xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision f2202be2)
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "sysemu/tcg.h"
7 #include "qemu/log.h"
8 #include "qemu/main-loop.h"
9 #include "qemu/module.h"
10 #include "qemu/error-report.h"
11 #include "exec/tb-flush.h"
12 #include "helper_regs.h"
13 #include "hw/ppc/ppc.h"
14 #include "hw/ppc/spapr.h"
15 #include "hw/ppc/spapr_cpu_core.h"
16 #include "hw/ppc/spapr_nested.h"
17 #include "mmu-hash64.h"
18 #include "cpu-models.h"
19 #include "trace.h"
20 #include "kvm_ppc.h"
21 #include "hw/ppc/fdt.h"
22 #include "hw/ppc/spapr_ovec.h"
23 #include "hw/ppc/spapr_numa.h"
24 #include "mmu-book3s-v3.h"
25 #include "hw/mem/memory-device.h"
26 
27 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
28 {
29     MachineState *machine = MACHINE(spapr);
30     DeviceMemoryState *dms = machine->device_memory;
31 
32     if (addr < machine->ram_size) {
33         return true;
34     }
35     if (dms && (addr >= dms->base)
36         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
37         return true;
38     }
39 
40     return false;
41 }
42 
43 /* Convert a return code from the KVM ioctl()s implementing resize HPT
44  * into a PAPR hypercall return code */
45 static target_ulong resize_hpt_convert_rc(int ret)
46 {
47     if (ret >= 100000) {
48         return H_LONG_BUSY_ORDER_100_SEC;
49     } else if (ret >= 10000) {
50         return H_LONG_BUSY_ORDER_10_SEC;
51     } else if (ret >= 1000) {
52         return H_LONG_BUSY_ORDER_1_SEC;
53     } else if (ret >= 100) {
54         return H_LONG_BUSY_ORDER_100_MSEC;
55     } else if (ret >= 10) {
56         return H_LONG_BUSY_ORDER_10_MSEC;
57     } else if (ret > 0) {
58         return H_LONG_BUSY_ORDER_1_MSEC;
59     }
60 
61     switch (ret) {
62     case 0:
63         return H_SUCCESS;
64     case -EPERM:
65         return H_AUTHORITY;
66     case -EINVAL:
67         return H_PARAMETER;
68     case -ENXIO:
69         return H_CLOSED;
70     case -ENOSPC:
71         return H_PTEG_FULL;
72     case -EBUSY:
73         return H_BUSY;
74     case -ENOMEM:
75         return H_NO_MEM;
76     default:
77         return H_HARDWARE;
78     }
79 }
80 
81 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
82                                          SpaprMachineState *spapr,
83                                          target_ulong opcode,
84                                          target_ulong *args)
85 {
86     target_ulong flags = args[0];
87     int shift = args[1];
88     uint64_t current_ram_size;
89     int rc;
90 
91     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
92         return H_AUTHORITY;
93     }
94 
95     if (!spapr->htab_shift) {
96         /* Radix guest, no HPT */
97         return H_NOT_AVAILABLE;
98     }
99 
100     trace_spapr_h_resize_hpt_prepare(flags, shift);
101 
102     if (flags != 0) {
103         return H_PARAMETER;
104     }
105 
106     if (shift && ((shift < 18) || (shift > 46))) {
107         return H_PARAMETER;
108     }
109 
110     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
111 
112     /* We only allow the guest to allocate an HPT one order above what
113      * we'd normally give them (to stop a small guest claiming a huge
114      * chunk of resources in the HPT */
115     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
116         return H_RESOURCE;
117     }
118 
119     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
120     if (rc != -ENOSYS) {
121         return resize_hpt_convert_rc(rc);
122     }
123 
124     if (kvm_enabled()) {
125         return H_HARDWARE;
126     } else if (tcg_enabled()) {
127         return vhyp_mmu_resize_hpt_prepare(cpu, spapr, shift);
128     } else {
129         g_assert_not_reached();
130     }
131 }
132 
133 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
134 {
135     int ret;
136 
137     cpu_synchronize_state(cs);
138 
139     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
140     if (ret < 0) {
141         error_report("failed to push sregs to KVM: %s", strerror(-ret));
142         exit(1);
143     }
144 }
145 
146 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
147 {
148     CPUState *cs;
149 
150     /*
151      * This is a hack for the benefit of KVM PR - it abuses the SDR1
152      * slot in kvm_sregs to communicate the userspace address of the
153      * HPT
154      */
155     if (!kvm_enabled() || !spapr->htab) {
156         return;
157     }
158 
159     CPU_FOREACH(cs) {
160         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
161     }
162 }
163 
164 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
165                                         SpaprMachineState *spapr,
166                                         target_ulong opcode,
167                                         target_ulong *args)
168 {
169     target_ulong flags = args[0];
170     target_ulong shift = args[1];
171     int rc;
172 
173     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
174         return H_AUTHORITY;
175     }
176 
177     if (!spapr->htab_shift) {
178         /* Radix guest, no HPT */
179         return H_NOT_AVAILABLE;
180     }
181 
182     trace_spapr_h_resize_hpt_commit(flags, shift);
183 
184     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
185     if (rc != -ENOSYS) {
186         rc = resize_hpt_convert_rc(rc);
187         if (rc == H_SUCCESS) {
188             /* Need to set the new htab_shift in the machine state */
189             spapr->htab_shift = shift;
190         }
191         return rc;
192     }
193 
194     if (kvm_enabled()) {
195         return H_HARDWARE;
196     } else if (tcg_enabled()) {
197         return vhyp_mmu_resize_hpt_commit(cpu, spapr, flags, shift);
198     } else {
199         g_assert_not_reached();
200     }
201 }
202 
203 
204 
205 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
206                                 target_ulong opcode, target_ulong *args)
207 {
208     cpu_synchronize_state(CPU(cpu));
209     cpu->env.spr[SPR_SPRG0] = args[0];
210 
211     return H_SUCCESS;
212 }
213 
214 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
215                                target_ulong opcode, target_ulong *args)
216 {
217     if (!ppc_has_spr(cpu, SPR_DABR)) {
218         return H_HARDWARE;              /* DABR register not available */
219     }
220     cpu_synchronize_state(CPU(cpu));
221 
222     if (ppc_has_spr(cpu, SPR_DABRX)) {
223         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
224     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
225         return H_RESERVED_DABR;
226     }
227 
228     cpu->env.spr[SPR_DABR] = args[0];
229     return H_SUCCESS;
230 }
231 
232 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
233                                 target_ulong opcode, target_ulong *args)
234 {
235     target_ulong dabrx = args[1];
236 
237     if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
238         return H_HARDWARE;
239     }
240 
241     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
242         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
243         return H_PARAMETER;
244     }
245 
246     cpu_synchronize_state(CPU(cpu));
247     cpu->env.spr[SPR_DABRX] = dabrx;
248     cpu->env.spr[SPR_DABR] = args[0];
249 
250     return H_SUCCESS;
251 }
252 
253 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
254                                 target_ulong opcode, target_ulong *args)
255 {
256     target_ulong flags = args[0];
257     hwaddr dst = args[1];
258     hwaddr src = args[2];
259     hwaddr len = TARGET_PAGE_SIZE;
260     uint8_t *pdst, *psrc;
261     target_long ret = H_SUCCESS;
262 
263     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
264                   | H_COPY_PAGE | H_ZERO_PAGE)) {
265         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
266                       flags);
267         return H_PARAMETER;
268     }
269 
270     /* Map-in destination */
271     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
272         return H_PARAMETER;
273     }
274     pdst = cpu_physical_memory_map(dst, &len, true);
275     if (!pdst || len != TARGET_PAGE_SIZE) {
276         return H_PARAMETER;
277     }
278 
279     if (flags & H_COPY_PAGE) {
280         /* Map-in source, copy to destination, and unmap source again */
281         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
282             ret = H_PARAMETER;
283             goto unmap_out;
284         }
285         psrc = cpu_physical_memory_map(src, &len, false);
286         if (!psrc || len != TARGET_PAGE_SIZE) {
287             ret = H_PARAMETER;
288             goto unmap_out;
289         }
290         memcpy(pdst, psrc, len);
291         cpu_physical_memory_unmap(psrc, len, 0, len);
292     } else if (flags & H_ZERO_PAGE) {
293         memset(pdst, 0, len);          /* Just clear the destination page */
294     }
295 
296     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
297         kvmppc_dcbst_range(cpu, pdst, len);
298     }
299     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
300         if (kvm_enabled()) {
301             kvmppc_icbi_range(cpu, pdst, len);
302         } else {
303             tb_flush(CPU(cpu));
304         }
305     }
306 
307 unmap_out:
308     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
309     return ret;
310 }
311 
312 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
313 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
314 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
315 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
316 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
317 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
318 
319 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
320 {
321     CPUState *cs = CPU(cpu);
322     CPUPPCState *env = &cpu->env;
323     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
324     uint16_t size;
325     uint8_t tmp;
326 
327     if (vpa == 0) {
328         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
329         return H_HARDWARE;
330     }
331 
332     if (vpa % env->dcache_line_size) {
333         return H_PARAMETER;
334     }
335     /* FIXME: bounds check the address */
336 
337     size = lduw_be_phys(cs->as, vpa + 0x4);
338 
339     if (size < VPA_MIN_SIZE) {
340         return H_PARAMETER;
341     }
342 
343     /* VPA is not allowed to cross a page boundary */
344     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
345         return H_PARAMETER;
346     }
347 
348     spapr_cpu->vpa_addr = vpa;
349 
350     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
351     tmp |= VPA_SHARED_PROC_VAL;
352     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
353 
354     return H_SUCCESS;
355 }
356 
357 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
358 {
359     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
360 
361     if (spapr_cpu->slb_shadow_addr) {
362         return H_RESOURCE;
363     }
364 
365     if (spapr_cpu->dtl_addr) {
366         return H_RESOURCE;
367     }
368 
369     spapr_cpu->vpa_addr = 0;
370     return H_SUCCESS;
371 }
372 
373 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
374 {
375     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
376     uint32_t size;
377 
378     if (addr == 0) {
379         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
380         return H_HARDWARE;
381     }
382 
383     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
384     if (size < 0x8) {
385         return H_PARAMETER;
386     }
387 
388     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
389         return H_PARAMETER;
390     }
391 
392     if (!spapr_cpu->vpa_addr) {
393         return H_RESOURCE;
394     }
395 
396     spapr_cpu->slb_shadow_addr = addr;
397     spapr_cpu->slb_shadow_size = size;
398 
399     return H_SUCCESS;
400 }
401 
402 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
403 {
404     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
405 
406     spapr_cpu->slb_shadow_addr = 0;
407     spapr_cpu->slb_shadow_size = 0;
408     return H_SUCCESS;
409 }
410 
411 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
412 {
413     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
414     uint32_t size;
415 
416     if (addr == 0) {
417         hcall_dprintf("Can't cope with DTL at logical 0\n");
418         return H_HARDWARE;
419     }
420 
421     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
422 
423     if (size < 48) {
424         return H_PARAMETER;
425     }
426 
427     if (!spapr_cpu->vpa_addr) {
428         return H_RESOURCE;
429     }
430 
431     spapr_cpu->dtl_addr = addr;
432     spapr_cpu->dtl_size = size;
433 
434     return H_SUCCESS;
435 }
436 
437 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
438 {
439     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
440 
441     spapr_cpu->dtl_addr = 0;
442     spapr_cpu->dtl_size = 0;
443 
444     return H_SUCCESS;
445 }
446 
447 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
448                                    target_ulong opcode, target_ulong *args)
449 {
450     target_ulong flags = args[0];
451     target_ulong procno = args[1];
452     target_ulong vpa = args[2];
453     target_ulong ret = H_PARAMETER;
454     PowerPCCPU *tcpu;
455 
456     tcpu = spapr_find_cpu(procno);
457     if (!tcpu) {
458         return H_PARAMETER;
459     }
460 
461     switch (flags) {
462     case FLAGS_REGISTER_VPA:
463         ret = register_vpa(tcpu, vpa);
464         break;
465 
466     case FLAGS_DEREGISTER_VPA:
467         ret = deregister_vpa(tcpu, vpa);
468         break;
469 
470     case FLAGS_REGISTER_SLBSHADOW:
471         ret = register_slb_shadow(tcpu, vpa);
472         break;
473 
474     case FLAGS_DEREGISTER_SLBSHADOW:
475         ret = deregister_slb_shadow(tcpu, vpa);
476         break;
477 
478     case FLAGS_REGISTER_DTL:
479         ret = register_dtl(tcpu, vpa);
480         break;
481 
482     case FLAGS_DEREGISTER_DTL:
483         ret = deregister_dtl(tcpu, vpa);
484         break;
485     }
486 
487     return ret;
488 }
489 
490 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
491                            target_ulong opcode, target_ulong *args)
492 {
493     CPUPPCState *env = &cpu->env;
494     CPUState *cs = CPU(cpu);
495     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
496 
497     env->msr |= (1ULL << MSR_EE);
498     hreg_compute_hflags(env);
499     ppc_maybe_interrupt(env);
500 
501     if (spapr_cpu->prod) {
502         spapr_cpu->prod = false;
503         return H_SUCCESS;
504     }
505 
506     if (!cpu_has_work(cs)) {
507         cs->halted = 1;
508         cs->exception_index = EXCP_HLT;
509         cs->exit_request = 1;
510         ppc_maybe_interrupt(env);
511     }
512 
513     return H_SUCCESS;
514 }
515 
516 /*
517  * Confer to self, aka join. Cede could use the same pattern as well, if
518  * EXCP_HLT can be changed to ECXP_HALTED.
519  */
520 static target_ulong h_confer_self(PowerPCCPU *cpu)
521 {
522     CPUState *cs = CPU(cpu);
523     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
524 
525     if (spapr_cpu->prod) {
526         spapr_cpu->prod = false;
527         return H_SUCCESS;
528     }
529     cs->halted = 1;
530     cs->exception_index = EXCP_HALTED;
531     cs->exit_request = 1;
532     ppc_maybe_interrupt(&cpu->env);
533 
534     return H_SUCCESS;
535 }
536 
537 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
538                            target_ulong opcode, target_ulong *args)
539 {
540     CPUPPCState *env = &cpu->env;
541     CPUState *cs;
542     bool last_unjoined = true;
543 
544     if (env->msr & (1ULL << MSR_EE)) {
545         return H_BAD_MODE;
546     }
547 
548     /*
549      * Must not join the last CPU running. Interestingly, no such restriction
550      * for H_CONFER-to-self, but that is probably not intended to be used
551      * when H_JOIN is available.
552      */
553     CPU_FOREACH(cs) {
554         PowerPCCPU *c = POWERPC_CPU(cs);
555         CPUPPCState *e = &c->env;
556         if (c == cpu) {
557             continue;
558         }
559 
560         /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
561         if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
562             last_unjoined = false;
563             break;
564         }
565     }
566     if (last_unjoined) {
567         return H_CONTINUE;
568     }
569 
570     return h_confer_self(cpu);
571 }
572 
573 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
574                            target_ulong opcode, target_ulong *args)
575 {
576     target_long target = args[0];
577     uint32_t dispatch = args[1];
578     CPUState *cs = CPU(cpu);
579     SpaprCpuState *spapr_cpu;
580 
581     /*
582      * -1 means confer to all other CPUs without dispatch counter check,
583      *  otherwise it's a targeted confer.
584      */
585     if (target != -1) {
586         PowerPCCPU *target_cpu = spapr_find_cpu(target);
587         uint32_t target_dispatch;
588 
589         if (!target_cpu) {
590             return H_PARAMETER;
591         }
592 
593         /*
594          * target == self is a special case, we wait until prodded, without
595          * dispatch counter check.
596          */
597         if (cpu == target_cpu) {
598             return h_confer_self(cpu);
599         }
600 
601         spapr_cpu = spapr_cpu_state(target_cpu);
602         if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
603             return H_SUCCESS;
604         }
605 
606         target_dispatch = ldl_be_phys(cs->as,
607                                   spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
608         if (target_dispatch != dispatch) {
609             return H_SUCCESS;
610         }
611 
612         /*
613          * The targeted confer does not do anything special beyond yielding
614          * the current vCPU, but even this should be better than nothing.
615          * At least for single-threaded tcg, it gives the target a chance to
616          * run before we run again. Multi-threaded tcg does not really do
617          * anything with EXCP_YIELD yet.
618          */
619     }
620 
621     cs->exception_index = EXCP_YIELD;
622     cs->exit_request = 1;
623     cpu_loop_exit(cs);
624 
625     return H_SUCCESS;
626 }
627 
628 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
629                            target_ulong opcode, target_ulong *args)
630 {
631     target_long target = args[0];
632     PowerPCCPU *tcpu;
633     CPUState *cs;
634     SpaprCpuState *spapr_cpu;
635 
636     tcpu = spapr_find_cpu(target);
637     cs = CPU(tcpu);
638     if (!cs) {
639         return H_PARAMETER;
640     }
641 
642     spapr_cpu = spapr_cpu_state(tcpu);
643     spapr_cpu->prod = true;
644     cs->halted = 0;
645     ppc_maybe_interrupt(&cpu->env);
646     qemu_cpu_kick(cs);
647 
648     return H_SUCCESS;
649 }
650 
651 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
652                            target_ulong opcode, target_ulong *args)
653 {
654     target_ulong rtas_r3 = args[0];
655     uint32_t token = rtas_ld(rtas_r3, 0);
656     uint32_t nargs = rtas_ld(rtas_r3, 1);
657     uint32_t nret = rtas_ld(rtas_r3, 2);
658 
659     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
660                            nret, rtas_r3 + 12 + 4*nargs);
661 }
662 
663 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
664                                    target_ulong opcode, target_ulong *args)
665 {
666     CPUState *cs = CPU(cpu);
667     target_ulong size = args[0];
668     target_ulong addr = args[1];
669 
670     switch (size) {
671     case 1:
672         args[0] = ldub_phys(cs->as, addr);
673         return H_SUCCESS;
674     case 2:
675         args[0] = lduw_phys(cs->as, addr);
676         return H_SUCCESS;
677     case 4:
678         args[0] = ldl_phys(cs->as, addr);
679         return H_SUCCESS;
680     case 8:
681         args[0] = ldq_phys(cs->as, addr);
682         return H_SUCCESS;
683     }
684     return H_PARAMETER;
685 }
686 
687 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
688                                     target_ulong opcode, target_ulong *args)
689 {
690     CPUState *cs = CPU(cpu);
691 
692     target_ulong size = args[0];
693     target_ulong addr = args[1];
694     target_ulong val  = args[2];
695 
696     switch (size) {
697     case 1:
698         stb_phys(cs->as, addr, val);
699         return H_SUCCESS;
700     case 2:
701         stw_phys(cs->as, addr, val);
702         return H_SUCCESS;
703     case 4:
704         stl_phys(cs->as, addr, val);
705         return H_SUCCESS;
706     case 8:
707         stq_phys(cs->as, addr, val);
708         return H_SUCCESS;
709     }
710     return H_PARAMETER;
711 }
712 
713 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
714                                     target_ulong opcode, target_ulong *args)
715 {
716     CPUState *cs = CPU(cpu);
717 
718     target_ulong dst   = args[0]; /* Destination address */
719     target_ulong src   = args[1]; /* Source address */
720     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
721     target_ulong count = args[3]; /* Element count */
722     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
723     uint64_t tmp;
724     unsigned int mask = (1 << esize) - 1;
725     int step = 1 << esize;
726 
727     if (count > 0x80000000) {
728         return H_PARAMETER;
729     }
730 
731     if ((dst & mask) || (src & mask) || (op > 1)) {
732         return H_PARAMETER;
733     }
734 
735     if (dst >= src && dst < (src + (count << esize))) {
736             dst = dst + ((count - 1) << esize);
737             src = src + ((count - 1) << esize);
738             step = -step;
739     }
740 
741     while (count--) {
742         switch (esize) {
743         case 0:
744             tmp = ldub_phys(cs->as, src);
745             break;
746         case 1:
747             tmp = lduw_phys(cs->as, src);
748             break;
749         case 2:
750             tmp = ldl_phys(cs->as, src);
751             break;
752         case 3:
753             tmp = ldq_phys(cs->as, src);
754             break;
755         default:
756             return H_PARAMETER;
757         }
758         if (op == 1) {
759             tmp = ~tmp;
760         }
761         switch (esize) {
762         case 0:
763             stb_phys(cs->as, dst, tmp);
764             break;
765         case 1:
766             stw_phys(cs->as, dst, tmp);
767             break;
768         case 2:
769             stl_phys(cs->as, dst, tmp);
770             break;
771         case 3:
772             stq_phys(cs->as, dst, tmp);
773             break;
774         }
775         dst = dst + step;
776         src = src + step;
777     }
778 
779     return H_SUCCESS;
780 }
781 
782 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
783                                    target_ulong opcode, target_ulong *args)
784 {
785     /* Nothing to do on emulation, KVM will trap this in the kernel */
786     return H_SUCCESS;
787 }
788 
789 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
790                                    target_ulong opcode, target_ulong *args)
791 {
792     /* Nothing to do on emulation, KVM will trap this in the kernel */
793     return H_SUCCESS;
794 }
795 
796 static target_ulong h_set_mode_resource_set_ciabr(PowerPCCPU *cpu,
797                                                   SpaprMachineState *spapr,
798                                                   target_ulong mflags,
799                                                   target_ulong value1,
800                                                   target_ulong value2)
801 {
802     CPUPPCState *env = &cpu->env;
803 
804     assert(tcg_enabled()); /* KVM will have handled this */
805 
806     if (mflags) {
807         return H_UNSUPPORTED_FLAG;
808     }
809     if (value2) {
810         return H_P4;
811     }
812     if ((value1 & PPC_BITMASK(62, 63)) == 0x3) {
813         return H_P3;
814     }
815 
816     ppc_store_ciabr(env, value1);
817 
818     return H_SUCCESS;
819 }
820 
821 static target_ulong h_set_mode_resource_set_dawr0(PowerPCCPU *cpu,
822                                                   SpaprMachineState *spapr,
823                                                   target_ulong mflags,
824                                                   target_ulong value1,
825                                                   target_ulong value2)
826 {
827     CPUPPCState *env = &cpu->env;
828 
829     assert(tcg_enabled()); /* KVM will have handled this */
830 
831     if (mflags) {
832         return H_UNSUPPORTED_FLAG;
833     }
834     if (value2 & PPC_BIT(61)) {
835         return H_P4;
836     }
837 
838     ppc_store_dawr0(env, value1);
839     ppc_store_dawrx0(env, value2);
840 
841     return H_SUCCESS;
842 }
843 
844 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
845                                            SpaprMachineState *spapr,
846                                            target_ulong mflags,
847                                            target_ulong value1,
848                                            target_ulong value2)
849 {
850     if (value1) {
851         return H_P3;
852     }
853     if (value2) {
854         return H_P4;
855     }
856 
857     switch (mflags) {
858     case H_SET_MODE_ENDIAN_BIG:
859         spapr_set_all_lpcrs(0, LPCR_ILE);
860         spapr_pci_switch_vga(spapr, true);
861         return H_SUCCESS;
862 
863     case H_SET_MODE_ENDIAN_LITTLE:
864         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
865         spapr_pci_switch_vga(spapr, false);
866         return H_SUCCESS;
867     }
868 
869     return H_UNSUPPORTED_FLAG;
870 }
871 
872 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
873                                                         SpaprMachineState *spapr,
874                                                         target_ulong mflags,
875                                                         target_ulong value1,
876                                                         target_ulong value2)
877 {
878     if (value1) {
879         return H_P3;
880     }
881 
882     if (value2) {
883         return H_P4;
884     }
885 
886     /*
887      * AIL-1 is not architected, and AIL-2 is not supported by QEMU spapr.
888      * It is supported for faithful emulation of bare metal systems, but for
889      * compatibility concerns we leave it out of the pseries machine.
890      */
891     if (mflags != 0 && mflags != 3) {
892         return H_UNSUPPORTED_FLAG;
893     }
894 
895     if (mflags == 3) {
896         if (!spapr_get_cap(spapr, SPAPR_CAP_AIL_MODE_3)) {
897             return H_UNSUPPORTED_FLAG;
898         }
899     }
900 
901     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
902 
903     return H_SUCCESS;
904 }
905 
906 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
907                                target_ulong opcode, target_ulong *args)
908 {
909     target_ulong resource = args[1];
910     target_ulong ret = H_P2;
911 
912     switch (resource) {
913     case H_SET_MODE_RESOURCE_SET_CIABR:
914         ret = h_set_mode_resource_set_ciabr(cpu, spapr, args[0], args[2],
915                                             args[3]);
916         break;
917     case H_SET_MODE_RESOURCE_SET_DAWR0:
918         ret = h_set_mode_resource_set_dawr0(cpu, spapr, args[0], args[2],
919                                             args[3]);
920         break;
921     case H_SET_MODE_RESOURCE_LE:
922         ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
923         break;
924     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
925         ret = h_set_mode_resource_addr_trans_mode(cpu, spapr, args[0],
926                                                   args[2], args[3]);
927         break;
928     }
929 
930     return ret;
931 }
932 
933 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
934                                 target_ulong opcode, target_ulong *args)
935 {
936     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
937                   opcode, " (H_CLEAN_SLB)");
938     return H_FUNCTION;
939 }
940 
941 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
942                                      target_ulong opcode, target_ulong *args)
943 {
944     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
945                   opcode, " (H_INVALIDATE_PID)");
946     return H_FUNCTION;
947 }
948 
949 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
950                                        uint64_t patbe_old, uint64_t patbe_new)
951 {
952     /*
953      * We have 4 Options:
954      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
955      * HASH->RADIX                                  : Free HPT
956      * RADIX->HASH                                  : Allocate HPT
957      * NOTHING->HASH                                : Allocate HPT
958      * Note: NOTHING implies the case where we said the guest could choose
959      *       later and so assumed radix and now it's called H_REG_PROC_TBL
960      */
961 
962     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
963         /* We assume RADIX, so this catches all the "Do Nothing" cases */
964     } else if (!(patbe_old & PATE1_GR)) {
965         /* HASH->RADIX : Free HPT */
966         spapr_free_hpt(spapr);
967     } else if (!(patbe_new & PATE1_GR)) {
968         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
969         spapr_setup_hpt(spapr);
970     }
971     return;
972 }
973 
974 #define FLAGS_MASK              0x01FULL
975 #define FLAG_MODIFY             0x10
976 #define FLAG_REGISTER           0x08
977 #define FLAG_RADIX              0x04
978 #define FLAG_HASH_PROC_TBL      0x02
979 #define FLAG_GTSE               0x01
980 
981 static target_ulong h_register_process_table(PowerPCCPU *cpu,
982                                              SpaprMachineState *spapr,
983                                              target_ulong opcode,
984                                              target_ulong *args)
985 {
986     target_ulong flags = args[0];
987     target_ulong proc_tbl = args[1];
988     target_ulong page_size = args[2];
989     target_ulong table_size = args[3];
990     target_ulong update_lpcr = 0;
991     target_ulong table_byte_size;
992     uint64_t cproc;
993 
994     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
995         return H_PARAMETER;
996     }
997     if (flags & FLAG_MODIFY) {
998         if (flags & FLAG_REGISTER) {
999             /* Check process table alignment */
1000             table_byte_size = 1ULL << (table_size + 12);
1001             if (proc_tbl & (table_byte_size - 1)) {
1002                 qemu_log_mask(LOG_GUEST_ERROR,
1003                     "%s: process table not properly aligned: proc_tbl 0x"
1004                     TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
1005                     __func__, proc_tbl, table_byte_size);
1006             }
1007             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1008                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1009                     return H_P2;
1010                 } else if (page_size) {
1011                     return H_P3;
1012                 } else if (table_size > 24) {
1013                     return H_P4;
1014                 }
1015                 cproc = PATE1_GR | proc_tbl | table_size;
1016             } else { /* Register new HPT process table */
1017                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1018                     /* TODO - Not Supported */
1019                     /* Technically caused by flag bits => H_PARAMETER */
1020                     return H_PARAMETER;
1021                 } else { /* Hash with SLB */
1022                     if (proc_tbl >> 38) {
1023                         return H_P2;
1024                     } else if (page_size & ~0x7) {
1025                         return H_P3;
1026                     } else if (table_size > 24) {
1027                         return H_P4;
1028                     }
1029                 }
1030                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1031             }
1032 
1033         } else { /* Deregister current process table */
1034             /*
1035              * Set to benign value: (current GR) | 0. This allows
1036              * deregistration in KVM to succeed even if the radix bit
1037              * in flags doesn't match the radix bit in the old PATE.
1038              */
1039             cproc = spapr->patb_entry & PATE1_GR;
1040         }
1041     } else { /* Maintain current registration */
1042         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1043             /* Technically caused by flag bits => H_PARAMETER */
1044             return H_PARAMETER; /* Existing Process Table Mismatch */
1045         }
1046         cproc = spapr->patb_entry;
1047     }
1048 
1049     /* Check if we need to setup OR free the hpt */
1050     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1051 
1052     spapr->patb_entry = cproc; /* Save new process table */
1053 
1054     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1055     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
1056         update_lpcr |= (LPCR_UPRT | LPCR_HR);
1057     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1058         update_lpcr |= LPCR_UPRT;
1059     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
1060         update_lpcr |= LPCR_GTSE;
1061 
1062     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1063 
1064     if (kvm_enabled()) {
1065         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1066                                        flags & FLAG_GTSE, cproc);
1067     }
1068     return H_SUCCESS;
1069 }
1070 
1071 #define H_SIGNAL_SYS_RESET_ALL         -1
1072 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1073 
1074 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1075                                        SpaprMachineState *spapr,
1076                                        target_ulong opcode, target_ulong *args)
1077 {
1078     target_long target = args[0];
1079     CPUState *cs;
1080 
1081     if (target < 0) {
1082         /* Broadcast */
1083         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1084             return H_PARAMETER;
1085         }
1086 
1087         CPU_FOREACH(cs) {
1088             PowerPCCPU *c = POWERPC_CPU(cs);
1089 
1090             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1091                 if (c == cpu) {
1092                     continue;
1093                 }
1094             }
1095             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1096         }
1097         return H_SUCCESS;
1098 
1099     } else {
1100         /* Unicast */
1101         cs = CPU(spapr_find_cpu(target));
1102         if (cs) {
1103             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1104             return H_SUCCESS;
1105         }
1106         return H_PARAMETER;
1107     }
1108 }
1109 
1110 /* Returns either a logical PVR or zero if none was found */
1111 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1112                               target_ulong *addr, bool *raw_mode_supported)
1113 {
1114     bool explicit_match = false; /* Matched the CPU's real PVR */
1115     uint32_t best_compat = 0;
1116     int i;
1117 
1118     /*
1119      * We scan the supplied table of PVRs looking for two things
1120      *   1. Is our real CPU PVR in the list?
1121      *   2. What's the "best" listed logical PVR
1122      */
1123     for (i = 0; i < 512; ++i) {
1124         uint32_t pvr, pvr_mask;
1125 
1126         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1127         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1128         *addr += 8;
1129 
1130         if (~pvr_mask & pvr) {
1131             break; /* Terminator record */
1132         }
1133 
1134         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1135             explicit_match = true;
1136         } else {
1137             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1138                 best_compat = pvr;
1139             }
1140         }
1141     }
1142 
1143     *raw_mode_supported = explicit_match;
1144 
1145     /* Parsing finished */
1146     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1147 
1148     return best_compat;
1149 }
1150 
1151 static
1152 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1153                                             SpaprMachineState *spapr,
1154                                             target_ulong vec,
1155                                             target_ulong fdt_bufsize)
1156 {
1157     target_ulong ov_table; /* Working address in data buffer */
1158     uint32_t cas_pvr;
1159     SpaprOptionVector *ov1_guest, *ov5_guest;
1160     bool guest_radix;
1161     bool raw_mode_supported = false;
1162     bool guest_xive;
1163     CPUState *cs;
1164     void *fdt;
1165     uint32_t max_compat = spapr->max_compat_pvr;
1166 
1167     /* CAS is supposed to be called early when only the boot vCPU is active. */
1168     CPU_FOREACH(cs) {
1169         if (cs == CPU(cpu)) {
1170             continue;
1171         }
1172         if (!cs->halted) {
1173             warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1174             return H_MULTI_THREADS_ACTIVE;
1175         }
1176     }
1177 
1178     cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1179     if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1180         /*
1181          * We couldn't find a suitable compatibility mode, and either
1182          * the guest doesn't support "raw" mode for this CPU, or "raw"
1183          * mode is disabled because a maximum compat mode is set.
1184          */
1185         error_report("Couldn't negotiate a suitable PVR during CAS");
1186         return H_HARDWARE;
1187     }
1188 
1189     /* Update CPUs */
1190     if (cpu->compat_pvr != cas_pvr) {
1191         Error *local_err = NULL;
1192 
1193         if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1194             /* We fail to set compat mode (likely because running with KVM PR),
1195              * but maybe we can fallback to raw mode if the guest supports it.
1196              */
1197             if (!raw_mode_supported) {
1198                 error_report_err(local_err);
1199                 return H_HARDWARE;
1200             }
1201             error_free(local_err);
1202         }
1203     }
1204 
1205     /* For the future use: here @ov_table points to the first option vector */
1206     ov_table = vec;
1207 
1208     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1209     if (!ov1_guest) {
1210         warn_report("guest didn't provide option vector 1");
1211         return H_PARAMETER;
1212     }
1213     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1214     if (!ov5_guest) {
1215         spapr_ovec_cleanup(ov1_guest);
1216         warn_report("guest didn't provide option vector 5");
1217         return H_PARAMETER;
1218     }
1219     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1220         error_report("guest requested hash and radix MMU, which is invalid.");
1221         exit(EXIT_FAILURE);
1222     }
1223     if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1224         error_report("guest requested an invalid interrupt mode");
1225         exit(EXIT_FAILURE);
1226     }
1227 
1228     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1229 
1230     guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1231 
1232     /*
1233      * HPT resizing is a bit of a special case, because when enabled
1234      * we assume an HPT guest will support it until it says it
1235      * doesn't, instead of assuming it won't support it until it says
1236      * it does.  Strictly speaking that approach could break for
1237      * guests which don't make a CAS call, but those are so old we
1238      * don't care about them.  Without that assumption we'd have to
1239      * make at least a temporary allocation of an HPT sized for max
1240      * memory, which could be impossibly difficult under KVM HV if
1241      * maxram is large.
1242      */
1243     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1244         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1245 
1246         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1247             error_report(
1248                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1249             exit(1);
1250         }
1251 
1252         if (spapr->htab_shift < maxshift) {
1253             /* Guest doesn't know about HPT resizing, so we
1254              * pre-emptively resize for the maximum permitted RAM.  At
1255              * the point this is called, nothing should have been
1256              * entered into the existing HPT */
1257             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1258             push_sregs_to_kvm_pr(spapr);
1259         }
1260     }
1261 
1262     /* NOTE: there are actually a number of ov5 bits where input from the
1263      * guest is always zero, and the platform/QEMU enables them independently
1264      * of guest input. To model these properly we'd want some sort of mask,
1265      * but since they only currently apply to memory migration as defined
1266      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1267      * to worry about this for now.
1268      */
1269 
1270     /* full range of negotiated ov5 capabilities */
1271     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1272     spapr_ovec_cleanup(ov5_guest);
1273 
1274     spapr_check_mmu_mode(guest_radix);
1275 
1276     spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1277     spapr_ovec_cleanup(ov1_guest);
1278 
1279     /*
1280      * Check for NUMA affinity conditions now that we know which NUMA
1281      * affinity the guest will use.
1282      */
1283     spapr_numa_associativity_check(spapr);
1284 
1285     /*
1286      * Ensure the guest asks for an interrupt mode we support;
1287      * otherwise terminate the boot.
1288      */
1289     if (guest_xive) {
1290         if (!spapr->irq->xive) {
1291             error_report(
1292 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1293             exit(EXIT_FAILURE);
1294         }
1295     } else {
1296         if (!spapr->irq->xics) {
1297             error_report(
1298 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1299             exit(EXIT_FAILURE);
1300         }
1301     }
1302 
1303     spapr_irq_update_active_intc(spapr);
1304 
1305     /*
1306      * Process all pending hot-plug/unplug requests now. An updated full
1307      * rendered FDT will be returned to the guest.
1308      */
1309     spapr_drc_reset_all(spapr);
1310     spapr_clear_pending_hotplug_events(spapr);
1311 
1312     /*
1313      * If spapr_machine_reset() did not set up a HPT but one is necessary
1314      * (because the guest isn't going to use radix) then set it up here.
1315      */
1316     if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1317         /* legacy hash or new hash: */
1318         spapr_setup_hpt(spapr);
1319     }
1320 
1321     fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1322     g_free(spapr->fdt_blob);
1323     spapr->fdt_size = fdt_totalsize(fdt);
1324     spapr->fdt_initial_size = spapr->fdt_size;
1325     spapr->fdt_blob = fdt;
1326 
1327     /*
1328      * Set the machine->fdt pointer again since we just freed
1329      * it above (by freeing spapr->fdt_blob). We set this
1330      * pointer to enable support for the 'dumpdtb' QMP/HMP
1331      * command.
1332      */
1333     MACHINE(spapr)->fdt = fdt;
1334 
1335     return H_SUCCESS;
1336 }
1337 
1338 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1339                                                   SpaprMachineState *spapr,
1340                                                   target_ulong opcode,
1341                                                   target_ulong *args)
1342 {
1343     target_ulong vec = ppc64_phys_to_real(args[0]);
1344     target_ulong fdt_buf = args[1];
1345     target_ulong fdt_bufsize = args[2];
1346     target_ulong ret;
1347     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1348 
1349     if (fdt_bufsize < sizeof(hdr)) {
1350         error_report("SLOF provided insufficient CAS buffer "
1351                      TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1352         exit(EXIT_FAILURE);
1353     }
1354 
1355     fdt_bufsize -= sizeof(hdr);
1356 
1357     ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1358     if (ret == H_SUCCESS) {
1359         _FDT((fdt_pack(spapr->fdt_blob)));
1360         spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1361         spapr->fdt_initial_size = spapr->fdt_size;
1362 
1363         cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1364         cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1365                                   spapr->fdt_size);
1366         trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1367     }
1368 
1369     return ret;
1370 }
1371 
1372 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1373                                                    CPUState *cs,
1374                                                    target_ulong ovec_addr)
1375 {
1376     SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1377 
1378     target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1379                                                       ovec_addr, FDT_MAX_SIZE);
1380 
1381     /*
1382      * This adds stdout and generates phandles for boottime and CAS FDTs.
1383      * It is alright to update the FDT here as do_client_architecture_support()
1384      * does not pack it.
1385      */
1386     spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1387 
1388     return ret;
1389 }
1390 
1391 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1392                                               SpaprMachineState *spapr,
1393                                               target_ulong opcode,
1394                                               target_ulong *args)
1395 {
1396     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1397                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1398     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1399     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1400     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1401     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1402     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1403                                                      SPAPR_CAP_CCF_ASSIST);
1404 
1405     switch (safe_cache) {
1406     case SPAPR_CAP_WORKAROUND:
1407         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1408         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1409         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1410         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1411         break;
1412     case SPAPR_CAP_FIXED:
1413         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1414         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1415         break;
1416     default: /* broken */
1417         assert(safe_cache == SPAPR_CAP_BROKEN);
1418         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1419         break;
1420     }
1421 
1422     switch (safe_bounds_check) {
1423     case SPAPR_CAP_WORKAROUND:
1424         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1425         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1426         break;
1427     case SPAPR_CAP_FIXED:
1428         break;
1429     default: /* broken */
1430         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1431         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1432         break;
1433     }
1434 
1435     switch (safe_indirect_branch) {
1436     case SPAPR_CAP_FIXED_NA:
1437         break;
1438     case SPAPR_CAP_FIXED_CCD:
1439         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1440         break;
1441     case SPAPR_CAP_FIXED_IBS:
1442         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1443         break;
1444     case SPAPR_CAP_WORKAROUND:
1445         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1446         if (count_cache_flush_assist) {
1447             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1448         }
1449         break;
1450     default: /* broken */
1451         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1452         break;
1453     }
1454 
1455     args[0] = characteristics;
1456     args[1] = behaviour;
1457     return H_SUCCESS;
1458 }
1459 
1460 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1461                                 target_ulong opcode, target_ulong *args)
1462 {
1463     target_ulong dt = ppc64_phys_to_real(args[0]);
1464     struct fdt_header hdr = { 0 };
1465     unsigned cb;
1466     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1467     void *fdt;
1468 
1469     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1470     cb = fdt32_to_cpu(hdr.totalsize);
1471 
1472     if (!smc->update_dt_enabled) {
1473         return H_SUCCESS;
1474     }
1475 
1476     /* Check that the fdt did not grow out of proportion */
1477     if (cb > spapr->fdt_initial_size * 2) {
1478         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1479                                           fdt32_to_cpu(hdr.magic));
1480         return H_PARAMETER;
1481     }
1482 
1483     fdt = g_malloc0(cb);
1484     cpu_physical_memory_read(dt, fdt, cb);
1485 
1486     /* Check the fdt consistency */
1487     if (fdt_check_full(fdt, cb)) {
1488         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1489                                            fdt32_to_cpu(hdr.magic));
1490         return H_PARAMETER;
1491     }
1492 
1493     g_free(spapr->fdt_blob);
1494     spapr->fdt_size = cb;
1495     spapr->fdt_blob = fdt;
1496     trace_spapr_update_dt(cb);
1497 
1498     return H_SUCCESS;
1499 }
1500 
1501 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1502 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1503 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1504 
1505 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1506 {
1507     spapr_hcall_fn *slot;
1508 
1509     if (opcode <= MAX_HCALL_OPCODE) {
1510         assert((opcode & 0x3) == 0);
1511 
1512         slot = &papr_hypercall_table[opcode / 4];
1513     } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1514         /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1515         assert((opcode & 0x3) == 0);
1516 
1517         slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1518     } else {
1519         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1520 
1521         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1522     }
1523 
1524     assert(!(*slot));
1525     *slot = fn;
1526 }
1527 
1528 void spapr_unregister_hypercall(target_ulong opcode)
1529 {
1530     spapr_hcall_fn *slot;
1531 
1532     if (opcode <= MAX_HCALL_OPCODE) {
1533         assert((opcode & 0x3) == 0);
1534 
1535         slot = &papr_hypercall_table[opcode / 4];
1536     } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1537         /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1538         assert((opcode & 0x3) == 0);
1539 
1540         slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1541     } else {
1542         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1543 
1544         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1545     }
1546 
1547     *slot = NULL;
1548 }
1549 
1550 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1551                              target_ulong *args)
1552 {
1553     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1554 
1555     if ((opcode <= MAX_HCALL_OPCODE)
1556         && ((opcode & 0x3) == 0)) {
1557         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1558 
1559         if (fn) {
1560             return fn(cpu, spapr, opcode, args);
1561         }
1562     } else if ((opcode >= SVM_HCALL_BASE) &&
1563                (opcode <= SVM_HCALL_MAX)) {
1564         spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1565 
1566         if (fn) {
1567             return fn(cpu, spapr, opcode, args);
1568         }
1569     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1570                (opcode <= KVMPPC_HCALL_MAX)) {
1571         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1572 
1573         if (fn) {
1574             return fn(cpu, spapr, opcode, args);
1575         }
1576     }
1577 
1578     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1579                   opcode);
1580     return H_FUNCTION;
1581 }
1582 
1583 #ifdef CONFIG_TCG
1584 static void hypercall_register_softmmu(void)
1585 {
1586     /* DO NOTHING */
1587 }
1588 #else
1589 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1590                             target_ulong opcode, target_ulong *args)
1591 {
1592     g_assert_not_reached();
1593 }
1594 
1595 static void hypercall_register_softmmu(void)
1596 {
1597     /* hcall-pft */
1598     spapr_register_hypercall(H_ENTER, h_softmmu);
1599     spapr_register_hypercall(H_REMOVE, h_softmmu);
1600     spapr_register_hypercall(H_PROTECT, h_softmmu);
1601     spapr_register_hypercall(H_READ, h_softmmu);
1602 
1603     /* hcall-bulk */
1604     spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1605 }
1606 #endif
1607 
1608 static void hypercall_register_types(void)
1609 {
1610     hypercall_register_softmmu();
1611 
1612     /* hcall-hpt-resize */
1613     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1614     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1615 
1616     /* hcall-splpar */
1617     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1618     spapr_register_hypercall(H_CEDE, h_cede);
1619     spapr_register_hypercall(H_CONFER, h_confer);
1620     spapr_register_hypercall(H_PROD, h_prod);
1621 
1622     /* hcall-join */
1623     spapr_register_hypercall(H_JOIN, h_join);
1624 
1625     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1626 
1627     /* processor register resource access h-calls */
1628     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1629     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1630     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1631     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1632     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1633 
1634     /* In Memory Table MMU h-calls */
1635     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1636     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1637     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1638 
1639     /* hcall-get-cpu-characteristics */
1640     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1641                              h_get_cpu_characteristics);
1642 
1643     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differentiate
1644      * here between the "CI" and the "CACHE" variants, they will use whatever
1645      * mapping attributes qemu is using. When using KVM, the kernel will
1646      * enforce the attributes more strongly
1647      */
1648     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1649     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1650     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1651     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1652     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1653     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1654     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1655 
1656     /* qemu/KVM-PPC specific hcalls */
1657     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1658 
1659     /* ibm,client-architecture-support support */
1660     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1661 
1662     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1663 }
1664 
1665 type_init(hypercall_register_types)
1666