spapr->numa_assoc_array[dst][i] = assoc_src;
181             }
182         }
183     }
184 
185 }
186 
187 /*
188  * Set NUMA machine state data based on FORM1 affinity semantics.
189  */
190 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
191                                            MachineState *machine)
192 {
193     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
194     int nb_numa_nodes = machine->numa_state->num_nodes;
195     int i, j, max_nodes_with_gpus;
196 
197     /*
198      * For all associativity arrays: first position is the size,
199      * position FORM1_DIST_REF_POINTS is always the numa_id,
200      * represented by the index 'i'.
201      *
202      * This will break on sparse NUMA setups, when/if QEMU starts
203      * to support it, because there will be no more guarantee that
204      * 'i' will be a valid node_id set by the user.
205      */
206     for (i = 0; i < nb_numa_nodes; i++) {
207         spapr->numa_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
208         spapr->numa_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
209     }
210 
211     /*
212      * Initialize NVLink GPU associativity arrays. We know that
213      * the first GPU will take the first available NUMA id, and
214      * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
215      * At this point we're not sure if there are GPUs or not, but
216      * let's initialize the associativity arrays and allow NVLink
217      * GPUs to be handled like regular NUMA nodes later on.
218      */
219     max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
220 
221     for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
222         spapr->numa_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
223 
224         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
225             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
226                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
227             spapr->numa_assoc_array[i][j] = gpu_assoc;
228         }
229 
230         spapr->numa_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
231     }
232 
233     /*
234      * Guests pseries-5.1 and older uses zeroed associativity domains,
235      * i.e. no domain definition based on NUMA distance input.
236      *
237      * Same thing with guests that have only one NUMA node.
238      */
239     if (smc->pre_5_2_numa_associativity ||
240         machine->numa_state->num_nodes <= 1) {
241         return;
242     }
243 
244     if (!spapr_numa_is_symmetrical(machine)) {
245         error_report("Asymmetrical NUMA topologies aren't supported "
246                      "in the pSeries machine");
247         exit(EXIT_FAILURE);
248     }
249 
250     spapr_numa_define_FORM1_domains(spapr);
251 }
252 
253 void spapr_numa_associativity_init(SpaprMachineState *spapr,
254                                    MachineState *machine)
255 {
256     spapr_numa_FORM1_affinity_init(spapr, machine);
257 }
258 
259 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
260                                        int offset, int nodeid)
261 {
262     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
263                       spapr->numa_assoc_array[nodeid],
264                       get_numa_assoc_size(spapr) * sizeof(uint32_t))));
265 }
266 
267 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
268                                            PowerPCCPU *cpu)
269 {
270     int max_distance_ref_points = get_max_dist_ref_points(spapr);
271     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
272     uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
273     int index = spapr_get_vcpu_id(cpu);
274 
275     /*
276      * VCPUs have an extra 'cpu_id' value in ibm,associativity
277      * compared to other resources. Increment the size at index
278      * 0, put cpu_id last, then copy the remaining associativity
279      * domains.
280      */
281     vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
282     vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
283     memcpy(vcpu_assoc + 1, spapr->numa_assoc_array[cpu->node_id] + 1,
284            (vcpu_assoc_size - 2) * sizeof(uint32_t));
285 
286     return vcpu_assoc;
287 }
288 
289 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
290                             int offset, PowerPCCPU *cpu)
291 {
292     g_autofree uint32_t *vcpu_assoc = NULL;
293     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
294 
295     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
296 
297     /* Advertise NUMA via ibm,associativity */
298     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
299                        vcpu_assoc_size * sizeof(uint32_t));
300 }
301 
302 
303 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
304                                          int offset)
305 {
306     MachineState *machine = MACHINE(spapr);
307     int max_distance_ref_points = get_max_dist_ref_points(spapr);
308     int nb_numa_nodes = machine->numa_state->num_nodes;
309     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
310     uint32_t *int_buf, *cur_index, buf_len;
311     int ret, i;
312 
313     /* ibm,associativity-lookup-arrays */
314     buf_len = (nr_nodes * max_distance_ref_points + 2) * sizeof(uint32_t);
315     cur_index = int_buf = g_malloc0(buf_len);
316     int_buf[0] = cpu_to_be32(nr_nodes);
317      /* Number of entries per associativity list */
318     int_buf[1] = cpu_to_be32(max_distance_ref_points);
319     cur_index += 2;
320     for (i = 0; i < nr_nodes; i++) {
321         /*
322          * For the lookup-array we use the ibm,associativity array,
323          * from numa_assoc_array. without the first element (size).
324          */
325         uint32_t *associativity = spapr->numa_assoc_array[i];
326         memcpy(cur_index, ++associativity,
327                sizeof(uint32_t) * max_distance_ref_points);
328         cur_index += max_distance_ref_points;
329     }
330     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
331                       (cur_index - int_buf) * sizeof(uint32_t));
332     g_free(int_buf);
333 
334     return ret;
335 }
336 
337 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
338                                            void *fdt, int rtas)
339 {
340     MachineState *ms = MACHINE(spapr);
341     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
342     uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
343                                    spapr_numa_initial_nvgpu_numa_id(ms);
344     uint32_t refpoints[] = {
345         cpu_to_be32(0x4),
346         cpu_to_be32(0x3),
347         cpu_to_be32(0x2),
348         cpu_to_be32(0x1),
349     };
350     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
351     uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
352     uint32_t maxdomains[] = {
353         cpu_to_be32(4),
354         cpu_to_be32(maxdomain),
355         cpu_to_be32(maxdomain),
356         cpu_to_be32(maxdomain),
357         cpu_to_be32(maxdomain)
358     };
359 
360     if (smc->pre_5_2_numa_associativity ||
361         ms->numa_state->num_nodes <= 1) {
362         uint32_t legacy_refpoints[] = {
363             cpu_to_be32(0x4),
364             cpu_to_be32(0x4),
365             cpu_to_be32(0x2),
366         };
367         uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
368         uint32_t legacy_maxdomains[] = {
369             cpu_to_be32(4),
370             cpu_to_be32(legacy_maxdomain),
371             cpu_to_be32(legacy_maxdomain),
372             cpu_to_be32(legacy_maxdomain),
373             cpu_to_be32(spapr->gpu_numa_id),
374         };
375 
376         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
377         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
378 
379         nr_refpoints = 3;
380 
381         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
382         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
383 
384         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
385         if (smc->pre_5_1_assoc_refpoints) {
386             nr_refpoints = 2;
387         }
388     }
389 
390     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
391                      refpoints, nr_refpoints * sizeof(refpoints[0])));
392 
393     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
394                      maxdomains, sizeof(maxdomains)));
395 }
396 
397 /*
398  * Helper that writes ibm,associativity-reference-points and
399  * max-associativity-domains in the RTAS pointed by @rtas
400  * in the DT @fdt.
401  */
402 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
403 {
404     spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
405 }
406 
407 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
408                                               SpaprMachineState *spapr,
409                                               target_ulong opcode,
410                                               target_ulong *args)
411 {
412     g_autofree uint32_t *vcpu_assoc = NULL;
413     target_ulong flags = args[0];
414     target_ulong procno = args[1];
415     PowerPCCPU *tcpu;
416     int idx, assoc_idx;
417     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
418 
419     /* only support procno from H_REGISTER_VPA */
420     if (flags != 0x1) {
421         return H_FUNCTION;
422     }
423 
424     tcpu = spapr_find_cpu(procno);
425     if (tcpu == NULL) {
426         return H_P2;
427     }
428 
429     /*
430      * Given that we want to be flexible with the sizes and indexes,
431      * we must consider that there is a hard limit of how many
432      * associativities domain we can fit in R4 up to R9, which would be
433      * 12 associativity domains for vcpus. Assert and bail if that's
434      * not the case.
435      */
436     g_assert((vcpu_assoc_size - 1) <= 12);
437 
438     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
439     /* assoc_idx starts at 1 to skip associativity size */
440     assoc_idx = 1;
441 
442 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
443                              ((uint64_t)(b) & 0xffffffff))
444 
445     for (idx = 0; idx < 6; idx++) {
446         int32_t a, b;
447 
448         /*
449          * vcpu_assoc[] will contain the associativity domains for tcpu,
450          * including tcpu->node_id and procno, meaning that we don't
451          * need to use these variables here.
452          *
453          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
454          * macro. The ternary will fill the remaining registers with -1
455          * after we went through vcpu_assoc[].
456          */
457         a = assoc_idx < vcpu_assoc_size ?
458             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
459         b = assoc_idx < vcpu_assoc_size ?
460             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
461 
462         args[idx] = ASSOCIATIVITY(a, b);
463     }
464 #undef ASSOCIATIVITY
465 
466     return H_SUCCESS;
467 }
468 
469 static void spapr_numa_register_types(void)
470 {
471     /* Virtual Processor Home Node */
472     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
473                              h_home_node_associativity);
474 }
475 
476 type_init(spapr_numa_register_types)
477