1 #include "qemu/osdep.h" 2 #include "qapi/error.h" 3 #include "sysemu/hw_accel.h" 4 #include "sysemu/sysemu.h" 5 #include "qemu/log.h" 6 #include "qemu/error-report.h" 7 #include "cpu.h" 8 #include "exec/exec-all.h" 9 #include "helper_regs.h" 10 #include "hw/ppc/spapr.h" 11 #include "hw/ppc/spapr_cpu_core.h" 12 #include "mmu-hash64.h" 13 #include "cpu-models.h" 14 #include "trace.h" 15 #include "kvm_ppc.h" 16 #include "hw/ppc/spapr_ovec.h" 17 #include "mmu-book3s-v3.h" 18 #include "hw/mem/memory-device.h" 19 20 static bool has_spr(PowerPCCPU *cpu, int spr) 21 { 22 /* We can test whether the SPR is defined by checking for a valid name */ 23 return cpu->env.spr_cb[spr].name != NULL; 24 } 25 26 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex) 27 { 28 /* 29 * hash value/pteg group index is normalized by HPT mask 30 */ 31 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) { 32 return false; 33 } 34 return true; 35 } 36 37 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) 38 { 39 MachineState *machine = MACHINE(spapr); 40 DeviceMemoryState *dms = machine->device_memory; 41 42 if (addr < machine->ram_size) { 43 return true; 44 } 45 if ((addr >= dms->base) 46 && ((addr - dms->base) < memory_region_size(&dms->mr))) { 47 return true; 48 } 49 50 return false; 51 } 52 53 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr, 54 target_ulong opcode, target_ulong *args) 55 { 56 target_ulong flags = args[0]; 57 target_ulong ptex = args[1]; 58 target_ulong pteh = args[2]; 59 target_ulong ptel = args[3]; 60 unsigned apshift; 61 target_ulong raddr; 62 target_ulong slot; 63 const ppc_hash_pte64_t *hptes; 64 65 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel); 66 if (!apshift) { 67 /* Bad page size encoding */ 68 return H_PARAMETER; 69 } 70 71 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1); 72 73 if (is_ram_address(spapr, raddr)) { 74 /* Regular RAM - should have WIMG=0010 */ 75 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { 76 return H_PARAMETER; 77 } 78 } else { 79 target_ulong wimg_flags; 80 /* Looks like an IO address */ 81 /* FIXME: What WIMG combinations could be sensible for IO? 82 * For now we allow WIMG=010x, but are there others? */ 83 /* FIXME: Should we check against registered IO addresses? */ 84 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)); 85 86 if (wimg_flags != HPTE64_R_I && 87 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) { 88 return H_PARAMETER; 89 } 90 } 91 92 pteh &= ~0x60ULL; 93 94 if (!valid_ptex(cpu, ptex)) { 95 return H_PARAMETER; 96 } 97 98 slot = ptex & 7ULL; 99 ptex = ptex & ~7ULL; 100 101 if (likely((flags & H_EXACT) == 0)) { 102 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 103 for (slot = 0; slot < 8; slot++) { 104 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) { 105 break; 106 } 107 } 108 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 109 if (slot == 8) { 110 return H_PTEG_FULL; 111 } 112 } else { 113 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1); 114 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) { 115 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1); 116 return H_PTEG_FULL; 117 } 118 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 119 } 120 121 spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel); 122 123 args[0] = ptex + slot; 124 return H_SUCCESS; 125 } 126 127 typedef enum { 128 REMOVE_SUCCESS = 0, 129 REMOVE_NOT_FOUND = 1, 130 REMOVE_PARM = 2, 131 REMOVE_HW = 3, 132 } RemoveResult; 133 134 static RemoveResult remove_hpte(PowerPCCPU *cpu 135 , target_ulong ptex, 136 target_ulong avpn, 137 target_ulong flags, 138 target_ulong *vp, target_ulong *rp) 139 { 140 const ppc_hash_pte64_t *hptes; 141 target_ulong v, r; 142 143 if (!valid_ptex(cpu, ptex)) { 144 return REMOVE_PARM; 145 } 146 147 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 148 v = ppc_hash64_hpte0(cpu, hptes, 0); 149 r = ppc_hash64_hpte1(cpu, hptes, 0); 150 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 151 152 if ((v & HPTE64_V_VALID) == 0 || 153 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || 154 ((flags & H_ANDCOND) && (v & avpn) != 0)) { 155 return REMOVE_NOT_FOUND; 156 } 157 *vp = v; 158 *rp = r; 159 spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0); 160 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 161 return REMOVE_SUCCESS; 162 } 163 164 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, 165 target_ulong opcode, target_ulong *args) 166 { 167 CPUPPCState *env = &cpu->env; 168 target_ulong flags = args[0]; 169 target_ulong ptex = args[1]; 170 target_ulong avpn = args[2]; 171 RemoveResult ret; 172 173 ret = remove_hpte(cpu, ptex, avpn, flags, 174 &args[0], &args[1]); 175 176 switch (ret) { 177 case REMOVE_SUCCESS: 178 check_tlb_flush(env, true); 179 return H_SUCCESS; 180 181 case REMOVE_NOT_FOUND: 182 return H_NOT_FOUND; 183 184 case REMOVE_PARM: 185 return H_PARAMETER; 186 187 case REMOVE_HW: 188 return H_HARDWARE; 189 } 190 191 g_assert_not_reached(); 192 } 193 194 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL 195 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL 196 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL 197 #define H_BULK_REMOVE_END 0xc000000000000000ULL 198 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL 199 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL 200 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL 201 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL 202 #define H_BULK_REMOVE_HW 0x3000000000000000ULL 203 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL 204 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL 205 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL 206 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL 207 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL 208 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL 209 210 #define H_BULK_REMOVE_MAX_BATCH 4 211 212 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, 213 target_ulong opcode, target_ulong *args) 214 { 215 CPUPPCState *env = &cpu->env; 216 int i; 217 target_ulong rc = H_SUCCESS; 218 219 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { 220 target_ulong *tsh = &args[i*2]; 221 target_ulong tsl = args[i*2 + 1]; 222 target_ulong v, r, ret; 223 224 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { 225 break; 226 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { 227 return H_PARAMETER; 228 } 229 230 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; 231 *tsh |= H_BULK_REMOVE_RESPONSE; 232 233 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { 234 *tsh |= H_BULK_REMOVE_PARM; 235 return H_PARAMETER; 236 } 237 238 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl, 239 (*tsh & H_BULK_REMOVE_FLAGS) >> 26, 240 &v, &r); 241 242 *tsh |= ret << 60; 243 244 switch (ret) { 245 case REMOVE_SUCCESS: 246 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; 247 break; 248 249 case REMOVE_PARM: 250 rc = H_PARAMETER; 251 goto exit; 252 253 case REMOVE_HW: 254 rc = H_HARDWARE; 255 goto exit; 256 } 257 } 258 exit: 259 check_tlb_flush(env, true); 260 261 return rc; 262 } 263 264 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr, 265 target_ulong opcode, target_ulong *args) 266 { 267 CPUPPCState *env = &cpu->env; 268 target_ulong flags = args[0]; 269 target_ulong ptex = args[1]; 270 target_ulong avpn = args[2]; 271 const ppc_hash_pte64_t *hptes; 272 target_ulong v, r; 273 274 if (!valid_ptex(cpu, ptex)) { 275 return H_PARAMETER; 276 } 277 278 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 279 v = ppc_hash64_hpte0(cpu, hptes, 0); 280 r = ppc_hash64_hpte1(cpu, hptes, 0); 281 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 282 283 if ((v & HPTE64_V_VALID) == 0 || 284 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { 285 return H_NOT_FOUND; 286 } 287 288 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | 289 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); 290 r |= (flags << 55) & HPTE64_R_PP0; 291 r |= (flags << 48) & HPTE64_R_KEY_HI; 292 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); 293 spapr_store_hpte(cpu, ptex, 294 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); 295 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 296 /* Flush the tlb */ 297 check_tlb_flush(env, true); 298 /* Don't need a memory barrier, due to qemu's global lock */ 299 spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r); 300 return H_SUCCESS; 301 } 302 303 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr, 304 target_ulong opcode, target_ulong *args) 305 { 306 target_ulong flags = args[0]; 307 target_ulong ptex = args[1]; 308 int i, ridx, n_entries = 1; 309 const ppc_hash_pte64_t *hptes; 310 311 if (!valid_ptex(cpu, ptex)) { 312 return H_PARAMETER; 313 } 314 315 if (flags & H_READ_4) { 316 /* Clear the two low order bits */ 317 ptex &= ~(3ULL); 318 n_entries = 4; 319 } 320 321 hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries); 322 for (i = 0, ridx = 0; i < n_entries; i++) { 323 args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i); 324 args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i); 325 } 326 ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries); 327 328 return H_SUCCESS; 329 } 330 331 struct SpaprPendingHpt { 332 /* These fields are read-only after initialization */ 333 int shift; 334 QemuThread thread; 335 336 /* These fields are protected by the BQL */ 337 bool complete; 338 339 /* These fields are private to the preparation thread if 340 * !complete, otherwise protected by the BQL */ 341 int ret; 342 void *hpt; 343 }; 344 345 static void free_pending_hpt(SpaprPendingHpt *pending) 346 { 347 if (pending->hpt) { 348 qemu_vfree(pending->hpt); 349 } 350 351 g_free(pending); 352 } 353 354 static void *hpt_prepare_thread(void *opaque) 355 { 356 SpaprPendingHpt *pending = opaque; 357 size_t size = 1ULL << pending->shift; 358 359 pending->hpt = qemu_memalign(size, size); 360 if (pending->hpt) { 361 memset(pending->hpt, 0, size); 362 pending->ret = H_SUCCESS; 363 } else { 364 pending->ret = H_NO_MEM; 365 } 366 367 qemu_mutex_lock_iothread(); 368 369 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) { 370 /* Ready to go */ 371 pending->complete = true; 372 } else { 373 /* We've been cancelled, clean ourselves up */ 374 free_pending_hpt(pending); 375 } 376 377 qemu_mutex_unlock_iothread(); 378 return NULL; 379 } 380 381 /* Must be called with BQL held */ 382 static void cancel_hpt_prepare(SpaprMachineState *spapr) 383 { 384 SpaprPendingHpt *pending = spapr->pending_hpt; 385 386 /* Let the thread know it's cancelled */ 387 spapr->pending_hpt = NULL; 388 389 if (!pending) { 390 /* Nothing to do */ 391 return; 392 } 393 394 if (!pending->complete) { 395 /* thread will clean itself up */ 396 return; 397 } 398 399 free_pending_hpt(pending); 400 } 401 402 /* Convert a return code from the KVM ioctl()s implementing resize HPT 403 * into a PAPR hypercall return code */ 404 static target_ulong resize_hpt_convert_rc(int ret) 405 { 406 if (ret >= 100000) { 407 return H_LONG_BUSY_ORDER_100_SEC; 408 } else if (ret >= 10000) { 409 return H_LONG_BUSY_ORDER_10_SEC; 410 } else if (ret >= 1000) { 411 return H_LONG_BUSY_ORDER_1_SEC; 412 } else if (ret >= 100) { 413 return H_LONG_BUSY_ORDER_100_MSEC; 414 } else if (ret >= 10) { 415 return H_LONG_BUSY_ORDER_10_MSEC; 416 } else if (ret > 0) { 417 return H_LONG_BUSY_ORDER_1_MSEC; 418 } 419 420 switch (ret) { 421 case 0: 422 return H_SUCCESS; 423 case -EPERM: 424 return H_AUTHORITY; 425 case -EINVAL: 426 return H_PARAMETER; 427 case -ENXIO: 428 return H_CLOSED; 429 case -ENOSPC: 430 return H_PTEG_FULL; 431 case -EBUSY: 432 return H_BUSY; 433 case -ENOMEM: 434 return H_NO_MEM; 435 default: 436 return H_HARDWARE; 437 } 438 } 439 440 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, 441 SpaprMachineState *spapr, 442 target_ulong opcode, 443 target_ulong *args) 444 { 445 target_ulong flags = args[0]; 446 int shift = args[1]; 447 SpaprPendingHpt *pending = spapr->pending_hpt; 448 uint64_t current_ram_size; 449 int rc; 450 451 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 452 return H_AUTHORITY; 453 } 454 455 if (!spapr->htab_shift) { 456 /* Radix guest, no HPT */ 457 return H_NOT_AVAILABLE; 458 } 459 460 trace_spapr_h_resize_hpt_prepare(flags, shift); 461 462 if (flags != 0) { 463 return H_PARAMETER; 464 } 465 466 if (shift && ((shift < 18) || (shift > 46))) { 467 return H_PARAMETER; 468 } 469 470 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 471 472 /* We only allow the guest to allocate an HPT one order above what 473 * we'd normally give them (to stop a small guest claiming a huge 474 * chunk of resources in the HPT */ 475 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { 476 return H_RESOURCE; 477 } 478 479 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); 480 if (rc != -ENOSYS) { 481 return resize_hpt_convert_rc(rc); 482 } 483 484 if (pending) { 485 /* something already in progress */ 486 if (pending->shift == shift) { 487 /* and it's suitable */ 488 if (pending->complete) { 489 return pending->ret; 490 } else { 491 return H_LONG_BUSY_ORDER_100_MSEC; 492 } 493 } 494 495 /* not suitable, cancel and replace */ 496 cancel_hpt_prepare(spapr); 497 } 498 499 if (!shift) { 500 /* nothing to do */ 501 return H_SUCCESS; 502 } 503 504 /* start new prepare */ 505 506 pending = g_new0(SpaprPendingHpt, 1); 507 pending->shift = shift; 508 pending->ret = H_HARDWARE; 509 510 qemu_thread_create(&pending->thread, "sPAPR HPT prepare", 511 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED); 512 513 spapr->pending_hpt = pending; 514 515 /* In theory we could estimate the time more accurately based on 516 * the new size, but there's not much point */ 517 return H_LONG_BUSY_ORDER_100_MSEC; 518 } 519 520 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot) 521 { 522 uint8_t *addr = htab; 523 524 addr += pteg * HASH_PTEG_SIZE_64; 525 addr += slot * HASH_PTE_SIZE_64; 526 return ldq_p(addr); 527 } 528 529 static void new_hpte_store(void *htab, uint64_t pteg, int slot, 530 uint64_t pte0, uint64_t pte1) 531 { 532 uint8_t *addr = htab; 533 534 addr += pteg * HASH_PTEG_SIZE_64; 535 addr += slot * HASH_PTE_SIZE_64; 536 537 stq_p(addr, pte0); 538 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1); 539 } 540 541 static int rehash_hpte(PowerPCCPU *cpu, 542 const ppc_hash_pte64_t *hptes, 543 void *old_hpt, uint64_t oldsize, 544 void *new_hpt, uint64_t newsize, 545 uint64_t pteg, int slot) 546 { 547 uint64_t old_hash_mask = (oldsize >> 7) - 1; 548 uint64_t new_hash_mask = (newsize >> 7) - 1; 549 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot); 550 target_ulong pte1; 551 uint64_t avpn; 552 unsigned base_pg_shift; 553 uint64_t hash, new_pteg, replace_pte0; 554 555 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) { 556 return H_SUCCESS; 557 } 558 559 pte1 = ppc_hash64_hpte1(cpu, hptes, slot); 560 561 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1); 562 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */ 563 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23); 564 565 if (pte0 & HPTE64_V_SECONDARY) { 566 pteg = ~pteg; 567 } 568 569 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) { 570 uint64_t offset, vsid; 571 572 /* We only have 28 - 23 bits of offset in avpn */ 573 offset = (avpn & 0x1f) << 23; 574 vsid = avpn >> 5; 575 /* We can find more bits from the pteg value */ 576 if (base_pg_shift < 23) { 577 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift; 578 } 579 580 hash = vsid ^ (offset >> base_pg_shift); 581 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) { 582 uint64_t offset, vsid; 583 584 /* We only have 40 - 23 bits of seg_off in avpn */ 585 offset = (avpn & 0x1ffff) << 23; 586 vsid = avpn >> 17; 587 if (base_pg_shift < 23) { 588 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) 589 << base_pg_shift; 590 } 591 592 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift); 593 } else { 594 error_report("rehash_pte: Bad segment size in HPTE"); 595 return H_HARDWARE; 596 } 597 598 new_pteg = hash & new_hash_mask; 599 if (pte0 & HPTE64_V_SECONDARY) { 600 assert(~pteg == (hash & old_hash_mask)); 601 new_pteg = ~new_pteg; 602 } else { 603 assert(pteg == (hash & old_hash_mask)); 604 } 605 assert((oldsize != newsize) || (pteg == new_pteg)); 606 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot); 607 /* 608 * Strictly speaking, we don't need all these tests, since we only 609 * ever rehash bolted HPTEs. We might in future handle non-bolted 610 * HPTEs, though so make the logic correct for those cases as 611 * well. 612 */ 613 if (replace_pte0 & HPTE64_V_VALID) { 614 assert(newsize < oldsize); 615 if (replace_pte0 & HPTE64_V_BOLTED) { 616 if (pte0 & HPTE64_V_BOLTED) { 617 /* Bolted collision, nothing we can do */ 618 return H_PTEG_FULL; 619 } else { 620 /* Discard this hpte */ 621 return H_SUCCESS; 622 } 623 } 624 } 625 626 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1); 627 return H_SUCCESS; 628 } 629 630 static int rehash_hpt(PowerPCCPU *cpu, 631 void *old_hpt, uint64_t oldsize, 632 void *new_hpt, uint64_t newsize) 633 { 634 uint64_t n_ptegs = oldsize >> 7; 635 uint64_t pteg; 636 int slot; 637 int rc; 638 639 for (pteg = 0; pteg < n_ptegs; pteg++) { 640 hwaddr ptex = pteg * HPTES_PER_GROUP; 641 const ppc_hash_pte64_t *hptes 642 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 643 644 if (!hptes) { 645 return H_HARDWARE; 646 } 647 648 for (slot = 0; slot < HPTES_PER_GROUP; slot++) { 649 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize, 650 pteg, slot); 651 if (rc != H_SUCCESS) { 652 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 653 return rc; 654 } 655 } 656 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 657 } 658 659 return H_SUCCESS; 660 } 661 662 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) 663 { 664 int ret; 665 666 cpu_synchronize_state(cs); 667 668 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); 669 if (ret < 0) { 670 error_report("failed to push sregs to KVM: %s", strerror(-ret)); 671 exit(1); 672 } 673 } 674 675 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr) 676 { 677 CPUState *cs; 678 679 /* 680 * This is a hack for the benefit of KVM PR - it abuses the SDR1 681 * slot in kvm_sregs to communicate the userspace address of the 682 * HPT 683 */ 684 if (!kvm_enabled() || !spapr->htab) { 685 return; 686 } 687 688 CPU_FOREACH(cs) { 689 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); 690 } 691 } 692 693 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, 694 SpaprMachineState *spapr, 695 target_ulong opcode, 696 target_ulong *args) 697 { 698 target_ulong flags = args[0]; 699 target_ulong shift = args[1]; 700 SpaprPendingHpt *pending = spapr->pending_hpt; 701 int rc; 702 size_t newsize; 703 704 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 705 return H_AUTHORITY; 706 } 707 708 if (!spapr->htab_shift) { 709 /* Radix guest, no HPT */ 710 return H_NOT_AVAILABLE; 711 } 712 713 trace_spapr_h_resize_hpt_commit(flags, shift); 714 715 rc = kvmppc_resize_hpt_commit(cpu, flags, shift); 716 if (rc != -ENOSYS) { 717 rc = resize_hpt_convert_rc(rc); 718 if (rc == H_SUCCESS) { 719 /* Need to set the new htab_shift in the machine state */ 720 spapr->htab_shift = shift; 721 } 722 return rc; 723 } 724 725 if (flags != 0) { 726 return H_PARAMETER; 727 } 728 729 if (!pending || (pending->shift != shift)) { 730 /* no matching prepare */ 731 return H_CLOSED; 732 } 733 734 if (!pending->complete) { 735 /* prepare has not completed */ 736 return H_BUSY; 737 } 738 739 /* Shouldn't have got past PREPARE without an HPT */ 740 g_assert(spapr->htab_shift); 741 742 newsize = 1ULL << pending->shift; 743 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr), 744 pending->hpt, newsize); 745 if (rc == H_SUCCESS) { 746 qemu_vfree(spapr->htab); 747 spapr->htab = pending->hpt; 748 spapr->htab_shift = pending->shift; 749 750 push_sregs_to_kvm_pr(spapr); 751 752 pending->hpt = NULL; /* so it's not free()d */ 753 } 754 755 /* Clean up */ 756 spapr->pending_hpt = NULL; 757 free_pending_hpt(pending); 758 759 return rc; 760 } 761 762 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, 763 target_ulong opcode, target_ulong *args) 764 { 765 cpu_synchronize_state(CPU(cpu)); 766 cpu->env.spr[SPR_SPRG0] = args[0]; 767 768 return H_SUCCESS; 769 } 770 771 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 772 target_ulong opcode, target_ulong *args) 773 { 774 if (!has_spr(cpu, SPR_DABR)) { 775 return H_HARDWARE; /* DABR register not available */ 776 } 777 cpu_synchronize_state(CPU(cpu)); 778 779 if (has_spr(cpu, SPR_DABRX)) { 780 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ 781 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ 782 return H_RESERVED_DABR; 783 } 784 785 cpu->env.spr[SPR_DABR] = args[0]; 786 return H_SUCCESS; 787 } 788 789 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 790 target_ulong opcode, target_ulong *args) 791 { 792 target_ulong dabrx = args[1]; 793 794 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) { 795 return H_HARDWARE; 796 } 797 798 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 799 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { 800 return H_PARAMETER; 801 } 802 803 cpu_synchronize_state(CPU(cpu)); 804 cpu->env.spr[SPR_DABRX] = dabrx; 805 cpu->env.spr[SPR_DABR] = args[0]; 806 807 return H_SUCCESS; 808 } 809 810 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, 811 target_ulong opcode, target_ulong *args) 812 { 813 target_ulong flags = args[0]; 814 hwaddr dst = args[1]; 815 hwaddr src = args[2]; 816 hwaddr len = TARGET_PAGE_SIZE; 817 uint8_t *pdst, *psrc; 818 target_long ret = H_SUCCESS; 819 820 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE 821 | H_COPY_PAGE | H_ZERO_PAGE)) { 822 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", 823 flags); 824 return H_PARAMETER; 825 } 826 827 /* Map-in destination */ 828 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { 829 return H_PARAMETER; 830 } 831 pdst = cpu_physical_memory_map(dst, &len, 1); 832 if (!pdst || len != TARGET_PAGE_SIZE) { 833 return H_PARAMETER; 834 } 835 836 if (flags & H_COPY_PAGE) { 837 /* Map-in source, copy to destination, and unmap source again */ 838 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { 839 ret = H_PARAMETER; 840 goto unmap_out; 841 } 842 psrc = cpu_physical_memory_map(src, &len, 0); 843 if (!psrc || len != TARGET_PAGE_SIZE) { 844 ret = H_PARAMETER; 845 goto unmap_out; 846 } 847 memcpy(pdst, psrc, len); 848 cpu_physical_memory_unmap(psrc, len, 0, len); 849 } else if (flags & H_ZERO_PAGE) { 850 memset(pdst, 0, len); /* Just clear the destination page */ 851 } 852 853 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { 854 kvmppc_dcbst_range(cpu, pdst, len); 855 } 856 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { 857 if (kvm_enabled()) { 858 kvmppc_icbi_range(cpu, pdst, len); 859 } else { 860 tb_flush(CPU(cpu)); 861 } 862 } 863 864 unmap_out: 865 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); 866 return ret; 867 } 868 869 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL 870 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL 871 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL 872 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL 873 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL 874 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL 875 876 #define VPA_MIN_SIZE 640 877 #define VPA_SIZE_OFFSET 0x4 878 #define VPA_SHARED_PROC_OFFSET 0x9 879 #define VPA_SHARED_PROC_VAL 0x2 880 881 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) 882 { 883 CPUState *cs = CPU(cpu); 884 CPUPPCState *env = &cpu->env; 885 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 886 uint16_t size; 887 uint8_t tmp; 888 889 if (vpa == 0) { 890 hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); 891 return H_HARDWARE; 892 } 893 894 if (vpa % env->dcache_line_size) { 895 return H_PARAMETER; 896 } 897 /* FIXME: bounds check the address */ 898 899 size = lduw_be_phys(cs->as, vpa + 0x4); 900 901 if (size < VPA_MIN_SIZE) { 902 return H_PARAMETER; 903 } 904 905 /* VPA is not allowed to cross a page boundary */ 906 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { 907 return H_PARAMETER; 908 } 909 910 spapr_cpu->vpa_addr = vpa; 911 912 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); 913 tmp |= VPA_SHARED_PROC_VAL; 914 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); 915 916 return H_SUCCESS; 917 } 918 919 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) 920 { 921 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 922 923 if (spapr_cpu->slb_shadow_addr) { 924 return H_RESOURCE; 925 } 926 927 if (spapr_cpu->dtl_addr) { 928 return H_RESOURCE; 929 } 930 931 spapr_cpu->vpa_addr = 0; 932 return H_SUCCESS; 933 } 934 935 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 936 { 937 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 938 uint32_t size; 939 940 if (addr == 0) { 941 hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); 942 return H_HARDWARE; 943 } 944 945 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 946 if (size < 0x8) { 947 return H_PARAMETER; 948 } 949 950 if ((addr / 4096) != ((addr + size - 1) / 4096)) { 951 return H_PARAMETER; 952 } 953 954 if (!spapr_cpu->vpa_addr) { 955 return H_RESOURCE; 956 } 957 958 spapr_cpu->slb_shadow_addr = addr; 959 spapr_cpu->slb_shadow_size = size; 960 961 return H_SUCCESS; 962 } 963 964 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 965 { 966 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 967 968 spapr_cpu->slb_shadow_addr = 0; 969 spapr_cpu->slb_shadow_size = 0; 970 return H_SUCCESS; 971 } 972 973 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) 974 { 975 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 976 uint32_t size; 977 978 if (addr == 0) { 979 hcall_dprintf("Can't cope with DTL at logical 0\n"); 980 return H_HARDWARE; 981 } 982 983 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 984 985 if (size < 48) { 986 return H_PARAMETER; 987 } 988 989 if (!spapr_cpu->vpa_addr) { 990 return H_RESOURCE; 991 } 992 993 spapr_cpu->dtl_addr = addr; 994 spapr_cpu->dtl_size = size; 995 996 return H_SUCCESS; 997 } 998 999 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) 1000 { 1001 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1002 1003 spapr_cpu->dtl_addr = 0; 1004 spapr_cpu->dtl_size = 0; 1005 1006 return H_SUCCESS; 1007 } 1008 1009 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, 1010 target_ulong opcode, target_ulong *args) 1011 { 1012 target_ulong flags = args[0]; 1013 target_ulong procno = args[1]; 1014 target_ulong vpa = args[2]; 1015 target_ulong ret = H_PARAMETER; 1016 PowerPCCPU *tcpu; 1017 1018 tcpu = spapr_find_cpu(procno); 1019 if (!tcpu) { 1020 return H_PARAMETER; 1021 } 1022 1023 switch (flags) { 1024 case FLAGS_REGISTER_VPA: 1025 ret = register_vpa(tcpu, vpa); 1026 break; 1027 1028 case FLAGS_DEREGISTER_VPA: 1029 ret = deregister_vpa(tcpu, vpa); 1030 break; 1031 1032 case FLAGS_REGISTER_SLBSHADOW: 1033 ret = register_slb_shadow(tcpu, vpa); 1034 break; 1035 1036 case FLAGS_DEREGISTER_SLBSHADOW: 1037 ret = deregister_slb_shadow(tcpu, vpa); 1038 break; 1039 1040 case FLAGS_REGISTER_DTL: 1041 ret = register_dtl(tcpu, vpa); 1042 break; 1043 1044 case FLAGS_DEREGISTER_DTL: 1045 ret = deregister_dtl(tcpu, vpa); 1046 break; 1047 } 1048 1049 return ret; 1050 } 1051 1052 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, 1053 target_ulong opcode, target_ulong *args) 1054 { 1055 CPUPPCState *env = &cpu->env; 1056 CPUState *cs = CPU(cpu); 1057 1058 env->msr |= (1ULL << MSR_EE); 1059 hreg_compute_hflags(env); 1060 if (!cpu_has_work(cs)) { 1061 cs->halted = 1; 1062 cs->exception_index = EXCP_HLT; 1063 cs->exit_request = 1; 1064 } 1065 return H_SUCCESS; 1066 } 1067 1068 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, 1069 target_ulong opcode, target_ulong *args) 1070 { 1071 target_ulong rtas_r3 = args[0]; 1072 uint32_t token = rtas_ld(rtas_r3, 0); 1073 uint32_t nargs = rtas_ld(rtas_r3, 1); 1074 uint32_t nret = rtas_ld(rtas_r3, 2); 1075 1076 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, 1077 nret, rtas_r3 + 12 + 4*nargs); 1078 } 1079 1080 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, 1081 target_ulong opcode, target_ulong *args) 1082 { 1083 CPUState *cs = CPU(cpu); 1084 target_ulong size = args[0]; 1085 target_ulong addr = args[1]; 1086 1087 switch (size) { 1088 case 1: 1089 args[0] = ldub_phys(cs->as, addr); 1090 return H_SUCCESS; 1091 case 2: 1092 args[0] = lduw_phys(cs->as, addr); 1093 return H_SUCCESS; 1094 case 4: 1095 args[0] = ldl_phys(cs->as, addr); 1096 return H_SUCCESS; 1097 case 8: 1098 args[0] = ldq_phys(cs->as, addr); 1099 return H_SUCCESS; 1100 } 1101 return H_PARAMETER; 1102 } 1103 1104 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, 1105 target_ulong opcode, target_ulong *args) 1106 { 1107 CPUState *cs = CPU(cpu); 1108 1109 target_ulong size = args[0]; 1110 target_ulong addr = args[1]; 1111 target_ulong val = args[2]; 1112 1113 switch (size) { 1114 case 1: 1115 stb_phys(cs->as, addr, val); 1116 return H_SUCCESS; 1117 case 2: 1118 stw_phys(cs->as, addr, val); 1119 return H_SUCCESS; 1120 case 4: 1121 stl_phys(cs->as, addr, val); 1122 return H_SUCCESS; 1123 case 8: 1124 stq_phys(cs->as, addr, val); 1125 return H_SUCCESS; 1126 } 1127 return H_PARAMETER; 1128 } 1129 1130 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, 1131 target_ulong opcode, target_ulong *args) 1132 { 1133 CPUState *cs = CPU(cpu); 1134 1135 target_ulong dst = args[0]; /* Destination address */ 1136 target_ulong src = args[1]; /* Source address */ 1137 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ 1138 target_ulong count = args[3]; /* Element count */ 1139 target_ulong op = args[4]; /* 0 = copy, 1 = invert */ 1140 uint64_t tmp; 1141 unsigned int mask = (1 << esize) - 1; 1142 int step = 1 << esize; 1143 1144 if (count > 0x80000000) { 1145 return H_PARAMETER; 1146 } 1147 1148 if ((dst & mask) || (src & mask) || (op > 1)) { 1149 return H_PARAMETER; 1150 } 1151 1152 if (dst >= src && dst < (src + (count << esize))) { 1153 dst = dst + ((count - 1) << esize); 1154 src = src + ((count - 1) << esize); 1155 step = -step; 1156 } 1157 1158 while (count--) { 1159 switch (esize) { 1160 case 0: 1161 tmp = ldub_phys(cs->as, src); 1162 break; 1163 case 1: 1164 tmp = lduw_phys(cs->as, src); 1165 break; 1166 case 2: 1167 tmp = ldl_phys(cs->as, src); 1168 break; 1169 case 3: 1170 tmp = ldq_phys(cs->as, src); 1171 break; 1172 default: 1173 return H_PARAMETER; 1174 } 1175 if (op == 1) { 1176 tmp = ~tmp; 1177 } 1178 switch (esize) { 1179 case 0: 1180 stb_phys(cs->as, dst, tmp); 1181 break; 1182 case 1: 1183 stw_phys(cs->as, dst, tmp); 1184 break; 1185 case 2: 1186 stl_phys(cs->as, dst, tmp); 1187 break; 1188 case 3: 1189 stq_phys(cs->as, dst, tmp); 1190 break; 1191 } 1192 dst = dst + step; 1193 src = src + step; 1194 } 1195 1196 return H_SUCCESS; 1197 } 1198 1199 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, 1200 target_ulong opcode, target_ulong *args) 1201 { 1202 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1203 return H_SUCCESS; 1204 } 1205 1206 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, 1207 target_ulong opcode, target_ulong *args) 1208 { 1209 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1210 return H_SUCCESS; 1211 } 1212 1213 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, 1214 target_ulong mflags, 1215 target_ulong value1, 1216 target_ulong value2) 1217 { 1218 if (value1) { 1219 return H_P3; 1220 } 1221 if (value2) { 1222 return H_P4; 1223 } 1224 1225 switch (mflags) { 1226 case H_SET_MODE_ENDIAN_BIG: 1227 spapr_set_all_lpcrs(0, LPCR_ILE); 1228 spapr_pci_switch_vga(true); 1229 return H_SUCCESS; 1230 1231 case H_SET_MODE_ENDIAN_LITTLE: 1232 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); 1233 spapr_pci_switch_vga(false); 1234 return H_SUCCESS; 1235 } 1236 1237 return H_UNSUPPORTED_FLAG; 1238 } 1239 1240 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, 1241 target_ulong mflags, 1242 target_ulong value1, 1243 target_ulong value2) 1244 { 1245 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 1246 1247 if (!(pcc->insns_flags2 & PPC2_ISA207S)) { 1248 return H_P2; 1249 } 1250 if (value1) { 1251 return H_P3; 1252 } 1253 if (value2) { 1254 return H_P4; 1255 } 1256 1257 if (mflags == AIL_RESERVED) { 1258 return H_UNSUPPORTED_FLAG; 1259 } 1260 1261 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); 1262 1263 return H_SUCCESS; 1264 } 1265 1266 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, 1267 target_ulong opcode, target_ulong *args) 1268 { 1269 target_ulong resource = args[1]; 1270 target_ulong ret = H_P2; 1271 1272 switch (resource) { 1273 case H_SET_MODE_RESOURCE_LE: 1274 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]); 1275 break; 1276 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 1277 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], 1278 args[2], args[3]); 1279 break; 1280 } 1281 1282 return ret; 1283 } 1284 1285 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, 1286 target_ulong opcode, target_ulong *args) 1287 { 1288 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1289 opcode, " (H_CLEAN_SLB)"); 1290 return H_FUNCTION; 1291 } 1292 1293 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, 1294 target_ulong opcode, target_ulong *args) 1295 { 1296 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1297 opcode, " (H_INVALIDATE_PID)"); 1298 return H_FUNCTION; 1299 } 1300 1301 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, 1302 uint64_t patbe_old, uint64_t patbe_new) 1303 { 1304 /* 1305 * We have 4 Options: 1306 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing 1307 * HASH->RADIX : Free HPT 1308 * RADIX->HASH : Allocate HPT 1309 * NOTHING->HASH : Allocate HPT 1310 * Note: NOTHING implies the case where we said the guest could choose 1311 * later and so assumed radix and now it's called H_REG_PROC_TBL 1312 */ 1313 1314 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { 1315 /* We assume RADIX, so this catches all the "Do Nothing" cases */ 1316 } else if (!(patbe_old & PATE1_GR)) { 1317 /* HASH->RADIX : Free HPT */ 1318 spapr_free_hpt(spapr); 1319 } else if (!(patbe_new & PATE1_GR)) { 1320 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ 1321 spapr_setup_hpt_and_vrma(spapr); 1322 } 1323 return; 1324 } 1325 1326 #define FLAGS_MASK 0x01FULL 1327 #define FLAG_MODIFY 0x10 1328 #define FLAG_REGISTER 0x08 1329 #define FLAG_RADIX 0x04 1330 #define FLAG_HASH_PROC_TBL 0x02 1331 #define FLAG_GTSE 0x01 1332 1333 static target_ulong h_register_process_table(PowerPCCPU *cpu, 1334 SpaprMachineState *spapr, 1335 target_ulong opcode, 1336 target_ulong *args) 1337 { 1338 target_ulong flags = args[0]; 1339 target_ulong proc_tbl = args[1]; 1340 target_ulong page_size = args[2]; 1341 target_ulong table_size = args[3]; 1342 target_ulong update_lpcr = 0; 1343 uint64_t cproc; 1344 1345 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ 1346 return H_PARAMETER; 1347 } 1348 if (flags & FLAG_MODIFY) { 1349 if (flags & FLAG_REGISTER) { 1350 if (flags & FLAG_RADIX) { /* Register new RADIX process table */ 1351 if (proc_tbl & 0xfff || proc_tbl >> 60) { 1352 return H_P2; 1353 } else if (page_size) { 1354 return H_P3; 1355 } else if (table_size > 24) { 1356 return H_P4; 1357 } 1358 cproc = PATE1_GR | proc_tbl | table_size; 1359 } else { /* Register new HPT process table */ 1360 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ 1361 /* TODO - Not Supported */ 1362 /* Technically caused by flag bits => H_PARAMETER */ 1363 return H_PARAMETER; 1364 } else { /* Hash with SLB */ 1365 if (proc_tbl >> 38) { 1366 return H_P2; 1367 } else if (page_size & ~0x7) { 1368 return H_P3; 1369 } else if (table_size > 24) { 1370 return H_P4; 1371 } 1372 } 1373 cproc = (proc_tbl << 25) | page_size << 5 | table_size; 1374 } 1375 1376 } else { /* Deregister current process table */ 1377 /* 1378 * Set to benign value: (current GR) | 0. This allows 1379 * deregistration in KVM to succeed even if the radix bit 1380 * in flags doesn't match the radix bit in the old PATE. 1381 */ 1382 cproc = spapr->patb_entry & PATE1_GR; 1383 } 1384 } else { /* Maintain current registration */ 1385 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { 1386 /* Technically caused by flag bits => H_PARAMETER */ 1387 return H_PARAMETER; /* Existing Process Table Mismatch */ 1388 } 1389 cproc = spapr->patb_entry; 1390 } 1391 1392 /* Check if we need to setup OR free the hpt */ 1393 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); 1394 1395 spapr->patb_entry = cproc; /* Save new process table */ 1396 1397 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ 1398 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ 1399 update_lpcr |= (LPCR_UPRT | LPCR_HR); 1400 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ 1401 update_lpcr |= LPCR_UPRT; 1402 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ 1403 update_lpcr |= LPCR_GTSE; 1404 1405 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); 1406 1407 if (kvm_enabled()) { 1408 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, 1409 flags & FLAG_GTSE, cproc); 1410 } 1411 return H_SUCCESS; 1412 } 1413 1414 #define H_SIGNAL_SYS_RESET_ALL -1 1415 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 1416 1417 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, 1418 SpaprMachineState *spapr, 1419 target_ulong opcode, target_ulong *args) 1420 { 1421 target_long target = args[0]; 1422 CPUState *cs; 1423 1424 if (target < 0) { 1425 /* Broadcast */ 1426 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1427 return H_PARAMETER; 1428 } 1429 1430 CPU_FOREACH(cs) { 1431 PowerPCCPU *c = POWERPC_CPU(cs); 1432 1433 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1434 if (c == cpu) { 1435 continue; 1436 } 1437 } 1438 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1439 } 1440 return H_SUCCESS; 1441 1442 } else { 1443 /* Unicast */ 1444 cs = CPU(spapr_find_cpu(target)); 1445 if (cs) { 1446 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1447 return H_SUCCESS; 1448 } 1449 return H_PARAMETER; 1450 } 1451 } 1452 1453 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu, 1454 target_ulong *addr, bool *raw_mode_supported, 1455 Error **errp) 1456 { 1457 bool explicit_match = false; /* Matched the CPU's real PVR */ 1458 uint32_t max_compat = spapr->max_compat_pvr; 1459 uint32_t best_compat = 0; 1460 int i; 1461 1462 /* 1463 * We scan the supplied table of PVRs looking for two things 1464 * 1. Is our real CPU PVR in the list? 1465 * 2. What's the "best" listed logical PVR 1466 */ 1467 for (i = 0; i < 512; ++i) { 1468 uint32_t pvr, pvr_mask; 1469 1470 pvr_mask = ldl_be_phys(&address_space_memory, *addr); 1471 pvr = ldl_be_phys(&address_space_memory, *addr + 4); 1472 *addr += 8; 1473 1474 if (~pvr_mask & pvr) { 1475 break; /* Terminator record */ 1476 } 1477 1478 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { 1479 explicit_match = true; 1480 } else { 1481 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { 1482 best_compat = pvr; 1483 } 1484 } 1485 } 1486 1487 if ((best_compat == 0) && (!explicit_match || max_compat)) { 1488 /* We couldn't find a suitable compatibility mode, and either 1489 * the guest doesn't support "raw" mode for this CPU, or raw 1490 * mode is disabled because a maximum compat mode is set */ 1491 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS"); 1492 return 0; 1493 } 1494 1495 *raw_mode_supported = explicit_match; 1496 1497 /* Parsing finished */ 1498 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); 1499 1500 return best_compat; 1501 } 1502 1503 static target_ulong h_client_architecture_support(PowerPCCPU *cpu, 1504 SpaprMachineState *spapr, 1505 target_ulong opcode, 1506 target_ulong *args) 1507 { 1508 /* Working address in data buffer */ 1509 target_ulong addr = ppc64_phys_to_real(args[0]); 1510 target_ulong ov_table; 1511 uint32_t cas_pvr; 1512 SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates; 1513 bool guest_radix; 1514 Error *local_err = NULL; 1515 bool raw_mode_supported = false; 1516 bool guest_xive; 1517 1518 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err); 1519 if (local_err) { 1520 error_report_err(local_err); 1521 return H_HARDWARE; 1522 } 1523 1524 /* Update CPUs */ 1525 if (cpu->compat_pvr != cas_pvr) { 1526 ppc_set_compat_all(cas_pvr, &local_err); 1527 if (local_err) { 1528 /* We fail to set compat mode (likely because running with KVM PR), 1529 * but maybe we can fallback to raw mode if the guest supports it. 1530 */ 1531 if (!raw_mode_supported) { 1532 error_report_err(local_err); 1533 return H_HARDWARE; 1534 } 1535 error_free(local_err); 1536 local_err = NULL; 1537 } 1538 } 1539 1540 /* For the future use: here @ov_table points to the first option vector */ 1541 ov_table = addr; 1542 1543 ov1_guest = spapr_ovec_parse_vector(ov_table, 1); 1544 ov5_guest = spapr_ovec_parse_vector(ov_table, 5); 1545 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { 1546 error_report("guest requested hash and radix MMU, which is invalid."); 1547 exit(EXIT_FAILURE); 1548 } 1549 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { 1550 error_report("guest requested an invalid interrupt mode"); 1551 exit(EXIT_FAILURE); 1552 } 1553 1554 /* The radix/hash bit in byte 24 requires special handling: */ 1555 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); 1556 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300); 1557 1558 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); 1559 1560 /* 1561 * HPT resizing is a bit of a special case, because when enabled 1562 * we assume an HPT guest will support it until it says it 1563 * doesn't, instead of assuming it won't support it until it says 1564 * it does. Strictly speaking that approach could break for 1565 * guests which don't make a CAS call, but those are so old we 1566 * don't care about them. Without that assumption we'd have to 1567 * make at least a temporary allocation of an HPT sized for max 1568 * memory, which could be impossibly difficult under KVM HV if 1569 * maxram is large. 1570 */ 1571 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { 1572 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1573 1574 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { 1575 error_report( 1576 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); 1577 exit(1); 1578 } 1579 1580 if (spapr->htab_shift < maxshift) { 1581 /* Guest doesn't know about HPT resizing, so we 1582 * pre-emptively resize for the maximum permitted RAM. At 1583 * the point this is called, nothing should have been 1584 * entered into the existing HPT */ 1585 spapr_reallocate_hpt(spapr, maxshift, &error_fatal); 1586 push_sregs_to_kvm_pr(spapr); 1587 } 1588 } 1589 1590 /* NOTE: there are actually a number of ov5 bits where input from the 1591 * guest is always zero, and the platform/QEMU enables them independently 1592 * of guest input. To model these properly we'd want some sort of mask, 1593 * but since they only currently apply to memory migration as defined 1594 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need 1595 * to worry about this for now. 1596 */ 1597 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); 1598 1599 /* also clear the radix/hash bit from the current ov5_cas bits to 1600 * be in sync with the newly ov5 bits. Else the radix bit will be 1601 * seen as being removed and this will generate a reset loop 1602 */ 1603 spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300); 1604 1605 /* full range of negotiated ov5 capabilities */ 1606 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); 1607 spapr_ovec_cleanup(ov5_guest); 1608 /* capabilities that have been added since CAS-generated guest reset. 1609 * if capabilities have since been removed, generate another reset 1610 */ 1611 ov5_updates = spapr_ovec_new(); 1612 spapr->cas_reboot = spapr_ovec_diff(ov5_updates, 1613 ov5_cas_old, spapr->ov5_cas); 1614 /* Now that processing is finished, set the radix/hash bit for the 1615 * guest if it requested a valid mode; otherwise terminate the boot. */ 1616 if (guest_radix) { 1617 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1618 error_report("Guest requested unavailable MMU mode (radix)."); 1619 exit(EXIT_FAILURE); 1620 } 1621 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300); 1622 } else { 1623 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1624 && !kvmppc_has_cap_mmu_hash_v3()) { 1625 error_report("Guest requested unavailable MMU mode (hash)."); 1626 exit(EXIT_FAILURE); 1627 } 1628 } 1629 spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest, 1630 OV1_PPC_3_00); 1631 if (!spapr->cas_reboot) { 1632 /* If spapr_machine_reset() did not set up a HPT but one is necessary 1633 * (because the guest isn't going to use radix) then set it up here. */ 1634 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { 1635 /* legacy hash or new hash: */ 1636 spapr_setup_hpt_and_vrma(spapr); 1637 } 1638 spapr->cas_reboot = 1639 (spapr_h_cas_compose_response(spapr, args[1], args[2], 1640 ov5_updates) != 0); 1641 } 1642 1643 /* 1644 * Ensure the guest asks for an interrupt mode we support; otherwise 1645 * terminate the boot. 1646 */ 1647 if (guest_xive) { 1648 if (spapr->irq->ov5 == SPAPR_OV5_XIVE_LEGACY) { 1649 error_report( 1650 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); 1651 exit(EXIT_FAILURE); 1652 } 1653 } else { 1654 if (spapr->irq->ov5 == SPAPR_OV5_XIVE_EXPLOIT) { 1655 error_report( 1656 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); 1657 exit(EXIT_FAILURE); 1658 } 1659 } 1660 1661 /* 1662 * Generate a machine reset when we have an update of the 1663 * interrupt mode. Only required when the machine supports both 1664 * modes. 1665 */ 1666 if (!spapr->cas_reboot) { 1667 spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT) 1668 && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH; 1669 } 1670 1671 spapr_ovec_cleanup(ov5_updates); 1672 1673 if (spapr->cas_reboot) { 1674 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1675 } 1676 1677 return H_SUCCESS; 1678 } 1679 1680 static target_ulong h_home_node_associativity(PowerPCCPU *cpu, 1681 SpaprMachineState *spapr, 1682 target_ulong opcode, 1683 target_ulong *args) 1684 { 1685 target_ulong flags = args[0]; 1686 target_ulong procno = args[1]; 1687 PowerPCCPU *tcpu; 1688 int idx; 1689 1690 /* only support procno from H_REGISTER_VPA */ 1691 if (flags != 0x1) { 1692 return H_FUNCTION; 1693 } 1694 1695 tcpu = spapr_find_cpu(procno); 1696 if (tcpu == NULL) { 1697 return H_P2; 1698 } 1699 1700 /* sequence is the same as in the "ibm,associativity" property */ 1701 1702 idx = 0; 1703 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ 1704 ((uint64_t)(b) & 0xffffffff)) 1705 args[idx++] = ASSOCIATIVITY(0, 0); 1706 args[idx++] = ASSOCIATIVITY(0, tcpu->node_id); 1707 args[idx++] = ASSOCIATIVITY(procno, -1); 1708 for ( ; idx < 6; idx++) { 1709 args[idx] = -1; 1710 } 1711 #undef ASSOCIATIVITY 1712 1713 return H_SUCCESS; 1714 } 1715 1716 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, 1717 SpaprMachineState *spapr, 1718 target_ulong opcode, 1719 target_ulong *args) 1720 { 1721 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & 1722 ~H_CPU_CHAR_THR_RECONF_TRIG; 1723 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; 1724 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); 1725 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); 1726 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); 1727 uint8_t count_cache_flush_assist = spapr_get_cap(spapr, 1728 SPAPR_CAP_CCF_ASSIST); 1729 1730 switch (safe_cache) { 1731 case SPAPR_CAP_WORKAROUND: 1732 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; 1733 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; 1734 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; 1735 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1736 break; 1737 case SPAPR_CAP_FIXED: 1738 break; 1739 default: /* broken */ 1740 assert(safe_cache == SPAPR_CAP_BROKEN); 1741 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1742 break; 1743 } 1744 1745 switch (safe_bounds_check) { 1746 case SPAPR_CAP_WORKAROUND: 1747 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; 1748 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1749 break; 1750 case SPAPR_CAP_FIXED: 1751 break; 1752 default: /* broken */ 1753 assert(safe_bounds_check == SPAPR_CAP_BROKEN); 1754 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1755 break; 1756 } 1757 1758 switch (safe_indirect_branch) { 1759 case SPAPR_CAP_FIXED_NA: 1760 break; 1761 case SPAPR_CAP_FIXED_CCD: 1762 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; 1763 break; 1764 case SPAPR_CAP_FIXED_IBS: 1765 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; 1766 break; 1767 case SPAPR_CAP_WORKAROUND: 1768 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; 1769 if (count_cache_flush_assist) { 1770 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; 1771 } 1772 break; 1773 default: /* broken */ 1774 assert(safe_indirect_branch == SPAPR_CAP_BROKEN); 1775 break; 1776 } 1777 1778 args[0] = characteristics; 1779 args[1] = behaviour; 1780 return H_SUCCESS; 1781 } 1782 1783 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, 1784 target_ulong opcode, target_ulong *args) 1785 { 1786 target_ulong dt = ppc64_phys_to_real(args[0]); 1787 struct fdt_header hdr = { 0 }; 1788 unsigned cb; 1789 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1790 void *fdt; 1791 1792 cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); 1793 cb = fdt32_to_cpu(hdr.totalsize); 1794 1795 if (!smc->update_dt_enabled) { 1796 return H_SUCCESS; 1797 } 1798 1799 /* Check that the fdt did not grow out of proportion */ 1800 if (cb > spapr->fdt_initial_size * 2) { 1801 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, 1802 fdt32_to_cpu(hdr.magic)); 1803 return H_PARAMETER; 1804 } 1805 1806 fdt = g_malloc0(cb); 1807 cpu_physical_memory_read(dt, fdt, cb); 1808 1809 /* Check the fdt consistency */ 1810 if (fdt_check_full(fdt, cb)) { 1811 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, 1812 fdt32_to_cpu(hdr.magic)); 1813 return H_PARAMETER; 1814 } 1815 1816 g_free(spapr->fdt_blob); 1817 spapr->fdt_size = cb; 1818 spapr->fdt_blob = fdt; 1819 trace_spapr_update_dt(cb); 1820 1821 return H_SUCCESS; 1822 } 1823 1824 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; 1825 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; 1826 1827 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) 1828 { 1829 spapr_hcall_fn *slot; 1830 1831 if (opcode <= MAX_HCALL_OPCODE) { 1832 assert((opcode & 0x3) == 0); 1833 1834 slot = &papr_hypercall_table[opcode / 4]; 1835 } else { 1836 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); 1837 1838 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1839 } 1840 1841 assert(!(*slot)); 1842 *slot = fn; 1843 } 1844 1845 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, 1846 target_ulong *args) 1847 { 1848 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1849 1850 if ((opcode <= MAX_HCALL_OPCODE) 1851 && ((opcode & 0x3) == 0)) { 1852 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; 1853 1854 if (fn) { 1855 return fn(cpu, spapr, opcode, args); 1856 } 1857 } else if ((opcode >= KVMPPC_HCALL_BASE) && 1858 (opcode <= KVMPPC_HCALL_MAX)) { 1859 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1860 1861 if (fn) { 1862 return fn(cpu, spapr, opcode, args); 1863 } 1864 } 1865 1866 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", 1867 opcode); 1868 return H_FUNCTION; 1869 } 1870 1871 static void hypercall_register_types(void) 1872 { 1873 /* hcall-pft */ 1874 spapr_register_hypercall(H_ENTER, h_enter); 1875 spapr_register_hypercall(H_REMOVE, h_remove); 1876 spapr_register_hypercall(H_PROTECT, h_protect); 1877 spapr_register_hypercall(H_READ, h_read); 1878 1879 /* hcall-bulk */ 1880 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); 1881 1882 /* hcall-hpt-resize */ 1883 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); 1884 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); 1885 1886 /* hcall-splpar */ 1887 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); 1888 spapr_register_hypercall(H_CEDE, h_cede); 1889 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); 1890 1891 /* processor register resource access h-calls */ 1892 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); 1893 spapr_register_hypercall(H_SET_DABR, h_set_dabr); 1894 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); 1895 spapr_register_hypercall(H_PAGE_INIT, h_page_init); 1896 spapr_register_hypercall(H_SET_MODE, h_set_mode); 1897 1898 /* In Memory Table MMU h-calls */ 1899 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); 1900 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); 1901 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); 1902 1903 /* hcall-get-cpu-characteristics */ 1904 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, 1905 h_get_cpu_characteristics); 1906 1907 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate 1908 * here between the "CI" and the "CACHE" variants, they will use whatever 1909 * mapping attributes qemu is using. When using KVM, the kernel will 1910 * enforce the attributes more strongly 1911 */ 1912 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); 1913 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); 1914 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); 1915 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); 1916 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); 1917 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); 1918 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); 1919 1920 /* qemu/KVM-PPC specific hcalls */ 1921 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); 1922 1923 /* ibm,client-architecture-support support */ 1924 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); 1925 1926 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); 1927 1928 /* Virtual Processor Home Node */ 1929 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, 1930 h_home_node_associativity); 1931 } 1932 1933 type_init(hypercall_register_types) 1934