xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision d5938f29)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/main-loop.h"
7 #include "qemu/module.h"
8 #include "qemu/error-report.h"
9 #include "cpu.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/spapr.h"
13 #include "hw/ppc/spapr_cpu_core.h"
14 #include "mmu-hash64.h"
15 #include "cpu-models.h"
16 #include "trace.h"
17 #include "kvm_ppc.h"
18 #include "hw/ppc/spapr_ovec.h"
19 #include "mmu-book3s-v3.h"
20 #include "hw/mem/memory-device.h"
21 
22 static bool has_spr(PowerPCCPU *cpu, int spr)
23 {
24     /* We can test whether the SPR is defined by checking for a valid name */
25     return cpu->env.spr_cb[spr].name != NULL;
26 }
27 
28 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
29 {
30     /*
31      * hash value/pteg group index is normalized by HPT mask
32      */
33     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
34         return false;
35     }
36     return true;
37 }
38 
39 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
40 {
41     MachineState *machine = MACHINE(spapr);
42     DeviceMemoryState *dms = machine->device_memory;
43 
44     if (addr < machine->ram_size) {
45         return true;
46     }
47     if ((addr >= dms->base)
48         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
49         return true;
50     }
51 
52     return false;
53 }
54 
55 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
56                             target_ulong opcode, target_ulong *args)
57 {
58     target_ulong flags = args[0];
59     target_ulong ptex = args[1];
60     target_ulong pteh = args[2];
61     target_ulong ptel = args[3];
62     unsigned apshift;
63     target_ulong raddr;
64     target_ulong slot;
65     const ppc_hash_pte64_t *hptes;
66 
67     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
68     if (!apshift) {
69         /* Bad page size encoding */
70         return H_PARAMETER;
71     }
72 
73     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
74 
75     if (is_ram_address(spapr, raddr)) {
76         /* Regular RAM - should have WIMG=0010 */
77         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
78             return H_PARAMETER;
79         }
80     } else {
81         target_ulong wimg_flags;
82         /* Looks like an IO address */
83         /* FIXME: What WIMG combinations could be sensible for IO?
84          * For now we allow WIMG=010x, but are there others? */
85         /* FIXME: Should we check against registered IO addresses? */
86         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
87 
88         if (wimg_flags != HPTE64_R_I &&
89             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
90             return H_PARAMETER;
91         }
92     }
93 
94     pteh &= ~0x60ULL;
95 
96     if (!valid_ptex(cpu, ptex)) {
97         return H_PARAMETER;
98     }
99 
100     slot = ptex & 7ULL;
101     ptex = ptex & ~7ULL;
102 
103     if (likely((flags & H_EXACT) == 0)) {
104         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
105         for (slot = 0; slot < 8; slot++) {
106             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
107                 break;
108             }
109         }
110         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
111         if (slot == 8) {
112             return H_PTEG_FULL;
113         }
114     } else {
115         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
116         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
117             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
118             return H_PTEG_FULL;
119         }
120         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
121     }
122 
123     spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
124 
125     args[0] = ptex + slot;
126     return H_SUCCESS;
127 }
128 
129 typedef enum {
130     REMOVE_SUCCESS = 0,
131     REMOVE_NOT_FOUND = 1,
132     REMOVE_PARM = 2,
133     REMOVE_HW = 3,
134 } RemoveResult;
135 
136 static RemoveResult remove_hpte(PowerPCCPU *cpu
137                                 , target_ulong ptex,
138                                 target_ulong avpn,
139                                 target_ulong flags,
140                                 target_ulong *vp, target_ulong *rp)
141 {
142     const ppc_hash_pte64_t *hptes;
143     target_ulong v, r;
144 
145     if (!valid_ptex(cpu, ptex)) {
146         return REMOVE_PARM;
147     }
148 
149     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
150     v = ppc_hash64_hpte0(cpu, hptes, 0);
151     r = ppc_hash64_hpte1(cpu, hptes, 0);
152     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
153 
154     if ((v & HPTE64_V_VALID) == 0 ||
155         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
156         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
157         return REMOVE_NOT_FOUND;
158     }
159     *vp = v;
160     *rp = r;
161     spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
162     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
163     return REMOVE_SUCCESS;
164 }
165 
166 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
167                              target_ulong opcode, target_ulong *args)
168 {
169     CPUPPCState *env = &cpu->env;
170     target_ulong flags = args[0];
171     target_ulong ptex = args[1];
172     target_ulong avpn = args[2];
173     RemoveResult ret;
174 
175     ret = remove_hpte(cpu, ptex, avpn, flags,
176                       &args[0], &args[1]);
177 
178     switch (ret) {
179     case REMOVE_SUCCESS:
180         check_tlb_flush(env, true);
181         return H_SUCCESS;
182 
183     case REMOVE_NOT_FOUND:
184         return H_NOT_FOUND;
185 
186     case REMOVE_PARM:
187         return H_PARAMETER;
188 
189     case REMOVE_HW:
190         return H_HARDWARE;
191     }
192 
193     g_assert_not_reached();
194 }
195 
196 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
197 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
198 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
199 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
200 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
201 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
202 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
203 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
204 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
205 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
206 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
207 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
208 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
209 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
210 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
211 
212 #define H_BULK_REMOVE_MAX_BATCH        4
213 
214 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
215                                   target_ulong opcode, target_ulong *args)
216 {
217     CPUPPCState *env = &cpu->env;
218     int i;
219     target_ulong rc = H_SUCCESS;
220 
221     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
222         target_ulong *tsh = &args[i*2];
223         target_ulong tsl = args[i*2 + 1];
224         target_ulong v, r, ret;
225 
226         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
227             break;
228         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
229             return H_PARAMETER;
230         }
231 
232         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
233         *tsh |= H_BULK_REMOVE_RESPONSE;
234 
235         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
236             *tsh |= H_BULK_REMOVE_PARM;
237             return H_PARAMETER;
238         }
239 
240         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
241                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
242                           &v, &r);
243 
244         *tsh |= ret << 60;
245 
246         switch (ret) {
247         case REMOVE_SUCCESS:
248             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
249             break;
250 
251         case REMOVE_PARM:
252             rc = H_PARAMETER;
253             goto exit;
254 
255         case REMOVE_HW:
256             rc = H_HARDWARE;
257             goto exit;
258         }
259     }
260  exit:
261     check_tlb_flush(env, true);
262 
263     return rc;
264 }
265 
266 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
267                               target_ulong opcode, target_ulong *args)
268 {
269     CPUPPCState *env = &cpu->env;
270     target_ulong flags = args[0];
271     target_ulong ptex = args[1];
272     target_ulong avpn = args[2];
273     const ppc_hash_pte64_t *hptes;
274     target_ulong v, r;
275 
276     if (!valid_ptex(cpu, ptex)) {
277         return H_PARAMETER;
278     }
279 
280     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
281     v = ppc_hash64_hpte0(cpu, hptes, 0);
282     r = ppc_hash64_hpte1(cpu, hptes, 0);
283     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
284 
285     if ((v & HPTE64_V_VALID) == 0 ||
286         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
287         return H_NOT_FOUND;
288     }
289 
290     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
291            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
292     r |= (flags << 55) & HPTE64_R_PP0;
293     r |= (flags << 48) & HPTE64_R_KEY_HI;
294     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
295     spapr_store_hpte(cpu, ptex,
296                      (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
297     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
298     /* Flush the tlb */
299     check_tlb_flush(env, true);
300     /* Don't need a memory barrier, due to qemu's global lock */
301     spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
302     return H_SUCCESS;
303 }
304 
305 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
306                            target_ulong opcode, target_ulong *args)
307 {
308     target_ulong flags = args[0];
309     target_ulong ptex = args[1];
310     int i, ridx, n_entries = 1;
311     const ppc_hash_pte64_t *hptes;
312 
313     if (!valid_ptex(cpu, ptex)) {
314         return H_PARAMETER;
315     }
316 
317     if (flags & H_READ_4) {
318         /* Clear the two low order bits */
319         ptex &= ~(3ULL);
320         n_entries = 4;
321     }
322 
323     hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
324     for (i = 0, ridx = 0; i < n_entries; i++) {
325         args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
326         args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
327     }
328     ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
329 
330     return H_SUCCESS;
331 }
332 
333 struct SpaprPendingHpt {
334     /* These fields are read-only after initialization */
335     int shift;
336     QemuThread thread;
337 
338     /* These fields are protected by the BQL */
339     bool complete;
340 
341     /* These fields are private to the preparation thread if
342      * !complete, otherwise protected by the BQL */
343     int ret;
344     void *hpt;
345 };
346 
347 static void free_pending_hpt(SpaprPendingHpt *pending)
348 {
349     if (pending->hpt) {
350         qemu_vfree(pending->hpt);
351     }
352 
353     g_free(pending);
354 }
355 
356 static void *hpt_prepare_thread(void *opaque)
357 {
358     SpaprPendingHpt *pending = opaque;
359     size_t size = 1ULL << pending->shift;
360 
361     pending->hpt = qemu_memalign(size, size);
362     if (pending->hpt) {
363         memset(pending->hpt, 0, size);
364         pending->ret = H_SUCCESS;
365     } else {
366         pending->ret = H_NO_MEM;
367     }
368 
369     qemu_mutex_lock_iothread();
370 
371     if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
372         /* Ready to go */
373         pending->complete = true;
374     } else {
375         /* We've been cancelled, clean ourselves up */
376         free_pending_hpt(pending);
377     }
378 
379     qemu_mutex_unlock_iothread();
380     return NULL;
381 }
382 
383 /* Must be called with BQL held */
384 static void cancel_hpt_prepare(SpaprMachineState *spapr)
385 {
386     SpaprPendingHpt *pending = spapr->pending_hpt;
387 
388     /* Let the thread know it's cancelled */
389     spapr->pending_hpt = NULL;
390 
391     if (!pending) {
392         /* Nothing to do */
393         return;
394     }
395 
396     if (!pending->complete) {
397         /* thread will clean itself up */
398         return;
399     }
400 
401     free_pending_hpt(pending);
402 }
403 
404 /* Convert a return code from the KVM ioctl()s implementing resize HPT
405  * into a PAPR hypercall return code */
406 static target_ulong resize_hpt_convert_rc(int ret)
407 {
408     if (ret >= 100000) {
409         return H_LONG_BUSY_ORDER_100_SEC;
410     } else if (ret >= 10000) {
411         return H_LONG_BUSY_ORDER_10_SEC;
412     } else if (ret >= 1000) {
413         return H_LONG_BUSY_ORDER_1_SEC;
414     } else if (ret >= 100) {
415         return H_LONG_BUSY_ORDER_100_MSEC;
416     } else if (ret >= 10) {
417         return H_LONG_BUSY_ORDER_10_MSEC;
418     } else if (ret > 0) {
419         return H_LONG_BUSY_ORDER_1_MSEC;
420     }
421 
422     switch (ret) {
423     case 0:
424         return H_SUCCESS;
425     case -EPERM:
426         return H_AUTHORITY;
427     case -EINVAL:
428         return H_PARAMETER;
429     case -ENXIO:
430         return H_CLOSED;
431     case -ENOSPC:
432         return H_PTEG_FULL;
433     case -EBUSY:
434         return H_BUSY;
435     case -ENOMEM:
436         return H_NO_MEM;
437     default:
438         return H_HARDWARE;
439     }
440 }
441 
442 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
443                                          SpaprMachineState *spapr,
444                                          target_ulong opcode,
445                                          target_ulong *args)
446 {
447     target_ulong flags = args[0];
448     int shift = args[1];
449     SpaprPendingHpt *pending = spapr->pending_hpt;
450     uint64_t current_ram_size;
451     int rc;
452 
453     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
454         return H_AUTHORITY;
455     }
456 
457     if (!spapr->htab_shift) {
458         /* Radix guest, no HPT */
459         return H_NOT_AVAILABLE;
460     }
461 
462     trace_spapr_h_resize_hpt_prepare(flags, shift);
463 
464     if (flags != 0) {
465         return H_PARAMETER;
466     }
467 
468     if (shift && ((shift < 18) || (shift > 46))) {
469         return H_PARAMETER;
470     }
471 
472     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
473 
474     /* We only allow the guest to allocate an HPT one order above what
475      * we'd normally give them (to stop a small guest claiming a huge
476      * chunk of resources in the HPT */
477     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
478         return H_RESOURCE;
479     }
480 
481     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
482     if (rc != -ENOSYS) {
483         return resize_hpt_convert_rc(rc);
484     }
485 
486     if (pending) {
487         /* something already in progress */
488         if (pending->shift == shift) {
489             /* and it's suitable */
490             if (pending->complete) {
491                 return pending->ret;
492             } else {
493                 return H_LONG_BUSY_ORDER_100_MSEC;
494             }
495         }
496 
497         /* not suitable, cancel and replace */
498         cancel_hpt_prepare(spapr);
499     }
500 
501     if (!shift) {
502         /* nothing to do */
503         return H_SUCCESS;
504     }
505 
506     /* start new prepare */
507 
508     pending = g_new0(SpaprPendingHpt, 1);
509     pending->shift = shift;
510     pending->ret = H_HARDWARE;
511 
512     qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
513                        hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
514 
515     spapr->pending_hpt = pending;
516 
517     /* In theory we could estimate the time more accurately based on
518      * the new size, but there's not much point */
519     return H_LONG_BUSY_ORDER_100_MSEC;
520 }
521 
522 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
523 {
524     uint8_t *addr = htab;
525 
526     addr += pteg * HASH_PTEG_SIZE_64;
527     addr += slot * HASH_PTE_SIZE_64;
528     return  ldq_p(addr);
529 }
530 
531 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
532                            uint64_t pte0, uint64_t pte1)
533 {
534     uint8_t *addr = htab;
535 
536     addr += pteg * HASH_PTEG_SIZE_64;
537     addr += slot * HASH_PTE_SIZE_64;
538 
539     stq_p(addr, pte0);
540     stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
541 }
542 
543 static int rehash_hpte(PowerPCCPU *cpu,
544                        const ppc_hash_pte64_t *hptes,
545                        void *old_hpt, uint64_t oldsize,
546                        void *new_hpt, uint64_t newsize,
547                        uint64_t pteg, int slot)
548 {
549     uint64_t old_hash_mask = (oldsize >> 7) - 1;
550     uint64_t new_hash_mask = (newsize >> 7) - 1;
551     target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
552     target_ulong pte1;
553     uint64_t avpn;
554     unsigned base_pg_shift;
555     uint64_t hash, new_pteg, replace_pte0;
556 
557     if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
558         return H_SUCCESS;
559     }
560 
561     pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
562 
563     base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
564     assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
565     avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
566 
567     if (pte0 & HPTE64_V_SECONDARY) {
568         pteg = ~pteg;
569     }
570 
571     if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
572         uint64_t offset, vsid;
573 
574         /* We only have 28 - 23 bits of offset in avpn */
575         offset = (avpn & 0x1f) << 23;
576         vsid = avpn >> 5;
577         /* We can find more bits from the pteg value */
578         if (base_pg_shift < 23) {
579             offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
580         }
581 
582         hash = vsid ^ (offset >> base_pg_shift);
583     } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
584         uint64_t offset, vsid;
585 
586         /* We only have 40 - 23 bits of seg_off in avpn */
587         offset = (avpn & 0x1ffff) << 23;
588         vsid = avpn >> 17;
589         if (base_pg_shift < 23) {
590             offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
591                 << base_pg_shift;
592         }
593 
594         hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
595     } else {
596         error_report("rehash_pte: Bad segment size in HPTE");
597         return H_HARDWARE;
598     }
599 
600     new_pteg = hash & new_hash_mask;
601     if (pte0 & HPTE64_V_SECONDARY) {
602         assert(~pteg == (hash & old_hash_mask));
603         new_pteg = ~new_pteg;
604     } else {
605         assert(pteg == (hash & old_hash_mask));
606     }
607     assert((oldsize != newsize) || (pteg == new_pteg));
608     replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
609     /*
610      * Strictly speaking, we don't need all these tests, since we only
611      * ever rehash bolted HPTEs.  We might in future handle non-bolted
612      * HPTEs, though so make the logic correct for those cases as
613      * well.
614      */
615     if (replace_pte0 & HPTE64_V_VALID) {
616         assert(newsize < oldsize);
617         if (replace_pte0 & HPTE64_V_BOLTED) {
618             if (pte0 & HPTE64_V_BOLTED) {
619                 /* Bolted collision, nothing we can do */
620                 return H_PTEG_FULL;
621             } else {
622                 /* Discard this hpte */
623                 return H_SUCCESS;
624             }
625         }
626     }
627 
628     new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
629     return H_SUCCESS;
630 }
631 
632 static int rehash_hpt(PowerPCCPU *cpu,
633                       void *old_hpt, uint64_t oldsize,
634                       void *new_hpt, uint64_t newsize)
635 {
636     uint64_t n_ptegs = oldsize >> 7;
637     uint64_t pteg;
638     int slot;
639     int rc;
640 
641     for (pteg = 0; pteg < n_ptegs; pteg++) {
642         hwaddr ptex = pteg * HPTES_PER_GROUP;
643         const ppc_hash_pte64_t *hptes
644             = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
645 
646         if (!hptes) {
647             return H_HARDWARE;
648         }
649 
650         for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
651             rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
652                              pteg, slot);
653             if (rc != H_SUCCESS) {
654                 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
655                 return rc;
656             }
657         }
658         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
659     }
660 
661     return H_SUCCESS;
662 }
663 
664 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
665 {
666     int ret;
667 
668     cpu_synchronize_state(cs);
669 
670     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
671     if (ret < 0) {
672         error_report("failed to push sregs to KVM: %s", strerror(-ret));
673         exit(1);
674     }
675 }
676 
677 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
678 {
679     CPUState *cs;
680 
681     /*
682      * This is a hack for the benefit of KVM PR - it abuses the SDR1
683      * slot in kvm_sregs to communicate the userspace address of the
684      * HPT
685      */
686     if (!kvm_enabled() || !spapr->htab) {
687         return;
688     }
689 
690     CPU_FOREACH(cs) {
691         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
692     }
693 }
694 
695 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
696                                         SpaprMachineState *spapr,
697                                         target_ulong opcode,
698                                         target_ulong *args)
699 {
700     target_ulong flags = args[0];
701     target_ulong shift = args[1];
702     SpaprPendingHpt *pending = spapr->pending_hpt;
703     int rc;
704     size_t newsize;
705 
706     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
707         return H_AUTHORITY;
708     }
709 
710     if (!spapr->htab_shift) {
711         /* Radix guest, no HPT */
712         return H_NOT_AVAILABLE;
713     }
714 
715     trace_spapr_h_resize_hpt_commit(flags, shift);
716 
717     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
718     if (rc != -ENOSYS) {
719         rc = resize_hpt_convert_rc(rc);
720         if (rc == H_SUCCESS) {
721             /* Need to set the new htab_shift in the machine state */
722             spapr->htab_shift = shift;
723         }
724         return rc;
725     }
726 
727     if (flags != 0) {
728         return H_PARAMETER;
729     }
730 
731     if (!pending || (pending->shift != shift)) {
732         /* no matching prepare */
733         return H_CLOSED;
734     }
735 
736     if (!pending->complete) {
737         /* prepare has not completed */
738         return H_BUSY;
739     }
740 
741     /* Shouldn't have got past PREPARE without an HPT */
742     g_assert(spapr->htab_shift);
743 
744     newsize = 1ULL << pending->shift;
745     rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
746                     pending->hpt, newsize);
747     if (rc == H_SUCCESS) {
748         qemu_vfree(spapr->htab);
749         spapr->htab = pending->hpt;
750         spapr->htab_shift = pending->shift;
751 
752         push_sregs_to_kvm_pr(spapr);
753 
754         pending->hpt = NULL; /* so it's not free()d */
755     }
756 
757     /* Clean up */
758     spapr->pending_hpt = NULL;
759     free_pending_hpt(pending);
760 
761     return rc;
762 }
763 
764 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
765                                 target_ulong opcode, target_ulong *args)
766 {
767     cpu_synchronize_state(CPU(cpu));
768     cpu->env.spr[SPR_SPRG0] = args[0];
769 
770     return H_SUCCESS;
771 }
772 
773 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
774                                target_ulong opcode, target_ulong *args)
775 {
776     if (!has_spr(cpu, SPR_DABR)) {
777         return H_HARDWARE;              /* DABR register not available */
778     }
779     cpu_synchronize_state(CPU(cpu));
780 
781     if (has_spr(cpu, SPR_DABRX)) {
782         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
783     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
784         return H_RESERVED_DABR;
785     }
786 
787     cpu->env.spr[SPR_DABR] = args[0];
788     return H_SUCCESS;
789 }
790 
791 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
792                                 target_ulong opcode, target_ulong *args)
793 {
794     target_ulong dabrx = args[1];
795 
796     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
797         return H_HARDWARE;
798     }
799 
800     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
801         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
802         return H_PARAMETER;
803     }
804 
805     cpu_synchronize_state(CPU(cpu));
806     cpu->env.spr[SPR_DABRX] = dabrx;
807     cpu->env.spr[SPR_DABR] = args[0];
808 
809     return H_SUCCESS;
810 }
811 
812 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
813                                 target_ulong opcode, target_ulong *args)
814 {
815     target_ulong flags = args[0];
816     hwaddr dst = args[1];
817     hwaddr src = args[2];
818     hwaddr len = TARGET_PAGE_SIZE;
819     uint8_t *pdst, *psrc;
820     target_long ret = H_SUCCESS;
821 
822     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
823                   | H_COPY_PAGE | H_ZERO_PAGE)) {
824         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
825                       flags);
826         return H_PARAMETER;
827     }
828 
829     /* Map-in destination */
830     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
831         return H_PARAMETER;
832     }
833     pdst = cpu_physical_memory_map(dst, &len, 1);
834     if (!pdst || len != TARGET_PAGE_SIZE) {
835         return H_PARAMETER;
836     }
837 
838     if (flags & H_COPY_PAGE) {
839         /* Map-in source, copy to destination, and unmap source again */
840         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
841             ret = H_PARAMETER;
842             goto unmap_out;
843         }
844         psrc = cpu_physical_memory_map(src, &len, 0);
845         if (!psrc || len != TARGET_PAGE_SIZE) {
846             ret = H_PARAMETER;
847             goto unmap_out;
848         }
849         memcpy(pdst, psrc, len);
850         cpu_physical_memory_unmap(psrc, len, 0, len);
851     } else if (flags & H_ZERO_PAGE) {
852         memset(pdst, 0, len);          /* Just clear the destination page */
853     }
854 
855     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
856         kvmppc_dcbst_range(cpu, pdst, len);
857     }
858     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
859         if (kvm_enabled()) {
860             kvmppc_icbi_range(cpu, pdst, len);
861         } else {
862             tb_flush(CPU(cpu));
863         }
864     }
865 
866 unmap_out:
867     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
868     return ret;
869 }
870 
871 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
872 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
873 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
874 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
875 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
876 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
877 
878 #define VPA_MIN_SIZE           640
879 #define VPA_SIZE_OFFSET        0x4
880 #define VPA_SHARED_PROC_OFFSET 0x9
881 #define VPA_SHARED_PROC_VAL    0x2
882 
883 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
884 {
885     CPUState *cs = CPU(cpu);
886     CPUPPCState *env = &cpu->env;
887     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
888     uint16_t size;
889     uint8_t tmp;
890 
891     if (vpa == 0) {
892         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
893         return H_HARDWARE;
894     }
895 
896     if (vpa % env->dcache_line_size) {
897         return H_PARAMETER;
898     }
899     /* FIXME: bounds check the address */
900 
901     size = lduw_be_phys(cs->as, vpa + 0x4);
902 
903     if (size < VPA_MIN_SIZE) {
904         return H_PARAMETER;
905     }
906 
907     /* VPA is not allowed to cross a page boundary */
908     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
909         return H_PARAMETER;
910     }
911 
912     spapr_cpu->vpa_addr = vpa;
913 
914     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
915     tmp |= VPA_SHARED_PROC_VAL;
916     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
917 
918     return H_SUCCESS;
919 }
920 
921 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
922 {
923     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
924 
925     if (spapr_cpu->slb_shadow_addr) {
926         return H_RESOURCE;
927     }
928 
929     if (spapr_cpu->dtl_addr) {
930         return H_RESOURCE;
931     }
932 
933     spapr_cpu->vpa_addr = 0;
934     return H_SUCCESS;
935 }
936 
937 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
938 {
939     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
940     uint32_t size;
941 
942     if (addr == 0) {
943         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
944         return H_HARDWARE;
945     }
946 
947     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
948     if (size < 0x8) {
949         return H_PARAMETER;
950     }
951 
952     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
953         return H_PARAMETER;
954     }
955 
956     if (!spapr_cpu->vpa_addr) {
957         return H_RESOURCE;
958     }
959 
960     spapr_cpu->slb_shadow_addr = addr;
961     spapr_cpu->slb_shadow_size = size;
962 
963     return H_SUCCESS;
964 }
965 
966 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
967 {
968     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
969 
970     spapr_cpu->slb_shadow_addr = 0;
971     spapr_cpu->slb_shadow_size = 0;
972     return H_SUCCESS;
973 }
974 
975 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
976 {
977     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
978     uint32_t size;
979 
980     if (addr == 0) {
981         hcall_dprintf("Can't cope with DTL at logical 0\n");
982         return H_HARDWARE;
983     }
984 
985     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
986 
987     if (size < 48) {
988         return H_PARAMETER;
989     }
990 
991     if (!spapr_cpu->vpa_addr) {
992         return H_RESOURCE;
993     }
994 
995     spapr_cpu->dtl_addr = addr;
996     spapr_cpu->dtl_size = size;
997 
998     return H_SUCCESS;
999 }
1000 
1001 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
1002 {
1003     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1004 
1005     spapr_cpu->dtl_addr = 0;
1006     spapr_cpu->dtl_size = 0;
1007 
1008     return H_SUCCESS;
1009 }
1010 
1011 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1012                                    target_ulong opcode, target_ulong *args)
1013 {
1014     target_ulong flags = args[0];
1015     target_ulong procno = args[1];
1016     target_ulong vpa = args[2];
1017     target_ulong ret = H_PARAMETER;
1018     PowerPCCPU *tcpu;
1019 
1020     tcpu = spapr_find_cpu(procno);
1021     if (!tcpu) {
1022         return H_PARAMETER;
1023     }
1024 
1025     switch (flags) {
1026     case FLAGS_REGISTER_VPA:
1027         ret = register_vpa(tcpu, vpa);
1028         break;
1029 
1030     case FLAGS_DEREGISTER_VPA:
1031         ret = deregister_vpa(tcpu, vpa);
1032         break;
1033 
1034     case FLAGS_REGISTER_SLBSHADOW:
1035         ret = register_slb_shadow(tcpu, vpa);
1036         break;
1037 
1038     case FLAGS_DEREGISTER_SLBSHADOW:
1039         ret = deregister_slb_shadow(tcpu, vpa);
1040         break;
1041 
1042     case FLAGS_REGISTER_DTL:
1043         ret = register_dtl(tcpu, vpa);
1044         break;
1045 
1046     case FLAGS_DEREGISTER_DTL:
1047         ret = deregister_dtl(tcpu, vpa);
1048         break;
1049     }
1050 
1051     return ret;
1052 }
1053 
1054 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1055                            target_ulong opcode, target_ulong *args)
1056 {
1057     CPUPPCState *env = &cpu->env;
1058     CPUState *cs = CPU(cpu);
1059 
1060     env->msr |= (1ULL << MSR_EE);
1061     hreg_compute_hflags(env);
1062     if (!cpu_has_work(cs)) {
1063         cs->halted = 1;
1064         cs->exception_index = EXCP_HLT;
1065         cs->exit_request = 1;
1066     }
1067     return H_SUCCESS;
1068 }
1069 
1070 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1071                            target_ulong opcode, target_ulong *args)
1072 {
1073     target_ulong rtas_r3 = args[0];
1074     uint32_t token = rtas_ld(rtas_r3, 0);
1075     uint32_t nargs = rtas_ld(rtas_r3, 1);
1076     uint32_t nret = rtas_ld(rtas_r3, 2);
1077 
1078     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1079                            nret, rtas_r3 + 12 + 4*nargs);
1080 }
1081 
1082 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1083                                    target_ulong opcode, target_ulong *args)
1084 {
1085     CPUState *cs = CPU(cpu);
1086     target_ulong size = args[0];
1087     target_ulong addr = args[1];
1088 
1089     switch (size) {
1090     case 1:
1091         args[0] = ldub_phys(cs->as, addr);
1092         return H_SUCCESS;
1093     case 2:
1094         args[0] = lduw_phys(cs->as, addr);
1095         return H_SUCCESS;
1096     case 4:
1097         args[0] = ldl_phys(cs->as, addr);
1098         return H_SUCCESS;
1099     case 8:
1100         args[0] = ldq_phys(cs->as, addr);
1101         return H_SUCCESS;
1102     }
1103     return H_PARAMETER;
1104 }
1105 
1106 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1107                                     target_ulong opcode, target_ulong *args)
1108 {
1109     CPUState *cs = CPU(cpu);
1110 
1111     target_ulong size = args[0];
1112     target_ulong addr = args[1];
1113     target_ulong val  = args[2];
1114 
1115     switch (size) {
1116     case 1:
1117         stb_phys(cs->as, addr, val);
1118         return H_SUCCESS;
1119     case 2:
1120         stw_phys(cs->as, addr, val);
1121         return H_SUCCESS;
1122     case 4:
1123         stl_phys(cs->as, addr, val);
1124         return H_SUCCESS;
1125     case 8:
1126         stq_phys(cs->as, addr, val);
1127         return H_SUCCESS;
1128     }
1129     return H_PARAMETER;
1130 }
1131 
1132 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1133                                     target_ulong opcode, target_ulong *args)
1134 {
1135     CPUState *cs = CPU(cpu);
1136 
1137     target_ulong dst   = args[0]; /* Destination address */
1138     target_ulong src   = args[1]; /* Source address */
1139     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1140     target_ulong count = args[3]; /* Element count */
1141     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1142     uint64_t tmp;
1143     unsigned int mask = (1 << esize) - 1;
1144     int step = 1 << esize;
1145 
1146     if (count > 0x80000000) {
1147         return H_PARAMETER;
1148     }
1149 
1150     if ((dst & mask) || (src & mask) || (op > 1)) {
1151         return H_PARAMETER;
1152     }
1153 
1154     if (dst >= src && dst < (src + (count << esize))) {
1155             dst = dst + ((count - 1) << esize);
1156             src = src + ((count - 1) << esize);
1157             step = -step;
1158     }
1159 
1160     while (count--) {
1161         switch (esize) {
1162         case 0:
1163             tmp = ldub_phys(cs->as, src);
1164             break;
1165         case 1:
1166             tmp = lduw_phys(cs->as, src);
1167             break;
1168         case 2:
1169             tmp = ldl_phys(cs->as, src);
1170             break;
1171         case 3:
1172             tmp = ldq_phys(cs->as, src);
1173             break;
1174         default:
1175             return H_PARAMETER;
1176         }
1177         if (op == 1) {
1178             tmp = ~tmp;
1179         }
1180         switch (esize) {
1181         case 0:
1182             stb_phys(cs->as, dst, tmp);
1183             break;
1184         case 1:
1185             stw_phys(cs->as, dst, tmp);
1186             break;
1187         case 2:
1188             stl_phys(cs->as, dst, tmp);
1189             break;
1190         case 3:
1191             stq_phys(cs->as, dst, tmp);
1192             break;
1193         }
1194         dst = dst + step;
1195         src = src + step;
1196     }
1197 
1198     return H_SUCCESS;
1199 }
1200 
1201 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1202                                    target_ulong opcode, target_ulong *args)
1203 {
1204     /* Nothing to do on emulation, KVM will trap this in the kernel */
1205     return H_SUCCESS;
1206 }
1207 
1208 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1209                                    target_ulong opcode, target_ulong *args)
1210 {
1211     /* Nothing to do on emulation, KVM will trap this in the kernel */
1212     return H_SUCCESS;
1213 }
1214 
1215 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1216                                            target_ulong mflags,
1217                                            target_ulong value1,
1218                                            target_ulong value2)
1219 {
1220     if (value1) {
1221         return H_P3;
1222     }
1223     if (value2) {
1224         return H_P4;
1225     }
1226 
1227     switch (mflags) {
1228     case H_SET_MODE_ENDIAN_BIG:
1229         spapr_set_all_lpcrs(0, LPCR_ILE);
1230         spapr_pci_switch_vga(true);
1231         return H_SUCCESS;
1232 
1233     case H_SET_MODE_ENDIAN_LITTLE:
1234         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1235         spapr_pci_switch_vga(false);
1236         return H_SUCCESS;
1237     }
1238 
1239     return H_UNSUPPORTED_FLAG;
1240 }
1241 
1242 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1243                                                         target_ulong mflags,
1244                                                         target_ulong value1,
1245                                                         target_ulong value2)
1246 {
1247     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1248 
1249     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1250         return H_P2;
1251     }
1252     if (value1) {
1253         return H_P3;
1254     }
1255     if (value2) {
1256         return H_P4;
1257     }
1258 
1259     if (mflags == AIL_RESERVED) {
1260         return H_UNSUPPORTED_FLAG;
1261     }
1262 
1263     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1264 
1265     return H_SUCCESS;
1266 }
1267 
1268 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1269                                target_ulong opcode, target_ulong *args)
1270 {
1271     target_ulong resource = args[1];
1272     target_ulong ret = H_P2;
1273 
1274     switch (resource) {
1275     case H_SET_MODE_RESOURCE_LE:
1276         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1277         break;
1278     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1279         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1280                                                   args[2], args[3]);
1281         break;
1282     }
1283 
1284     return ret;
1285 }
1286 
1287 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1288                                 target_ulong opcode, target_ulong *args)
1289 {
1290     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1291                   opcode, " (H_CLEAN_SLB)");
1292     return H_FUNCTION;
1293 }
1294 
1295 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1296                                      target_ulong opcode, target_ulong *args)
1297 {
1298     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1299                   opcode, " (H_INVALIDATE_PID)");
1300     return H_FUNCTION;
1301 }
1302 
1303 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1304                                        uint64_t patbe_old, uint64_t patbe_new)
1305 {
1306     /*
1307      * We have 4 Options:
1308      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1309      * HASH->RADIX                                  : Free HPT
1310      * RADIX->HASH                                  : Allocate HPT
1311      * NOTHING->HASH                                : Allocate HPT
1312      * Note: NOTHING implies the case where we said the guest could choose
1313      *       later and so assumed radix and now it's called H_REG_PROC_TBL
1314      */
1315 
1316     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1317         /* We assume RADIX, so this catches all the "Do Nothing" cases */
1318     } else if (!(patbe_old & PATE1_GR)) {
1319         /* HASH->RADIX : Free HPT */
1320         spapr_free_hpt(spapr);
1321     } else if (!(patbe_new & PATE1_GR)) {
1322         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1323         spapr_setup_hpt_and_vrma(spapr);
1324     }
1325     return;
1326 }
1327 
1328 #define FLAGS_MASK              0x01FULL
1329 #define FLAG_MODIFY             0x10
1330 #define FLAG_REGISTER           0x08
1331 #define FLAG_RADIX              0x04
1332 #define FLAG_HASH_PROC_TBL      0x02
1333 #define FLAG_GTSE               0x01
1334 
1335 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1336                                              SpaprMachineState *spapr,
1337                                              target_ulong opcode,
1338                                              target_ulong *args)
1339 {
1340     target_ulong flags = args[0];
1341     target_ulong proc_tbl = args[1];
1342     target_ulong page_size = args[2];
1343     target_ulong table_size = args[3];
1344     target_ulong update_lpcr = 0;
1345     uint64_t cproc;
1346 
1347     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1348         return H_PARAMETER;
1349     }
1350     if (flags & FLAG_MODIFY) {
1351         if (flags & FLAG_REGISTER) {
1352             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1353                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1354                     return H_P2;
1355                 } else if (page_size) {
1356                     return H_P3;
1357                 } else if (table_size > 24) {
1358                     return H_P4;
1359                 }
1360                 cproc = PATE1_GR | proc_tbl | table_size;
1361             } else { /* Register new HPT process table */
1362                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1363                     /* TODO - Not Supported */
1364                     /* Technically caused by flag bits => H_PARAMETER */
1365                     return H_PARAMETER;
1366                 } else { /* Hash with SLB */
1367                     if (proc_tbl >> 38) {
1368                         return H_P2;
1369                     } else if (page_size & ~0x7) {
1370                         return H_P3;
1371                     } else if (table_size > 24) {
1372                         return H_P4;
1373                     }
1374                 }
1375                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1376             }
1377 
1378         } else { /* Deregister current process table */
1379             /*
1380              * Set to benign value: (current GR) | 0. This allows
1381              * deregistration in KVM to succeed even if the radix bit
1382              * in flags doesn't match the radix bit in the old PATE.
1383              */
1384             cproc = spapr->patb_entry & PATE1_GR;
1385         }
1386     } else { /* Maintain current registration */
1387         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1388             /* Technically caused by flag bits => H_PARAMETER */
1389             return H_PARAMETER; /* Existing Process Table Mismatch */
1390         }
1391         cproc = spapr->patb_entry;
1392     }
1393 
1394     /* Check if we need to setup OR free the hpt */
1395     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1396 
1397     spapr->patb_entry = cproc; /* Save new process table */
1398 
1399     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1400     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
1401         update_lpcr |= (LPCR_UPRT | LPCR_HR);
1402     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1403         update_lpcr |= LPCR_UPRT;
1404     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
1405         update_lpcr |= LPCR_GTSE;
1406 
1407     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1408 
1409     if (kvm_enabled()) {
1410         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1411                                        flags & FLAG_GTSE, cproc);
1412     }
1413     return H_SUCCESS;
1414 }
1415 
1416 #define H_SIGNAL_SYS_RESET_ALL         -1
1417 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1418 
1419 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1420                                        SpaprMachineState *spapr,
1421                                        target_ulong opcode, target_ulong *args)
1422 {
1423     target_long target = args[0];
1424     CPUState *cs;
1425 
1426     if (target < 0) {
1427         /* Broadcast */
1428         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1429             return H_PARAMETER;
1430         }
1431 
1432         CPU_FOREACH(cs) {
1433             PowerPCCPU *c = POWERPC_CPU(cs);
1434 
1435             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1436                 if (c == cpu) {
1437                     continue;
1438                 }
1439             }
1440             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1441         }
1442         return H_SUCCESS;
1443 
1444     } else {
1445         /* Unicast */
1446         cs = CPU(spapr_find_cpu(target));
1447         if (cs) {
1448             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1449             return H_SUCCESS;
1450         }
1451         return H_PARAMETER;
1452     }
1453 }
1454 
1455 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
1456                               target_ulong *addr, bool *raw_mode_supported,
1457                               Error **errp)
1458 {
1459     bool explicit_match = false; /* Matched the CPU's real PVR */
1460     uint32_t max_compat = spapr->max_compat_pvr;
1461     uint32_t best_compat = 0;
1462     int i;
1463 
1464     /*
1465      * We scan the supplied table of PVRs looking for two things
1466      *   1. Is our real CPU PVR in the list?
1467      *   2. What's the "best" listed logical PVR
1468      */
1469     for (i = 0; i < 512; ++i) {
1470         uint32_t pvr, pvr_mask;
1471 
1472         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1473         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1474         *addr += 8;
1475 
1476         if (~pvr_mask & pvr) {
1477             break; /* Terminator record */
1478         }
1479 
1480         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1481             explicit_match = true;
1482         } else {
1483             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1484                 best_compat = pvr;
1485             }
1486         }
1487     }
1488 
1489     if ((best_compat == 0) && (!explicit_match || max_compat)) {
1490         /* We couldn't find a suitable compatibility mode, and either
1491          * the guest doesn't support "raw" mode for this CPU, or raw
1492          * mode is disabled because a maximum compat mode is set */
1493         error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1494         return 0;
1495     }
1496 
1497     *raw_mode_supported = explicit_match;
1498 
1499     /* Parsing finished */
1500     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1501 
1502     return best_compat;
1503 }
1504 
1505 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1506                                                   SpaprMachineState *spapr,
1507                                                   target_ulong opcode,
1508                                                   target_ulong *args)
1509 {
1510     /* Working address in data buffer */
1511     target_ulong addr = ppc64_phys_to_real(args[0]);
1512     target_ulong ov_table;
1513     uint32_t cas_pvr;
1514     SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1515     bool guest_radix;
1516     Error *local_err = NULL;
1517     bool raw_mode_supported = false;
1518     bool guest_xive;
1519 
1520     cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1521     if (local_err) {
1522         error_report_err(local_err);
1523         return H_HARDWARE;
1524     }
1525 
1526     /* Update CPUs */
1527     if (cpu->compat_pvr != cas_pvr) {
1528         ppc_set_compat_all(cas_pvr, &local_err);
1529         if (local_err) {
1530             /* We fail to set compat mode (likely because running with KVM PR),
1531              * but maybe we can fallback to raw mode if the guest supports it.
1532              */
1533             if (!raw_mode_supported) {
1534                 error_report_err(local_err);
1535                 return H_HARDWARE;
1536             }
1537             error_free(local_err);
1538             local_err = NULL;
1539         }
1540     }
1541 
1542     /* For the future use: here @ov_table points to the first option vector */
1543     ov_table = addr;
1544 
1545     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1546     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1547     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1548         error_report("guest requested hash and radix MMU, which is invalid.");
1549         exit(EXIT_FAILURE);
1550     }
1551     if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1552         error_report("guest requested an invalid interrupt mode");
1553         exit(EXIT_FAILURE);
1554     }
1555 
1556     /* The radix/hash bit in byte 24 requires special handling: */
1557     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1558     spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1559 
1560     guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1561 
1562     /*
1563      * HPT resizing is a bit of a special case, because when enabled
1564      * we assume an HPT guest will support it until it says it
1565      * doesn't, instead of assuming it won't support it until it says
1566      * it does.  Strictly speaking that approach could break for
1567      * guests which don't make a CAS call, but those are so old we
1568      * don't care about them.  Without that assumption we'd have to
1569      * make at least a temporary allocation of an HPT sized for max
1570      * memory, which could be impossibly difficult under KVM HV if
1571      * maxram is large.
1572      */
1573     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1574         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1575 
1576         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1577             error_report(
1578                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1579             exit(1);
1580         }
1581 
1582         if (spapr->htab_shift < maxshift) {
1583             /* Guest doesn't know about HPT resizing, so we
1584              * pre-emptively resize for the maximum permitted RAM.  At
1585              * the point this is called, nothing should have been
1586              * entered into the existing HPT */
1587             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1588             push_sregs_to_kvm_pr(spapr);
1589         }
1590     }
1591 
1592     /* NOTE: there are actually a number of ov5 bits where input from the
1593      * guest is always zero, and the platform/QEMU enables them independently
1594      * of guest input. To model these properly we'd want some sort of mask,
1595      * but since they only currently apply to memory migration as defined
1596      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1597      * to worry about this for now.
1598      */
1599     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1600 
1601     /* also clear the radix/hash bit from the current ov5_cas bits to
1602      * be in sync with the newly ov5 bits. Else the radix bit will be
1603      * seen as being removed and this will generate a reset loop
1604      */
1605     spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1606 
1607     /* full range of negotiated ov5 capabilities */
1608     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1609     spapr_ovec_cleanup(ov5_guest);
1610     /* capabilities that have been added since CAS-generated guest reset.
1611      * if capabilities have since been removed, generate another reset
1612      */
1613     ov5_updates = spapr_ovec_new();
1614     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1615                                         ov5_cas_old, spapr->ov5_cas);
1616     /* Now that processing is finished, set the radix/hash bit for the
1617      * guest if it requested a valid mode; otherwise terminate the boot. */
1618     if (guest_radix) {
1619         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1620             error_report("Guest requested unavailable MMU mode (radix).");
1621             exit(EXIT_FAILURE);
1622         }
1623         spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1624     } else {
1625         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1626             && !kvmppc_has_cap_mmu_hash_v3()) {
1627             error_report("Guest requested unavailable MMU mode (hash).");
1628             exit(EXIT_FAILURE);
1629         }
1630     }
1631     spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1632                                                           OV1_PPC_3_00);
1633     if (!spapr->cas_reboot) {
1634         /* If spapr_machine_reset() did not set up a HPT but one is necessary
1635          * (because the guest isn't going to use radix) then set it up here. */
1636         if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1637             /* legacy hash or new hash: */
1638             spapr_setup_hpt_and_vrma(spapr);
1639         }
1640         spapr->cas_reboot =
1641             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1642                                           ov5_updates) != 0);
1643     }
1644 
1645     /*
1646      * Ensure the guest asks for an interrupt mode we support; otherwise
1647      * terminate the boot.
1648      */
1649     if (guest_xive) {
1650         if (spapr->irq->ov5 == SPAPR_OV5_XIVE_LEGACY) {
1651             error_report(
1652 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1653             exit(EXIT_FAILURE);
1654         }
1655     } else {
1656         if (spapr->irq->ov5 == SPAPR_OV5_XIVE_EXPLOIT) {
1657             error_report(
1658 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1659             exit(EXIT_FAILURE);
1660         }
1661     }
1662 
1663     /*
1664      * Generate a machine reset when we have an update of the
1665      * interrupt mode. Only required when the machine supports both
1666      * modes.
1667      */
1668     if (!spapr->cas_reboot) {
1669         spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
1670             && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
1671     }
1672 
1673     spapr_ovec_cleanup(ov5_updates);
1674 
1675     if (spapr->cas_reboot) {
1676         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1677     }
1678 
1679     return H_SUCCESS;
1680 }
1681 
1682 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
1683                                               SpaprMachineState *spapr,
1684                                               target_ulong opcode,
1685                                               target_ulong *args)
1686 {
1687     target_ulong flags = args[0];
1688     target_ulong procno = args[1];
1689     PowerPCCPU *tcpu;
1690     int idx;
1691 
1692     /* only support procno from H_REGISTER_VPA */
1693     if (flags != 0x1) {
1694         return H_FUNCTION;
1695     }
1696 
1697     tcpu = spapr_find_cpu(procno);
1698     if (tcpu == NULL) {
1699         return H_P2;
1700     }
1701 
1702     /* sequence is the same as in the "ibm,associativity" property */
1703 
1704     idx = 0;
1705 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1706                              ((uint64_t)(b) & 0xffffffff))
1707     args[idx++] = ASSOCIATIVITY(0, 0);
1708     args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
1709     args[idx++] = ASSOCIATIVITY(procno, -1);
1710     for ( ; idx < 6; idx++) {
1711         args[idx] = -1;
1712     }
1713 #undef ASSOCIATIVITY
1714 
1715     return H_SUCCESS;
1716 }
1717 
1718 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1719                                               SpaprMachineState *spapr,
1720                                               target_ulong opcode,
1721                                               target_ulong *args)
1722 {
1723     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1724                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1725     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1726     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1727     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1728     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1729     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1730                                                      SPAPR_CAP_CCF_ASSIST);
1731 
1732     switch (safe_cache) {
1733     case SPAPR_CAP_WORKAROUND:
1734         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1735         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1736         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1737         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1738         break;
1739     case SPAPR_CAP_FIXED:
1740         break;
1741     default: /* broken */
1742         assert(safe_cache == SPAPR_CAP_BROKEN);
1743         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1744         break;
1745     }
1746 
1747     switch (safe_bounds_check) {
1748     case SPAPR_CAP_WORKAROUND:
1749         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1750         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1751         break;
1752     case SPAPR_CAP_FIXED:
1753         break;
1754     default: /* broken */
1755         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1756         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1757         break;
1758     }
1759 
1760     switch (safe_indirect_branch) {
1761     case SPAPR_CAP_FIXED_NA:
1762         break;
1763     case SPAPR_CAP_FIXED_CCD:
1764         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1765         break;
1766     case SPAPR_CAP_FIXED_IBS:
1767         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1768         break;
1769     case SPAPR_CAP_WORKAROUND:
1770         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1771         if (count_cache_flush_assist) {
1772             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1773         }
1774         break;
1775     default: /* broken */
1776         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1777         break;
1778     }
1779 
1780     args[0] = characteristics;
1781     args[1] = behaviour;
1782     return H_SUCCESS;
1783 }
1784 
1785 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1786                                 target_ulong opcode, target_ulong *args)
1787 {
1788     target_ulong dt = ppc64_phys_to_real(args[0]);
1789     struct fdt_header hdr = { 0 };
1790     unsigned cb;
1791     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1792     void *fdt;
1793 
1794     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1795     cb = fdt32_to_cpu(hdr.totalsize);
1796 
1797     if (!smc->update_dt_enabled) {
1798         return H_SUCCESS;
1799     }
1800 
1801     /* Check that the fdt did not grow out of proportion */
1802     if (cb > spapr->fdt_initial_size * 2) {
1803         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1804                                           fdt32_to_cpu(hdr.magic));
1805         return H_PARAMETER;
1806     }
1807 
1808     fdt = g_malloc0(cb);
1809     cpu_physical_memory_read(dt, fdt, cb);
1810 
1811     /* Check the fdt consistency */
1812     if (fdt_check_full(fdt, cb)) {
1813         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1814                                            fdt32_to_cpu(hdr.magic));
1815         return H_PARAMETER;
1816     }
1817 
1818     g_free(spapr->fdt_blob);
1819     spapr->fdt_size = cb;
1820     spapr->fdt_blob = fdt;
1821     trace_spapr_update_dt(cb);
1822 
1823     return H_SUCCESS;
1824 }
1825 
1826 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1827 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1828 
1829 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1830 {
1831     spapr_hcall_fn *slot;
1832 
1833     if (opcode <= MAX_HCALL_OPCODE) {
1834         assert((opcode & 0x3) == 0);
1835 
1836         slot = &papr_hypercall_table[opcode / 4];
1837     } else {
1838         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1839 
1840         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1841     }
1842 
1843     assert(!(*slot));
1844     *slot = fn;
1845 }
1846 
1847 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1848                              target_ulong *args)
1849 {
1850     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1851 
1852     if ((opcode <= MAX_HCALL_OPCODE)
1853         && ((opcode & 0x3) == 0)) {
1854         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1855 
1856         if (fn) {
1857             return fn(cpu, spapr, opcode, args);
1858         }
1859     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1860                (opcode <= KVMPPC_HCALL_MAX)) {
1861         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1862 
1863         if (fn) {
1864             return fn(cpu, spapr, opcode, args);
1865         }
1866     }
1867 
1868     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1869                   opcode);
1870     return H_FUNCTION;
1871 }
1872 
1873 static void hypercall_register_types(void)
1874 {
1875     /* hcall-pft */
1876     spapr_register_hypercall(H_ENTER, h_enter);
1877     spapr_register_hypercall(H_REMOVE, h_remove);
1878     spapr_register_hypercall(H_PROTECT, h_protect);
1879     spapr_register_hypercall(H_READ, h_read);
1880 
1881     /* hcall-bulk */
1882     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1883 
1884     /* hcall-hpt-resize */
1885     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1886     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1887 
1888     /* hcall-splpar */
1889     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1890     spapr_register_hypercall(H_CEDE, h_cede);
1891     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1892 
1893     /* processor register resource access h-calls */
1894     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1895     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1896     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1897     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1898     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1899 
1900     /* In Memory Table MMU h-calls */
1901     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1902     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1903     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1904 
1905     /* hcall-get-cpu-characteristics */
1906     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1907                              h_get_cpu_characteristics);
1908 
1909     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1910      * here between the "CI" and the "CACHE" variants, they will use whatever
1911      * mapping attributes qemu is using. When using KVM, the kernel will
1912      * enforce the attributes more strongly
1913      */
1914     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1915     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1916     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1917     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1918     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1919     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1920     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1921 
1922     /* qemu/KVM-PPC specific hcalls */
1923     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1924 
1925     /* ibm,client-architecture-support support */
1926     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1927 
1928     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1929 
1930     /* Virtual Processor Home Node */
1931     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
1932                              h_home_node_associativity);
1933 }
1934 
1935 type_init(hypercall_register_types)
1936