1 #include "qemu/osdep.h" 2 #include "qemu/cutils.h" 3 #include "qapi/error.h" 4 #include "sysemu/hw_accel.h" 5 #include "sysemu/runstate.h" 6 #include "qemu/log.h" 7 #include "qemu/main-loop.h" 8 #include "qemu/module.h" 9 #include "qemu/error-report.h" 10 #include "exec/exec-all.h" 11 #include "helper_regs.h" 12 #include "hw/ppc/ppc.h" 13 #include "hw/ppc/spapr.h" 14 #include "hw/ppc/spapr_cpu_core.h" 15 #include "mmu-hash64.h" 16 #include "cpu-models.h" 17 #include "trace.h" 18 #include "kvm_ppc.h" 19 #include "hw/ppc/fdt.h" 20 #include "hw/ppc/spapr_ovec.h" 21 #include "hw/ppc/spapr_numa.h" 22 #include "mmu-book3s-v3.h" 23 #include "hw/mem/memory-device.h" 24 25 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) 26 { 27 MachineState *machine = MACHINE(spapr); 28 DeviceMemoryState *dms = machine->device_memory; 29 30 if (addr < machine->ram_size) { 31 return true; 32 } 33 if ((addr >= dms->base) 34 && ((addr - dms->base) < memory_region_size(&dms->mr))) { 35 return true; 36 } 37 38 return false; 39 } 40 41 /* Convert a return code from the KVM ioctl()s implementing resize HPT 42 * into a PAPR hypercall return code */ 43 static target_ulong resize_hpt_convert_rc(int ret) 44 { 45 if (ret >= 100000) { 46 return H_LONG_BUSY_ORDER_100_SEC; 47 } else if (ret >= 10000) { 48 return H_LONG_BUSY_ORDER_10_SEC; 49 } else if (ret >= 1000) { 50 return H_LONG_BUSY_ORDER_1_SEC; 51 } else if (ret >= 100) { 52 return H_LONG_BUSY_ORDER_100_MSEC; 53 } else if (ret >= 10) { 54 return H_LONG_BUSY_ORDER_10_MSEC; 55 } else if (ret > 0) { 56 return H_LONG_BUSY_ORDER_1_MSEC; 57 } 58 59 switch (ret) { 60 case 0: 61 return H_SUCCESS; 62 case -EPERM: 63 return H_AUTHORITY; 64 case -EINVAL: 65 return H_PARAMETER; 66 case -ENXIO: 67 return H_CLOSED; 68 case -ENOSPC: 69 return H_PTEG_FULL; 70 case -EBUSY: 71 return H_BUSY; 72 case -ENOMEM: 73 return H_NO_MEM; 74 default: 75 return H_HARDWARE; 76 } 77 } 78 79 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, 80 SpaprMachineState *spapr, 81 target_ulong opcode, 82 target_ulong *args) 83 { 84 target_ulong flags = args[0]; 85 int shift = args[1]; 86 uint64_t current_ram_size; 87 int rc; 88 89 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 90 return H_AUTHORITY; 91 } 92 93 if (!spapr->htab_shift) { 94 /* Radix guest, no HPT */ 95 return H_NOT_AVAILABLE; 96 } 97 98 trace_spapr_h_resize_hpt_prepare(flags, shift); 99 100 if (flags != 0) { 101 return H_PARAMETER; 102 } 103 104 if (shift && ((shift < 18) || (shift > 46))) { 105 return H_PARAMETER; 106 } 107 108 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 109 110 /* We only allow the guest to allocate an HPT one order above what 111 * we'd normally give them (to stop a small guest claiming a huge 112 * chunk of resources in the HPT */ 113 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { 114 return H_RESOURCE; 115 } 116 117 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); 118 if (rc != -ENOSYS) { 119 return resize_hpt_convert_rc(rc); 120 } 121 122 if (kvm_enabled()) { 123 return H_HARDWARE; 124 } 125 126 return softmmu_resize_hpt_prepare(cpu, spapr, shift); 127 } 128 129 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) 130 { 131 int ret; 132 133 cpu_synchronize_state(cs); 134 135 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); 136 if (ret < 0) { 137 error_report("failed to push sregs to KVM: %s", strerror(-ret)); 138 exit(1); 139 } 140 } 141 142 void push_sregs_to_kvm_pr(SpaprMachineState *spapr) 143 { 144 CPUState *cs; 145 146 /* 147 * This is a hack for the benefit of KVM PR - it abuses the SDR1 148 * slot in kvm_sregs to communicate the userspace address of the 149 * HPT 150 */ 151 if (!kvm_enabled() || !spapr->htab) { 152 return; 153 } 154 155 CPU_FOREACH(cs) { 156 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); 157 } 158 } 159 160 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, 161 SpaprMachineState *spapr, 162 target_ulong opcode, 163 target_ulong *args) 164 { 165 target_ulong flags = args[0]; 166 target_ulong shift = args[1]; 167 int rc; 168 169 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 170 return H_AUTHORITY; 171 } 172 173 if (!spapr->htab_shift) { 174 /* Radix guest, no HPT */ 175 return H_NOT_AVAILABLE; 176 } 177 178 trace_spapr_h_resize_hpt_commit(flags, shift); 179 180 rc = kvmppc_resize_hpt_commit(cpu, flags, shift); 181 if (rc != -ENOSYS) { 182 rc = resize_hpt_convert_rc(rc); 183 if (rc == H_SUCCESS) { 184 /* Need to set the new htab_shift in the machine state */ 185 spapr->htab_shift = shift; 186 } 187 return rc; 188 } 189 190 if (kvm_enabled()) { 191 return H_HARDWARE; 192 } 193 194 return softmmu_resize_hpt_commit(cpu, spapr, flags, shift); 195 } 196 197 198 199 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, 200 target_ulong opcode, target_ulong *args) 201 { 202 cpu_synchronize_state(CPU(cpu)); 203 cpu->env.spr[SPR_SPRG0] = args[0]; 204 205 return H_SUCCESS; 206 } 207 208 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 209 target_ulong opcode, target_ulong *args) 210 { 211 if (!ppc_has_spr(cpu, SPR_DABR)) { 212 return H_HARDWARE; /* DABR register not available */ 213 } 214 cpu_synchronize_state(CPU(cpu)); 215 216 if (ppc_has_spr(cpu, SPR_DABRX)) { 217 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ 218 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ 219 return H_RESERVED_DABR; 220 } 221 222 cpu->env.spr[SPR_DABR] = args[0]; 223 return H_SUCCESS; 224 } 225 226 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 227 target_ulong opcode, target_ulong *args) 228 { 229 target_ulong dabrx = args[1]; 230 231 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) { 232 return H_HARDWARE; 233 } 234 235 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 236 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { 237 return H_PARAMETER; 238 } 239 240 cpu_synchronize_state(CPU(cpu)); 241 cpu->env.spr[SPR_DABRX] = dabrx; 242 cpu->env.spr[SPR_DABR] = args[0]; 243 244 return H_SUCCESS; 245 } 246 247 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, 248 target_ulong opcode, target_ulong *args) 249 { 250 target_ulong flags = args[0]; 251 hwaddr dst = args[1]; 252 hwaddr src = args[2]; 253 hwaddr len = TARGET_PAGE_SIZE; 254 uint8_t *pdst, *psrc; 255 target_long ret = H_SUCCESS; 256 257 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE 258 | H_COPY_PAGE | H_ZERO_PAGE)) { 259 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", 260 flags); 261 return H_PARAMETER; 262 } 263 264 /* Map-in destination */ 265 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { 266 return H_PARAMETER; 267 } 268 pdst = cpu_physical_memory_map(dst, &len, true); 269 if (!pdst || len != TARGET_PAGE_SIZE) { 270 return H_PARAMETER; 271 } 272 273 if (flags & H_COPY_PAGE) { 274 /* Map-in source, copy to destination, and unmap source again */ 275 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { 276 ret = H_PARAMETER; 277 goto unmap_out; 278 } 279 psrc = cpu_physical_memory_map(src, &len, false); 280 if (!psrc || len != TARGET_PAGE_SIZE) { 281 ret = H_PARAMETER; 282 goto unmap_out; 283 } 284 memcpy(pdst, psrc, len); 285 cpu_physical_memory_unmap(psrc, len, 0, len); 286 } else if (flags & H_ZERO_PAGE) { 287 memset(pdst, 0, len); /* Just clear the destination page */ 288 } 289 290 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { 291 kvmppc_dcbst_range(cpu, pdst, len); 292 } 293 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { 294 if (kvm_enabled()) { 295 kvmppc_icbi_range(cpu, pdst, len); 296 } else { 297 tb_flush(CPU(cpu)); 298 } 299 } 300 301 unmap_out: 302 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); 303 return ret; 304 } 305 306 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL 307 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL 308 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL 309 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL 310 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL 311 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL 312 313 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) 314 { 315 CPUState *cs = CPU(cpu); 316 CPUPPCState *env = &cpu->env; 317 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 318 uint16_t size; 319 uint8_t tmp; 320 321 if (vpa == 0) { 322 hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); 323 return H_HARDWARE; 324 } 325 326 if (vpa % env->dcache_line_size) { 327 return H_PARAMETER; 328 } 329 /* FIXME: bounds check the address */ 330 331 size = lduw_be_phys(cs->as, vpa + 0x4); 332 333 if (size < VPA_MIN_SIZE) { 334 return H_PARAMETER; 335 } 336 337 /* VPA is not allowed to cross a page boundary */ 338 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { 339 return H_PARAMETER; 340 } 341 342 spapr_cpu->vpa_addr = vpa; 343 344 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); 345 tmp |= VPA_SHARED_PROC_VAL; 346 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); 347 348 return H_SUCCESS; 349 } 350 351 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) 352 { 353 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 354 355 if (spapr_cpu->slb_shadow_addr) { 356 return H_RESOURCE; 357 } 358 359 if (spapr_cpu->dtl_addr) { 360 return H_RESOURCE; 361 } 362 363 spapr_cpu->vpa_addr = 0; 364 return H_SUCCESS; 365 } 366 367 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 368 { 369 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 370 uint32_t size; 371 372 if (addr == 0) { 373 hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); 374 return H_HARDWARE; 375 } 376 377 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 378 if (size < 0x8) { 379 return H_PARAMETER; 380 } 381 382 if ((addr / 4096) != ((addr + size - 1) / 4096)) { 383 return H_PARAMETER; 384 } 385 386 if (!spapr_cpu->vpa_addr) { 387 return H_RESOURCE; 388 } 389 390 spapr_cpu->slb_shadow_addr = addr; 391 spapr_cpu->slb_shadow_size = size; 392 393 return H_SUCCESS; 394 } 395 396 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 397 { 398 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 399 400 spapr_cpu->slb_shadow_addr = 0; 401 spapr_cpu->slb_shadow_size = 0; 402 return H_SUCCESS; 403 } 404 405 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) 406 { 407 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 408 uint32_t size; 409 410 if (addr == 0) { 411 hcall_dprintf("Can't cope with DTL at logical 0\n"); 412 return H_HARDWARE; 413 } 414 415 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 416 417 if (size < 48) { 418 return H_PARAMETER; 419 } 420 421 if (!spapr_cpu->vpa_addr) { 422 return H_RESOURCE; 423 } 424 425 spapr_cpu->dtl_addr = addr; 426 spapr_cpu->dtl_size = size; 427 428 return H_SUCCESS; 429 } 430 431 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) 432 { 433 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 434 435 spapr_cpu->dtl_addr = 0; 436 spapr_cpu->dtl_size = 0; 437 438 return H_SUCCESS; 439 } 440 441 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, 442 target_ulong opcode, target_ulong *args) 443 { 444 target_ulong flags = args[0]; 445 target_ulong procno = args[1]; 446 target_ulong vpa = args[2]; 447 target_ulong ret = H_PARAMETER; 448 PowerPCCPU *tcpu; 449 450 tcpu = spapr_find_cpu(procno); 451 if (!tcpu) { 452 return H_PARAMETER; 453 } 454 455 switch (flags) { 456 case FLAGS_REGISTER_VPA: 457 ret = register_vpa(tcpu, vpa); 458 break; 459 460 case FLAGS_DEREGISTER_VPA: 461 ret = deregister_vpa(tcpu, vpa); 462 break; 463 464 case FLAGS_REGISTER_SLBSHADOW: 465 ret = register_slb_shadow(tcpu, vpa); 466 break; 467 468 case FLAGS_DEREGISTER_SLBSHADOW: 469 ret = deregister_slb_shadow(tcpu, vpa); 470 break; 471 472 case FLAGS_REGISTER_DTL: 473 ret = register_dtl(tcpu, vpa); 474 break; 475 476 case FLAGS_DEREGISTER_DTL: 477 ret = deregister_dtl(tcpu, vpa); 478 break; 479 } 480 481 return ret; 482 } 483 484 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, 485 target_ulong opcode, target_ulong *args) 486 { 487 CPUPPCState *env = &cpu->env; 488 CPUState *cs = CPU(cpu); 489 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 490 491 env->msr |= (1ULL << MSR_EE); 492 hreg_compute_hflags(env); 493 ppc_maybe_interrupt(env); 494 495 if (spapr_cpu->prod) { 496 spapr_cpu->prod = false; 497 return H_SUCCESS; 498 } 499 500 if (!cpu_has_work(cs)) { 501 cs->halted = 1; 502 cs->exception_index = EXCP_HLT; 503 cs->exit_request = 1; 504 ppc_maybe_interrupt(env); 505 } 506 507 return H_SUCCESS; 508 } 509 510 /* 511 * Confer to self, aka join. Cede could use the same pattern as well, if 512 * EXCP_HLT can be changed to ECXP_HALTED. 513 */ 514 static target_ulong h_confer_self(PowerPCCPU *cpu) 515 { 516 CPUState *cs = CPU(cpu); 517 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 518 519 if (spapr_cpu->prod) { 520 spapr_cpu->prod = false; 521 return H_SUCCESS; 522 } 523 cs->halted = 1; 524 cs->exception_index = EXCP_HALTED; 525 cs->exit_request = 1; 526 ppc_maybe_interrupt(&cpu->env); 527 528 return H_SUCCESS; 529 } 530 531 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, 532 target_ulong opcode, target_ulong *args) 533 { 534 CPUPPCState *env = &cpu->env; 535 CPUState *cs; 536 bool last_unjoined = true; 537 538 if (env->msr & (1ULL << MSR_EE)) { 539 return H_BAD_MODE; 540 } 541 542 /* 543 * Must not join the last CPU running. Interestingly, no such restriction 544 * for H_CONFER-to-self, but that is probably not intended to be used 545 * when H_JOIN is available. 546 */ 547 CPU_FOREACH(cs) { 548 PowerPCCPU *c = POWERPC_CPU(cs); 549 CPUPPCState *e = &c->env; 550 if (c == cpu) { 551 continue; 552 } 553 554 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ 555 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { 556 last_unjoined = false; 557 break; 558 } 559 } 560 if (last_unjoined) { 561 return H_CONTINUE; 562 } 563 564 return h_confer_self(cpu); 565 } 566 567 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, 568 target_ulong opcode, target_ulong *args) 569 { 570 target_long target = args[0]; 571 uint32_t dispatch = args[1]; 572 CPUState *cs = CPU(cpu); 573 SpaprCpuState *spapr_cpu; 574 575 /* 576 * -1 means confer to all other CPUs without dispatch counter check, 577 * otherwise it's a targeted confer. 578 */ 579 if (target != -1) { 580 PowerPCCPU *target_cpu = spapr_find_cpu(target); 581 uint32_t target_dispatch; 582 583 if (!target_cpu) { 584 return H_PARAMETER; 585 } 586 587 /* 588 * target == self is a special case, we wait until prodded, without 589 * dispatch counter check. 590 */ 591 if (cpu == target_cpu) { 592 return h_confer_self(cpu); 593 } 594 595 spapr_cpu = spapr_cpu_state(target_cpu); 596 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { 597 return H_SUCCESS; 598 } 599 600 target_dispatch = ldl_be_phys(cs->as, 601 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 602 if (target_dispatch != dispatch) { 603 return H_SUCCESS; 604 } 605 606 /* 607 * The targeted confer does not do anything special beyond yielding 608 * the current vCPU, but even this should be better than nothing. 609 * At least for single-threaded tcg, it gives the target a chance to 610 * run before we run again. Multi-threaded tcg does not really do 611 * anything with EXCP_YIELD yet. 612 */ 613 } 614 615 cs->exception_index = EXCP_YIELD; 616 cs->exit_request = 1; 617 cpu_loop_exit(cs); 618 619 return H_SUCCESS; 620 } 621 622 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, 623 target_ulong opcode, target_ulong *args) 624 { 625 target_long target = args[0]; 626 PowerPCCPU *tcpu; 627 CPUState *cs; 628 SpaprCpuState *spapr_cpu; 629 630 tcpu = spapr_find_cpu(target); 631 cs = CPU(tcpu); 632 if (!cs) { 633 return H_PARAMETER; 634 } 635 636 spapr_cpu = spapr_cpu_state(tcpu); 637 spapr_cpu->prod = true; 638 cs->halted = 0; 639 ppc_maybe_interrupt(&cpu->env); 640 qemu_cpu_kick(cs); 641 642 return H_SUCCESS; 643 } 644 645 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, 646 target_ulong opcode, target_ulong *args) 647 { 648 target_ulong rtas_r3 = args[0]; 649 uint32_t token = rtas_ld(rtas_r3, 0); 650 uint32_t nargs = rtas_ld(rtas_r3, 1); 651 uint32_t nret = rtas_ld(rtas_r3, 2); 652 653 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, 654 nret, rtas_r3 + 12 + 4*nargs); 655 } 656 657 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, 658 target_ulong opcode, target_ulong *args) 659 { 660 CPUState *cs = CPU(cpu); 661 target_ulong size = args[0]; 662 target_ulong addr = args[1]; 663 664 switch (size) { 665 case 1: 666 args[0] = ldub_phys(cs->as, addr); 667 return H_SUCCESS; 668 case 2: 669 args[0] = lduw_phys(cs->as, addr); 670 return H_SUCCESS; 671 case 4: 672 args[0] = ldl_phys(cs->as, addr); 673 return H_SUCCESS; 674 case 8: 675 args[0] = ldq_phys(cs->as, addr); 676 return H_SUCCESS; 677 } 678 return H_PARAMETER; 679 } 680 681 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, 682 target_ulong opcode, target_ulong *args) 683 { 684 CPUState *cs = CPU(cpu); 685 686 target_ulong size = args[0]; 687 target_ulong addr = args[1]; 688 target_ulong val = args[2]; 689 690 switch (size) { 691 case 1: 692 stb_phys(cs->as, addr, val); 693 return H_SUCCESS; 694 case 2: 695 stw_phys(cs->as, addr, val); 696 return H_SUCCESS; 697 case 4: 698 stl_phys(cs->as, addr, val); 699 return H_SUCCESS; 700 case 8: 701 stq_phys(cs->as, addr, val); 702 return H_SUCCESS; 703 } 704 return H_PARAMETER; 705 } 706 707 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, 708 target_ulong opcode, target_ulong *args) 709 { 710 CPUState *cs = CPU(cpu); 711 712 target_ulong dst = args[0]; /* Destination address */ 713 target_ulong src = args[1]; /* Source address */ 714 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ 715 target_ulong count = args[3]; /* Element count */ 716 target_ulong op = args[4]; /* 0 = copy, 1 = invert */ 717 uint64_t tmp; 718 unsigned int mask = (1 << esize) - 1; 719 int step = 1 << esize; 720 721 if (count > 0x80000000) { 722 return H_PARAMETER; 723 } 724 725 if ((dst & mask) || (src & mask) || (op > 1)) { 726 return H_PARAMETER; 727 } 728 729 if (dst >= src && dst < (src + (count << esize))) { 730 dst = dst + ((count - 1) << esize); 731 src = src + ((count - 1) << esize); 732 step = -step; 733 } 734 735 while (count--) { 736 switch (esize) { 737 case 0: 738 tmp = ldub_phys(cs->as, src); 739 break; 740 case 1: 741 tmp = lduw_phys(cs->as, src); 742 break; 743 case 2: 744 tmp = ldl_phys(cs->as, src); 745 break; 746 case 3: 747 tmp = ldq_phys(cs->as, src); 748 break; 749 default: 750 return H_PARAMETER; 751 } 752 if (op == 1) { 753 tmp = ~tmp; 754 } 755 switch (esize) { 756 case 0: 757 stb_phys(cs->as, dst, tmp); 758 break; 759 case 1: 760 stw_phys(cs->as, dst, tmp); 761 break; 762 case 2: 763 stl_phys(cs->as, dst, tmp); 764 break; 765 case 3: 766 stq_phys(cs->as, dst, tmp); 767 break; 768 } 769 dst = dst + step; 770 src = src + step; 771 } 772 773 return H_SUCCESS; 774 } 775 776 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, 777 target_ulong opcode, target_ulong *args) 778 { 779 /* Nothing to do on emulation, KVM will trap this in the kernel */ 780 return H_SUCCESS; 781 } 782 783 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, 784 target_ulong opcode, target_ulong *args) 785 { 786 /* Nothing to do on emulation, KVM will trap this in the kernel */ 787 return H_SUCCESS; 788 } 789 790 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, 791 SpaprMachineState *spapr, 792 target_ulong mflags, 793 target_ulong value1, 794 target_ulong value2) 795 { 796 if (value1) { 797 return H_P3; 798 } 799 if (value2) { 800 return H_P4; 801 } 802 803 switch (mflags) { 804 case H_SET_MODE_ENDIAN_BIG: 805 spapr_set_all_lpcrs(0, LPCR_ILE); 806 spapr_pci_switch_vga(spapr, true); 807 return H_SUCCESS; 808 809 case H_SET_MODE_ENDIAN_LITTLE: 810 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); 811 spapr_pci_switch_vga(spapr, false); 812 return H_SUCCESS; 813 } 814 815 return H_UNSUPPORTED_FLAG; 816 } 817 818 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, 819 target_ulong mflags, 820 target_ulong value1, 821 target_ulong value2) 822 { 823 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 824 825 if (!(pcc->insns_flags2 & PPC2_ISA207S)) { 826 return H_P2; 827 } 828 if (value1) { 829 return H_P3; 830 } 831 if (value2) { 832 return H_P4; 833 } 834 835 if (mflags == 1) { 836 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */ 837 return H_UNSUPPORTED_FLAG; 838 } 839 840 if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) { 841 /* AIL=2 is reserved in POWER10 (ISA v3.1) */ 842 return H_UNSUPPORTED_FLAG; 843 } 844 845 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); 846 847 return H_SUCCESS; 848 } 849 850 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, 851 target_ulong opcode, target_ulong *args) 852 { 853 target_ulong resource = args[1]; 854 target_ulong ret = H_P2; 855 856 switch (resource) { 857 case H_SET_MODE_RESOURCE_LE: 858 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]); 859 break; 860 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 861 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], 862 args[2], args[3]); 863 break; 864 } 865 866 return ret; 867 } 868 869 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, 870 target_ulong opcode, target_ulong *args) 871 { 872 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 873 opcode, " (H_CLEAN_SLB)"); 874 return H_FUNCTION; 875 } 876 877 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, 878 target_ulong opcode, target_ulong *args) 879 { 880 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 881 opcode, " (H_INVALIDATE_PID)"); 882 return H_FUNCTION; 883 } 884 885 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, 886 uint64_t patbe_old, uint64_t patbe_new) 887 { 888 /* 889 * We have 4 Options: 890 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing 891 * HASH->RADIX : Free HPT 892 * RADIX->HASH : Allocate HPT 893 * NOTHING->HASH : Allocate HPT 894 * Note: NOTHING implies the case where we said the guest could choose 895 * later and so assumed radix and now it's called H_REG_PROC_TBL 896 */ 897 898 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { 899 /* We assume RADIX, so this catches all the "Do Nothing" cases */ 900 } else if (!(patbe_old & PATE1_GR)) { 901 /* HASH->RADIX : Free HPT */ 902 spapr_free_hpt(spapr); 903 } else if (!(patbe_new & PATE1_GR)) { 904 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ 905 spapr_setup_hpt(spapr); 906 } 907 return; 908 } 909 910 #define FLAGS_MASK 0x01FULL 911 #define FLAG_MODIFY 0x10 912 #define FLAG_REGISTER 0x08 913 #define FLAG_RADIX 0x04 914 #define FLAG_HASH_PROC_TBL 0x02 915 #define FLAG_GTSE 0x01 916 917 static target_ulong h_register_process_table(PowerPCCPU *cpu, 918 SpaprMachineState *spapr, 919 target_ulong opcode, 920 target_ulong *args) 921 { 922 target_ulong flags = args[0]; 923 target_ulong proc_tbl = args[1]; 924 target_ulong page_size = args[2]; 925 target_ulong table_size = args[3]; 926 target_ulong update_lpcr = 0; 927 target_ulong table_byte_size; 928 uint64_t cproc; 929 930 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ 931 return H_PARAMETER; 932 } 933 if (flags & FLAG_MODIFY) { 934 if (flags & FLAG_REGISTER) { 935 /* Check process table alignment */ 936 table_byte_size = 1ULL << (table_size + 12); 937 if (proc_tbl & (table_byte_size - 1)) { 938 qemu_log_mask(LOG_GUEST_ERROR, 939 "%s: process table not properly aligned: proc_tbl 0x" 940 TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n", 941 __func__, proc_tbl, table_byte_size); 942 } 943 if (flags & FLAG_RADIX) { /* Register new RADIX process table */ 944 if (proc_tbl & 0xfff || proc_tbl >> 60) { 945 return H_P2; 946 } else if (page_size) { 947 return H_P3; 948 } else if (table_size > 24) { 949 return H_P4; 950 } 951 cproc = PATE1_GR | proc_tbl | table_size; 952 } else { /* Register new HPT process table */ 953 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ 954 /* TODO - Not Supported */ 955 /* Technically caused by flag bits => H_PARAMETER */ 956 return H_PARAMETER; 957 } else { /* Hash with SLB */ 958 if (proc_tbl >> 38) { 959 return H_P2; 960 } else if (page_size & ~0x7) { 961 return H_P3; 962 } else if (table_size > 24) { 963 return H_P4; 964 } 965 } 966 cproc = (proc_tbl << 25) | page_size << 5 | table_size; 967 } 968 969 } else { /* Deregister current process table */ 970 /* 971 * Set to benign value: (current GR) | 0. This allows 972 * deregistration in KVM to succeed even if the radix bit 973 * in flags doesn't match the radix bit in the old PATE. 974 */ 975 cproc = spapr->patb_entry & PATE1_GR; 976 } 977 } else { /* Maintain current registration */ 978 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { 979 /* Technically caused by flag bits => H_PARAMETER */ 980 return H_PARAMETER; /* Existing Process Table Mismatch */ 981 } 982 cproc = spapr->patb_entry; 983 } 984 985 /* Check if we need to setup OR free the hpt */ 986 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); 987 988 spapr->patb_entry = cproc; /* Save new process table */ 989 990 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ 991 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ 992 update_lpcr |= (LPCR_UPRT | LPCR_HR); 993 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ 994 update_lpcr |= LPCR_UPRT; 995 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ 996 update_lpcr |= LPCR_GTSE; 997 998 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); 999 1000 if (kvm_enabled()) { 1001 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, 1002 flags & FLAG_GTSE, cproc); 1003 } 1004 return H_SUCCESS; 1005 } 1006 1007 #define H_SIGNAL_SYS_RESET_ALL -1 1008 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 1009 1010 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, 1011 SpaprMachineState *spapr, 1012 target_ulong opcode, target_ulong *args) 1013 { 1014 target_long target = args[0]; 1015 CPUState *cs; 1016 1017 if (target < 0) { 1018 /* Broadcast */ 1019 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1020 return H_PARAMETER; 1021 } 1022 1023 CPU_FOREACH(cs) { 1024 PowerPCCPU *c = POWERPC_CPU(cs); 1025 1026 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1027 if (c == cpu) { 1028 continue; 1029 } 1030 } 1031 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1032 } 1033 return H_SUCCESS; 1034 1035 } else { 1036 /* Unicast */ 1037 cs = CPU(spapr_find_cpu(target)); 1038 if (cs) { 1039 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1040 return H_SUCCESS; 1041 } 1042 return H_PARAMETER; 1043 } 1044 } 1045 1046 /* Returns either a logical PVR or zero if none was found */ 1047 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat, 1048 target_ulong *addr, bool *raw_mode_supported) 1049 { 1050 bool explicit_match = false; /* Matched the CPU's real PVR */ 1051 uint32_t best_compat = 0; 1052 int i; 1053 1054 /* 1055 * We scan the supplied table of PVRs looking for two things 1056 * 1. Is our real CPU PVR in the list? 1057 * 2. What's the "best" listed logical PVR 1058 */ 1059 for (i = 0; i < 512; ++i) { 1060 uint32_t pvr, pvr_mask; 1061 1062 pvr_mask = ldl_be_phys(&address_space_memory, *addr); 1063 pvr = ldl_be_phys(&address_space_memory, *addr + 4); 1064 *addr += 8; 1065 1066 if (~pvr_mask & pvr) { 1067 break; /* Terminator record */ 1068 } 1069 1070 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { 1071 explicit_match = true; 1072 } else { 1073 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { 1074 best_compat = pvr; 1075 } 1076 } 1077 } 1078 1079 *raw_mode_supported = explicit_match; 1080 1081 /* Parsing finished */ 1082 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); 1083 1084 return best_compat; 1085 } 1086 1087 static 1088 target_ulong do_client_architecture_support(PowerPCCPU *cpu, 1089 SpaprMachineState *spapr, 1090 target_ulong vec, 1091 target_ulong fdt_bufsize) 1092 { 1093 target_ulong ov_table; /* Working address in data buffer */ 1094 uint32_t cas_pvr; 1095 SpaprOptionVector *ov1_guest, *ov5_guest; 1096 bool guest_radix; 1097 bool raw_mode_supported = false; 1098 bool guest_xive; 1099 CPUState *cs; 1100 void *fdt; 1101 uint32_t max_compat = spapr->max_compat_pvr; 1102 1103 /* CAS is supposed to be called early when only the boot vCPU is active. */ 1104 CPU_FOREACH(cs) { 1105 if (cs == CPU(cpu)) { 1106 continue; 1107 } 1108 if (!cs->halted) { 1109 warn_report("guest has multiple active vCPUs at CAS, which is not allowed"); 1110 return H_MULTI_THREADS_ACTIVE; 1111 } 1112 } 1113 1114 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported); 1115 if (!cas_pvr && (!raw_mode_supported || max_compat)) { 1116 /* 1117 * We couldn't find a suitable compatibility mode, and either 1118 * the guest doesn't support "raw" mode for this CPU, or "raw" 1119 * mode is disabled because a maximum compat mode is set. 1120 */ 1121 error_report("Couldn't negotiate a suitable PVR during CAS"); 1122 return H_HARDWARE; 1123 } 1124 1125 /* Update CPUs */ 1126 if (cpu->compat_pvr != cas_pvr) { 1127 Error *local_err = NULL; 1128 1129 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) { 1130 /* We fail to set compat mode (likely because running with KVM PR), 1131 * but maybe we can fallback to raw mode if the guest supports it. 1132 */ 1133 if (!raw_mode_supported) { 1134 error_report_err(local_err); 1135 return H_HARDWARE; 1136 } 1137 error_free(local_err); 1138 } 1139 } 1140 1141 /* For the future use: here @ov_table points to the first option vector */ 1142 ov_table = vec; 1143 1144 ov1_guest = spapr_ovec_parse_vector(ov_table, 1); 1145 if (!ov1_guest) { 1146 warn_report("guest didn't provide option vector 1"); 1147 return H_PARAMETER; 1148 } 1149 ov5_guest = spapr_ovec_parse_vector(ov_table, 5); 1150 if (!ov5_guest) { 1151 spapr_ovec_cleanup(ov1_guest); 1152 warn_report("guest didn't provide option vector 5"); 1153 return H_PARAMETER; 1154 } 1155 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { 1156 error_report("guest requested hash and radix MMU, which is invalid."); 1157 exit(EXIT_FAILURE); 1158 } 1159 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { 1160 error_report("guest requested an invalid interrupt mode"); 1161 exit(EXIT_FAILURE); 1162 } 1163 1164 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); 1165 1166 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); 1167 1168 /* 1169 * HPT resizing is a bit of a special case, because when enabled 1170 * we assume an HPT guest will support it until it says it 1171 * doesn't, instead of assuming it won't support it until it says 1172 * it does. Strictly speaking that approach could break for 1173 * guests which don't make a CAS call, but those are so old we 1174 * don't care about them. Without that assumption we'd have to 1175 * make at least a temporary allocation of an HPT sized for max 1176 * memory, which could be impossibly difficult under KVM HV if 1177 * maxram is large. 1178 */ 1179 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { 1180 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1181 1182 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { 1183 error_report( 1184 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); 1185 exit(1); 1186 } 1187 1188 if (spapr->htab_shift < maxshift) { 1189 /* Guest doesn't know about HPT resizing, so we 1190 * pre-emptively resize for the maximum permitted RAM. At 1191 * the point this is called, nothing should have been 1192 * entered into the existing HPT */ 1193 spapr_reallocate_hpt(spapr, maxshift, &error_fatal); 1194 push_sregs_to_kvm_pr(spapr); 1195 } 1196 } 1197 1198 /* NOTE: there are actually a number of ov5 bits where input from the 1199 * guest is always zero, and the platform/QEMU enables them independently 1200 * of guest input. To model these properly we'd want some sort of mask, 1201 * but since they only currently apply to memory migration as defined 1202 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need 1203 * to worry about this for now. 1204 */ 1205 1206 /* full range of negotiated ov5 capabilities */ 1207 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); 1208 spapr_ovec_cleanup(ov5_guest); 1209 1210 spapr_check_mmu_mode(guest_radix); 1211 1212 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00); 1213 spapr_ovec_cleanup(ov1_guest); 1214 1215 /* 1216 * Check for NUMA affinity conditions now that we know which NUMA 1217 * affinity the guest will use. 1218 */ 1219 spapr_numa_associativity_check(spapr); 1220 1221 /* 1222 * Ensure the guest asks for an interrupt mode we support; 1223 * otherwise terminate the boot. 1224 */ 1225 if (guest_xive) { 1226 if (!spapr->irq->xive) { 1227 error_report( 1228 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); 1229 exit(EXIT_FAILURE); 1230 } 1231 } else { 1232 if (!spapr->irq->xics) { 1233 error_report( 1234 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); 1235 exit(EXIT_FAILURE); 1236 } 1237 } 1238 1239 spapr_irq_update_active_intc(spapr); 1240 1241 /* 1242 * Process all pending hot-plug/unplug requests now. An updated full 1243 * rendered FDT will be returned to the guest. 1244 */ 1245 spapr_drc_reset_all(spapr); 1246 spapr_clear_pending_hotplug_events(spapr); 1247 1248 /* 1249 * If spapr_machine_reset() did not set up a HPT but one is necessary 1250 * (because the guest isn't going to use radix) then set it up here. 1251 */ 1252 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { 1253 /* legacy hash or new hash: */ 1254 spapr_setup_hpt(spapr); 1255 } 1256 1257 fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize); 1258 g_free(spapr->fdt_blob); 1259 spapr->fdt_size = fdt_totalsize(fdt); 1260 spapr->fdt_initial_size = spapr->fdt_size; 1261 spapr->fdt_blob = fdt; 1262 1263 /* 1264 * Set the machine->fdt pointer again since we just freed 1265 * it above (by freeing spapr->fdt_blob). We set this 1266 * pointer to enable support for the 'dumpdtb' QMP/HMP 1267 * command. 1268 */ 1269 MACHINE(spapr)->fdt = fdt; 1270 1271 return H_SUCCESS; 1272 } 1273 1274 static target_ulong h_client_architecture_support(PowerPCCPU *cpu, 1275 SpaprMachineState *spapr, 1276 target_ulong opcode, 1277 target_ulong *args) 1278 { 1279 target_ulong vec = ppc64_phys_to_real(args[0]); 1280 target_ulong fdt_buf = args[1]; 1281 target_ulong fdt_bufsize = args[2]; 1282 target_ulong ret; 1283 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 1284 1285 if (fdt_bufsize < sizeof(hdr)) { 1286 error_report("SLOF provided insufficient CAS buffer " 1287 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr)); 1288 exit(EXIT_FAILURE); 1289 } 1290 1291 fdt_bufsize -= sizeof(hdr); 1292 1293 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize); 1294 if (ret == H_SUCCESS) { 1295 _FDT((fdt_pack(spapr->fdt_blob))); 1296 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob); 1297 spapr->fdt_initial_size = spapr->fdt_size; 1298 1299 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr)); 1300 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob, 1301 spapr->fdt_size); 1302 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr)); 1303 } 1304 1305 return ret; 1306 } 1307 1308 target_ulong spapr_vof_client_architecture_support(MachineState *ms, 1309 CPUState *cs, 1310 target_ulong ovec_addr) 1311 { 1312 SpaprMachineState *spapr = SPAPR_MACHINE(ms); 1313 1314 target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr, 1315 ovec_addr, FDT_MAX_SIZE); 1316 1317 /* 1318 * This adds stdout and generates phandles for boottime and CAS FDTs. 1319 * It is alright to update the FDT here as do_client_architecture_support() 1320 * does not pack it. 1321 */ 1322 spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob); 1323 1324 return ret; 1325 } 1326 1327 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, 1328 SpaprMachineState *spapr, 1329 target_ulong opcode, 1330 target_ulong *args) 1331 { 1332 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & 1333 ~H_CPU_CHAR_THR_RECONF_TRIG; 1334 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; 1335 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); 1336 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); 1337 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); 1338 uint8_t count_cache_flush_assist = spapr_get_cap(spapr, 1339 SPAPR_CAP_CCF_ASSIST); 1340 1341 switch (safe_cache) { 1342 case SPAPR_CAP_WORKAROUND: 1343 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; 1344 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; 1345 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; 1346 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1347 break; 1348 case SPAPR_CAP_FIXED: 1349 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY; 1350 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS; 1351 break; 1352 default: /* broken */ 1353 assert(safe_cache == SPAPR_CAP_BROKEN); 1354 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1355 break; 1356 } 1357 1358 switch (safe_bounds_check) { 1359 case SPAPR_CAP_WORKAROUND: 1360 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; 1361 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1362 break; 1363 case SPAPR_CAP_FIXED: 1364 break; 1365 default: /* broken */ 1366 assert(safe_bounds_check == SPAPR_CAP_BROKEN); 1367 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1368 break; 1369 } 1370 1371 switch (safe_indirect_branch) { 1372 case SPAPR_CAP_FIXED_NA: 1373 break; 1374 case SPAPR_CAP_FIXED_CCD: 1375 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; 1376 break; 1377 case SPAPR_CAP_FIXED_IBS: 1378 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; 1379 break; 1380 case SPAPR_CAP_WORKAROUND: 1381 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; 1382 if (count_cache_flush_assist) { 1383 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; 1384 } 1385 break; 1386 default: /* broken */ 1387 assert(safe_indirect_branch == SPAPR_CAP_BROKEN); 1388 break; 1389 } 1390 1391 args[0] = characteristics; 1392 args[1] = behaviour; 1393 return H_SUCCESS; 1394 } 1395 1396 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, 1397 target_ulong opcode, target_ulong *args) 1398 { 1399 target_ulong dt = ppc64_phys_to_real(args[0]); 1400 struct fdt_header hdr = { 0 }; 1401 unsigned cb; 1402 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1403 void *fdt; 1404 1405 cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); 1406 cb = fdt32_to_cpu(hdr.totalsize); 1407 1408 if (!smc->update_dt_enabled) { 1409 return H_SUCCESS; 1410 } 1411 1412 /* Check that the fdt did not grow out of proportion */ 1413 if (cb > spapr->fdt_initial_size * 2) { 1414 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, 1415 fdt32_to_cpu(hdr.magic)); 1416 return H_PARAMETER; 1417 } 1418 1419 fdt = g_malloc0(cb); 1420 cpu_physical_memory_read(dt, fdt, cb); 1421 1422 /* Check the fdt consistency */ 1423 if (fdt_check_full(fdt, cb)) { 1424 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, 1425 fdt32_to_cpu(hdr.magic)); 1426 return H_PARAMETER; 1427 } 1428 1429 g_free(spapr->fdt_blob); 1430 spapr->fdt_size = cb; 1431 spapr->fdt_blob = fdt; 1432 trace_spapr_update_dt(cb); 1433 1434 return H_SUCCESS; 1435 } 1436 1437 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; 1438 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; 1439 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; 1440 1441 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) 1442 { 1443 spapr_hcall_fn *slot; 1444 1445 if (opcode <= MAX_HCALL_OPCODE) { 1446 assert((opcode & 0x3) == 0); 1447 1448 slot = &papr_hypercall_table[opcode / 4]; 1449 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { 1450 /* we only have SVM-related hcall numbers assigned in multiples of 4 */ 1451 assert((opcode & 0x3) == 0); 1452 1453 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 1454 } else { 1455 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); 1456 1457 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1458 } 1459 1460 assert(!(*slot)); 1461 *slot = fn; 1462 } 1463 1464 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, 1465 target_ulong *args) 1466 { 1467 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1468 1469 if ((opcode <= MAX_HCALL_OPCODE) 1470 && ((opcode & 0x3) == 0)) { 1471 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; 1472 1473 if (fn) { 1474 return fn(cpu, spapr, opcode, args); 1475 } 1476 } else if ((opcode >= SVM_HCALL_BASE) && 1477 (opcode <= SVM_HCALL_MAX)) { 1478 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 1479 1480 if (fn) { 1481 return fn(cpu, spapr, opcode, args); 1482 } 1483 } else if ((opcode >= KVMPPC_HCALL_BASE) && 1484 (opcode <= KVMPPC_HCALL_MAX)) { 1485 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1486 1487 if (fn) { 1488 return fn(cpu, spapr, opcode, args); 1489 } 1490 } 1491 1492 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", 1493 opcode); 1494 return H_FUNCTION; 1495 } 1496 1497 #ifdef CONFIG_TCG 1498 #define PRTS_MASK 0x1f 1499 1500 static target_ulong h_set_ptbl(PowerPCCPU *cpu, 1501 SpaprMachineState *spapr, 1502 target_ulong opcode, 1503 target_ulong *args) 1504 { 1505 target_ulong ptcr = args[0]; 1506 1507 if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) { 1508 return H_FUNCTION; 1509 } 1510 1511 if ((ptcr & PRTS_MASK) + 12 - 4 > 12) { 1512 return H_PARAMETER; 1513 } 1514 1515 spapr->nested_ptcr = ptcr; /* Save new partition table */ 1516 1517 return H_SUCCESS; 1518 } 1519 1520 static target_ulong h_tlb_invalidate(PowerPCCPU *cpu, 1521 SpaprMachineState *spapr, 1522 target_ulong opcode, 1523 target_ulong *args) 1524 { 1525 /* 1526 * The spapr virtual hypervisor nested HV implementation retains no L2 1527 * translation state except for TLB. And the TLB is always invalidated 1528 * across L1<->L2 transitions, so nothing is required here. 1529 */ 1530 1531 return H_SUCCESS; 1532 } 1533 1534 static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu, 1535 SpaprMachineState *spapr, 1536 target_ulong opcode, 1537 target_ulong *args) 1538 { 1539 /* 1540 * This HCALL is not required, L1 KVM will take a slow path and walk the 1541 * page tables manually to do the data copy. 1542 */ 1543 return H_FUNCTION; 1544 } 1545 1546 /* 1547 * When this handler returns, the environment is switched to the L2 guest 1548 * and TCG begins running that. spapr_exit_nested() performs the switch from 1549 * L2 back to L1 and returns from the H_ENTER_NESTED hcall. 1550 */ 1551 static target_ulong h_enter_nested(PowerPCCPU *cpu, 1552 SpaprMachineState *spapr, 1553 target_ulong opcode, 1554 target_ulong *args) 1555 { 1556 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 1557 CPUState *cs = CPU(cpu); 1558 CPUPPCState *env = &cpu->env; 1559 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1560 target_ulong hv_ptr = args[0]; 1561 target_ulong regs_ptr = args[1]; 1562 target_ulong hdec, now = cpu_ppc_load_tbl(env); 1563 target_ulong lpcr, lpcr_mask; 1564 struct kvmppc_hv_guest_state *hvstate; 1565 struct kvmppc_hv_guest_state hv_state; 1566 struct kvmppc_pt_regs *regs; 1567 hwaddr len; 1568 uint64_t cr; 1569 int i; 1570 1571 if (spapr->nested_ptcr == 0) { 1572 return H_NOT_AVAILABLE; 1573 } 1574 1575 len = sizeof(*hvstate); 1576 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false, 1577 MEMTXATTRS_UNSPECIFIED); 1578 if (len != sizeof(*hvstate)) { 1579 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false); 1580 return H_PARAMETER; 1581 } 1582 1583 memcpy(&hv_state, hvstate, len); 1584 1585 address_space_unmap(CPU(cpu)->as, hvstate, len, len, false); 1586 1587 /* 1588 * We accept versions 1 and 2. Version 2 fields are unused because TCG 1589 * does not implement DAWR*. 1590 */ 1591 if (hv_state.version > HV_GUEST_STATE_VERSION) { 1592 return H_PARAMETER; 1593 } 1594 1595 spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1); 1596 if (!spapr_cpu->nested_host_state) { 1597 return H_NO_MEM; 1598 } 1599 1600 memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState)); 1601 1602 len = sizeof(*regs); 1603 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false, 1604 MEMTXATTRS_UNSPECIFIED); 1605 if (!regs || len != sizeof(*regs)) { 1606 address_space_unmap(CPU(cpu)->as, regs, len, 0, false); 1607 g_free(spapr_cpu->nested_host_state); 1608 return H_P2; 1609 } 1610 1611 len = sizeof(env->gpr); 1612 assert(len == sizeof(regs->gpr)); 1613 memcpy(env->gpr, regs->gpr, len); 1614 1615 env->lr = regs->link; 1616 env->ctr = regs->ctr; 1617 cpu_write_xer(env, regs->xer); 1618 1619 cr = regs->ccr; 1620 for (i = 7; i >= 0; i--) { 1621 env->crf[i] = cr & 15; 1622 cr >>= 4; 1623 } 1624 1625 env->msr = regs->msr; 1626 env->nip = regs->nip; 1627 1628 address_space_unmap(CPU(cpu)->as, regs, len, len, false); 1629 1630 env->cfar = hv_state.cfar; 1631 1632 assert(env->spr[SPR_LPIDR] == 0); 1633 env->spr[SPR_LPIDR] = hv_state.lpid; 1634 1635 lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER; 1636 lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask); 1637 lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE; 1638 lpcr &= ~LPCR_LPES0; 1639 env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask; 1640 1641 env->spr[SPR_PCR] = hv_state.pcr; 1642 /* hv_state.amor is not used */ 1643 env->spr[SPR_DPDES] = hv_state.dpdes; 1644 env->spr[SPR_HFSCR] = hv_state.hfscr; 1645 hdec = hv_state.hdec_expiry - now; 1646 spapr_cpu->nested_tb_offset = hv_state.tb_offset; 1647 /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/ 1648 env->spr[SPR_SRR0] = hv_state.srr0; 1649 env->spr[SPR_SRR1] = hv_state.srr1; 1650 env->spr[SPR_SPRG0] = hv_state.sprg[0]; 1651 env->spr[SPR_SPRG1] = hv_state.sprg[1]; 1652 env->spr[SPR_SPRG2] = hv_state.sprg[2]; 1653 env->spr[SPR_SPRG3] = hv_state.sprg[3]; 1654 env->spr[SPR_BOOKS_PID] = hv_state.pidr; 1655 env->spr[SPR_PPR] = hv_state.ppr; 1656 1657 cpu_ppc_hdecr_init(env); 1658 cpu_ppc_store_hdecr(env, hdec); 1659 1660 /* 1661 * The hv_state.vcpu_token is not needed. It is used by the KVM 1662 * implementation to remember which L2 vCPU last ran on which physical 1663 * CPU so as to invalidate process scope translations if it is moved 1664 * between physical CPUs. For now TLBs are always flushed on L1<->L2 1665 * transitions so this is not a problem. 1666 * 1667 * Could validate that the same vcpu_token does not attempt to run on 1668 * different L1 vCPUs at the same time, but that would be a L1 KVM bug 1669 * and it's not obviously worth a new data structure to do it. 1670 */ 1671 1672 env->tb_env->tb_offset += spapr_cpu->nested_tb_offset; 1673 spapr_cpu->in_nested = true; 1674 1675 hreg_compute_hflags(env); 1676 ppc_maybe_interrupt(env); 1677 tlb_flush(cs); 1678 env->reserve_addr = -1; /* Reset the reservation */ 1679 1680 /* 1681 * The spapr hcall helper sets env->gpr[3] to the return value, but at 1682 * this point the L1 is not returning from the hcall but rather we 1683 * start running the L2, so r3 must not be clobbered, so return env->gpr[3] 1684 * to leave it unchanged. 1685 */ 1686 return env->gpr[3]; 1687 } 1688 1689 void spapr_exit_nested(PowerPCCPU *cpu, int excp) 1690 { 1691 CPUState *cs = CPU(cpu); 1692 CPUPPCState *env = &cpu->env; 1693 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1694 target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */ 1695 target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4]; 1696 target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5]; 1697 struct kvmppc_hv_guest_state *hvstate; 1698 struct kvmppc_pt_regs *regs; 1699 hwaddr len; 1700 uint64_t cr; 1701 int i; 1702 1703 assert(spapr_cpu->in_nested); 1704 1705 cpu_ppc_hdecr_exit(env); 1706 1707 len = sizeof(*hvstate); 1708 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true, 1709 MEMTXATTRS_UNSPECIFIED); 1710 if (len != sizeof(*hvstate)) { 1711 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true); 1712 r3_return = H_PARAMETER; 1713 goto out_restore_l1; 1714 } 1715 1716 hvstate->cfar = env->cfar; 1717 hvstate->lpcr = env->spr[SPR_LPCR]; 1718 hvstate->pcr = env->spr[SPR_PCR]; 1719 hvstate->dpdes = env->spr[SPR_DPDES]; 1720 hvstate->hfscr = env->spr[SPR_HFSCR]; 1721 1722 if (excp == POWERPC_EXCP_HDSI) { 1723 hvstate->hdar = env->spr[SPR_HDAR]; 1724 hvstate->hdsisr = env->spr[SPR_HDSISR]; 1725 hvstate->asdr = env->spr[SPR_ASDR]; 1726 } else if (excp == POWERPC_EXCP_HISI) { 1727 hvstate->asdr = env->spr[SPR_ASDR]; 1728 } 1729 1730 /* HEIR should be implemented for HV mode and saved here. */ 1731 hvstate->srr0 = env->spr[SPR_SRR0]; 1732 hvstate->srr1 = env->spr[SPR_SRR1]; 1733 hvstate->sprg[0] = env->spr[SPR_SPRG0]; 1734 hvstate->sprg[1] = env->spr[SPR_SPRG1]; 1735 hvstate->sprg[2] = env->spr[SPR_SPRG2]; 1736 hvstate->sprg[3] = env->spr[SPR_SPRG3]; 1737 hvstate->pidr = env->spr[SPR_BOOKS_PID]; 1738 hvstate->ppr = env->spr[SPR_PPR]; 1739 1740 /* Is it okay to specify write length larger than actual data written? */ 1741 address_space_unmap(CPU(cpu)->as, hvstate, len, len, true); 1742 1743 len = sizeof(*regs); 1744 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true, 1745 MEMTXATTRS_UNSPECIFIED); 1746 if (!regs || len != sizeof(*regs)) { 1747 address_space_unmap(CPU(cpu)->as, regs, len, 0, true); 1748 r3_return = H_P2; 1749 goto out_restore_l1; 1750 } 1751 1752 len = sizeof(env->gpr); 1753 assert(len == sizeof(regs->gpr)); 1754 memcpy(regs->gpr, env->gpr, len); 1755 1756 regs->link = env->lr; 1757 regs->ctr = env->ctr; 1758 regs->xer = cpu_read_xer(env); 1759 1760 cr = 0; 1761 for (i = 0; i < 8; i++) { 1762 cr |= (env->crf[i] & 15) << (4 * (7 - i)); 1763 } 1764 regs->ccr = cr; 1765 1766 if (excp == POWERPC_EXCP_MCHECK || 1767 excp == POWERPC_EXCP_RESET || 1768 excp == POWERPC_EXCP_SYSCALL) { 1769 regs->nip = env->spr[SPR_SRR0]; 1770 regs->msr = env->spr[SPR_SRR1] & env->msr_mask; 1771 } else { 1772 regs->nip = env->spr[SPR_HSRR0]; 1773 regs->msr = env->spr[SPR_HSRR1] & env->msr_mask; 1774 } 1775 1776 /* Is it okay to specify write length larger than actual data written? */ 1777 address_space_unmap(CPU(cpu)->as, regs, len, len, true); 1778 1779 out_restore_l1: 1780 memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr)); 1781 env->lr = spapr_cpu->nested_host_state->lr; 1782 env->ctr = spapr_cpu->nested_host_state->ctr; 1783 memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf)); 1784 env->cfar = spapr_cpu->nested_host_state->cfar; 1785 env->xer = spapr_cpu->nested_host_state->xer; 1786 env->so = spapr_cpu->nested_host_state->so; 1787 env->ov = spapr_cpu->nested_host_state->ov; 1788 env->ov32 = spapr_cpu->nested_host_state->ov32; 1789 env->ca32 = spapr_cpu->nested_host_state->ca32; 1790 env->msr = spapr_cpu->nested_host_state->msr; 1791 env->nip = spapr_cpu->nested_host_state->nip; 1792 1793 assert(env->spr[SPR_LPIDR] != 0); 1794 env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR]; 1795 env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR]; 1796 env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR]; 1797 env->spr[SPR_DPDES] = 0; 1798 env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR]; 1799 env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0]; 1800 env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1]; 1801 env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0]; 1802 env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1]; 1803 env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2]; 1804 env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3]; 1805 env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID]; 1806 env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR]; 1807 1808 /* 1809 * Return the interrupt vector address from H_ENTER_NESTED to the L1 1810 * (or error code). 1811 */ 1812 env->gpr[3] = r3_return; 1813 1814 env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset; 1815 spapr_cpu->in_nested = false; 1816 1817 hreg_compute_hflags(env); 1818 ppc_maybe_interrupt(env); 1819 tlb_flush(cs); 1820 env->reserve_addr = -1; /* Reset the reservation */ 1821 1822 g_free(spapr_cpu->nested_host_state); 1823 spapr_cpu->nested_host_state = NULL; 1824 } 1825 1826 static void hypercall_register_nested(void) 1827 { 1828 spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl); 1829 spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested); 1830 spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate); 1831 spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest); 1832 } 1833 1834 static void hypercall_register_softmmu(void) 1835 { 1836 /* DO NOTHING */ 1837 } 1838 #else 1839 void spapr_exit_nested(PowerPCCPU *cpu, int excp) 1840 { 1841 g_assert_not_reached(); 1842 } 1843 1844 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr, 1845 target_ulong opcode, target_ulong *args) 1846 { 1847 g_assert_not_reached(); 1848 } 1849 1850 static void hypercall_register_nested(void) 1851 { 1852 /* DO NOTHING */ 1853 } 1854 1855 static void hypercall_register_softmmu(void) 1856 { 1857 /* hcall-pft */ 1858 spapr_register_hypercall(H_ENTER, h_softmmu); 1859 spapr_register_hypercall(H_REMOVE, h_softmmu); 1860 spapr_register_hypercall(H_PROTECT, h_softmmu); 1861 spapr_register_hypercall(H_READ, h_softmmu); 1862 1863 /* hcall-bulk */ 1864 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu); 1865 } 1866 #endif 1867 1868 static void hypercall_register_types(void) 1869 { 1870 hypercall_register_softmmu(); 1871 1872 /* hcall-hpt-resize */ 1873 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); 1874 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); 1875 1876 /* hcall-splpar */ 1877 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); 1878 spapr_register_hypercall(H_CEDE, h_cede); 1879 spapr_register_hypercall(H_CONFER, h_confer); 1880 spapr_register_hypercall(H_PROD, h_prod); 1881 1882 /* hcall-join */ 1883 spapr_register_hypercall(H_JOIN, h_join); 1884 1885 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); 1886 1887 /* processor register resource access h-calls */ 1888 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); 1889 spapr_register_hypercall(H_SET_DABR, h_set_dabr); 1890 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); 1891 spapr_register_hypercall(H_PAGE_INIT, h_page_init); 1892 spapr_register_hypercall(H_SET_MODE, h_set_mode); 1893 1894 /* In Memory Table MMU h-calls */ 1895 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); 1896 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); 1897 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); 1898 1899 /* hcall-get-cpu-characteristics */ 1900 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, 1901 h_get_cpu_characteristics); 1902 1903 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate 1904 * here between the "CI" and the "CACHE" variants, they will use whatever 1905 * mapping attributes qemu is using. When using KVM, the kernel will 1906 * enforce the attributes more strongly 1907 */ 1908 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); 1909 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); 1910 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); 1911 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); 1912 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); 1913 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); 1914 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); 1915 1916 /* qemu/KVM-PPC specific hcalls */ 1917 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); 1918 1919 /* ibm,client-architecture-support support */ 1920 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); 1921 1922 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); 1923 1924 hypercall_register_nested(); 1925 } 1926 1927 type_init(hypercall_register_types) 1928