1 #include "qemu/osdep.h" 2 #include "qemu/cutils.h" 3 #include "qapi/error.h" 4 #include "sysemu/hw_accel.h" 5 #include "sysemu/runstate.h" 6 #include "qemu/log.h" 7 #include "qemu/main-loop.h" 8 #include "qemu/module.h" 9 #include "qemu/error-report.h" 10 #include "exec/exec-all.h" 11 #include "exec/tb-flush.h" 12 #include "helper_regs.h" 13 #include "hw/ppc/ppc.h" 14 #include "hw/ppc/spapr.h" 15 #include "hw/ppc/spapr_cpu_core.h" 16 #include "mmu-hash64.h" 17 #include "cpu-models.h" 18 #include "trace.h" 19 #include "kvm_ppc.h" 20 #include "hw/ppc/fdt.h" 21 #include "hw/ppc/spapr_ovec.h" 22 #include "hw/ppc/spapr_numa.h" 23 #include "mmu-book3s-v3.h" 24 #include "hw/mem/memory-device.h" 25 26 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) 27 { 28 MachineState *machine = MACHINE(spapr); 29 DeviceMemoryState *dms = machine->device_memory; 30 31 if (addr < machine->ram_size) { 32 return true; 33 } 34 if ((addr >= dms->base) 35 && ((addr - dms->base) < memory_region_size(&dms->mr))) { 36 return true; 37 } 38 39 return false; 40 } 41 42 /* Convert a return code from the KVM ioctl()s implementing resize HPT 43 * into a PAPR hypercall return code */ 44 static target_ulong resize_hpt_convert_rc(int ret) 45 { 46 if (ret >= 100000) { 47 return H_LONG_BUSY_ORDER_100_SEC; 48 } else if (ret >= 10000) { 49 return H_LONG_BUSY_ORDER_10_SEC; 50 } else if (ret >= 1000) { 51 return H_LONG_BUSY_ORDER_1_SEC; 52 } else if (ret >= 100) { 53 return H_LONG_BUSY_ORDER_100_MSEC; 54 } else if (ret >= 10) { 55 return H_LONG_BUSY_ORDER_10_MSEC; 56 } else if (ret > 0) { 57 return H_LONG_BUSY_ORDER_1_MSEC; 58 } 59 60 switch (ret) { 61 case 0: 62 return H_SUCCESS; 63 case -EPERM: 64 return H_AUTHORITY; 65 case -EINVAL: 66 return H_PARAMETER; 67 case -ENXIO: 68 return H_CLOSED; 69 case -ENOSPC: 70 return H_PTEG_FULL; 71 case -EBUSY: 72 return H_BUSY; 73 case -ENOMEM: 74 return H_NO_MEM; 75 default: 76 return H_HARDWARE; 77 } 78 } 79 80 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, 81 SpaprMachineState *spapr, 82 target_ulong opcode, 83 target_ulong *args) 84 { 85 target_ulong flags = args[0]; 86 int shift = args[1]; 87 uint64_t current_ram_size; 88 int rc; 89 90 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 91 return H_AUTHORITY; 92 } 93 94 if (!spapr->htab_shift) { 95 /* Radix guest, no HPT */ 96 return H_NOT_AVAILABLE; 97 } 98 99 trace_spapr_h_resize_hpt_prepare(flags, shift); 100 101 if (flags != 0) { 102 return H_PARAMETER; 103 } 104 105 if (shift && ((shift < 18) || (shift > 46))) { 106 return H_PARAMETER; 107 } 108 109 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 110 111 /* We only allow the guest to allocate an HPT one order above what 112 * we'd normally give them (to stop a small guest claiming a huge 113 * chunk of resources in the HPT */ 114 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { 115 return H_RESOURCE; 116 } 117 118 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); 119 if (rc != -ENOSYS) { 120 return resize_hpt_convert_rc(rc); 121 } 122 123 if (kvm_enabled()) { 124 return H_HARDWARE; 125 } 126 127 return softmmu_resize_hpt_prepare(cpu, spapr, shift); 128 } 129 130 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) 131 { 132 int ret; 133 134 cpu_synchronize_state(cs); 135 136 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); 137 if (ret < 0) { 138 error_report("failed to push sregs to KVM: %s", strerror(-ret)); 139 exit(1); 140 } 141 } 142 143 void push_sregs_to_kvm_pr(SpaprMachineState *spapr) 144 { 145 CPUState *cs; 146 147 /* 148 * This is a hack for the benefit of KVM PR - it abuses the SDR1 149 * slot in kvm_sregs to communicate the userspace address of the 150 * HPT 151 */ 152 if (!kvm_enabled() || !spapr->htab) { 153 return; 154 } 155 156 CPU_FOREACH(cs) { 157 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); 158 } 159 } 160 161 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, 162 SpaprMachineState *spapr, 163 target_ulong opcode, 164 target_ulong *args) 165 { 166 target_ulong flags = args[0]; 167 target_ulong shift = args[1]; 168 int rc; 169 170 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 171 return H_AUTHORITY; 172 } 173 174 if (!spapr->htab_shift) { 175 /* Radix guest, no HPT */ 176 return H_NOT_AVAILABLE; 177 } 178 179 trace_spapr_h_resize_hpt_commit(flags, shift); 180 181 rc = kvmppc_resize_hpt_commit(cpu, flags, shift); 182 if (rc != -ENOSYS) { 183 rc = resize_hpt_convert_rc(rc); 184 if (rc == H_SUCCESS) { 185 /* Need to set the new htab_shift in the machine state */ 186 spapr->htab_shift = shift; 187 } 188 return rc; 189 } 190 191 if (kvm_enabled()) { 192 return H_HARDWARE; 193 } 194 195 return softmmu_resize_hpt_commit(cpu, spapr, flags, shift); 196 } 197 198 199 200 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, 201 target_ulong opcode, target_ulong *args) 202 { 203 cpu_synchronize_state(CPU(cpu)); 204 cpu->env.spr[SPR_SPRG0] = args[0]; 205 206 return H_SUCCESS; 207 } 208 209 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 210 target_ulong opcode, target_ulong *args) 211 { 212 if (!ppc_has_spr(cpu, SPR_DABR)) { 213 return H_HARDWARE; /* DABR register not available */ 214 } 215 cpu_synchronize_state(CPU(cpu)); 216 217 if (ppc_has_spr(cpu, SPR_DABRX)) { 218 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ 219 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ 220 return H_RESERVED_DABR; 221 } 222 223 cpu->env.spr[SPR_DABR] = args[0]; 224 return H_SUCCESS; 225 } 226 227 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 228 target_ulong opcode, target_ulong *args) 229 { 230 target_ulong dabrx = args[1]; 231 232 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) { 233 return H_HARDWARE; 234 } 235 236 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 237 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { 238 return H_PARAMETER; 239 } 240 241 cpu_synchronize_state(CPU(cpu)); 242 cpu->env.spr[SPR_DABRX] = dabrx; 243 cpu->env.spr[SPR_DABR] = args[0]; 244 245 return H_SUCCESS; 246 } 247 248 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, 249 target_ulong opcode, target_ulong *args) 250 { 251 target_ulong flags = args[0]; 252 hwaddr dst = args[1]; 253 hwaddr src = args[2]; 254 hwaddr len = TARGET_PAGE_SIZE; 255 uint8_t *pdst, *psrc; 256 target_long ret = H_SUCCESS; 257 258 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE 259 | H_COPY_PAGE | H_ZERO_PAGE)) { 260 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", 261 flags); 262 return H_PARAMETER; 263 } 264 265 /* Map-in destination */ 266 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { 267 return H_PARAMETER; 268 } 269 pdst = cpu_physical_memory_map(dst, &len, true); 270 if (!pdst || len != TARGET_PAGE_SIZE) { 271 return H_PARAMETER; 272 } 273 274 if (flags & H_COPY_PAGE) { 275 /* Map-in source, copy to destination, and unmap source again */ 276 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { 277 ret = H_PARAMETER; 278 goto unmap_out; 279 } 280 psrc = cpu_physical_memory_map(src, &len, false); 281 if (!psrc || len != TARGET_PAGE_SIZE) { 282 ret = H_PARAMETER; 283 goto unmap_out; 284 } 285 memcpy(pdst, psrc, len); 286 cpu_physical_memory_unmap(psrc, len, 0, len); 287 } else if (flags & H_ZERO_PAGE) { 288 memset(pdst, 0, len); /* Just clear the destination page */ 289 } 290 291 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { 292 kvmppc_dcbst_range(cpu, pdst, len); 293 } 294 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { 295 if (kvm_enabled()) { 296 kvmppc_icbi_range(cpu, pdst, len); 297 } else { 298 tb_flush(CPU(cpu)); 299 } 300 } 301 302 unmap_out: 303 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); 304 return ret; 305 } 306 307 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL 308 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL 309 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL 310 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL 311 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL 312 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL 313 314 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) 315 { 316 CPUState *cs = CPU(cpu); 317 CPUPPCState *env = &cpu->env; 318 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 319 uint16_t size; 320 uint8_t tmp; 321 322 if (vpa == 0) { 323 hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); 324 return H_HARDWARE; 325 } 326 327 if (vpa % env->dcache_line_size) { 328 return H_PARAMETER; 329 } 330 /* FIXME: bounds check the address */ 331 332 size = lduw_be_phys(cs->as, vpa + 0x4); 333 334 if (size < VPA_MIN_SIZE) { 335 return H_PARAMETER; 336 } 337 338 /* VPA is not allowed to cross a page boundary */ 339 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { 340 return H_PARAMETER; 341 } 342 343 spapr_cpu->vpa_addr = vpa; 344 345 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); 346 tmp |= VPA_SHARED_PROC_VAL; 347 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); 348 349 return H_SUCCESS; 350 } 351 352 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) 353 { 354 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 355 356 if (spapr_cpu->slb_shadow_addr) { 357 return H_RESOURCE; 358 } 359 360 if (spapr_cpu->dtl_addr) { 361 return H_RESOURCE; 362 } 363 364 spapr_cpu->vpa_addr = 0; 365 return H_SUCCESS; 366 } 367 368 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 369 { 370 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 371 uint32_t size; 372 373 if (addr == 0) { 374 hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); 375 return H_HARDWARE; 376 } 377 378 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 379 if (size < 0x8) { 380 return H_PARAMETER; 381 } 382 383 if ((addr / 4096) != ((addr + size - 1) / 4096)) { 384 return H_PARAMETER; 385 } 386 387 if (!spapr_cpu->vpa_addr) { 388 return H_RESOURCE; 389 } 390 391 spapr_cpu->slb_shadow_addr = addr; 392 spapr_cpu->slb_shadow_size = size; 393 394 return H_SUCCESS; 395 } 396 397 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 398 { 399 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 400 401 spapr_cpu->slb_shadow_addr = 0; 402 spapr_cpu->slb_shadow_size = 0; 403 return H_SUCCESS; 404 } 405 406 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) 407 { 408 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 409 uint32_t size; 410 411 if (addr == 0) { 412 hcall_dprintf("Can't cope with DTL at logical 0\n"); 413 return H_HARDWARE; 414 } 415 416 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 417 418 if (size < 48) { 419 return H_PARAMETER; 420 } 421 422 if (!spapr_cpu->vpa_addr) { 423 return H_RESOURCE; 424 } 425 426 spapr_cpu->dtl_addr = addr; 427 spapr_cpu->dtl_size = size; 428 429 return H_SUCCESS; 430 } 431 432 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) 433 { 434 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 435 436 spapr_cpu->dtl_addr = 0; 437 spapr_cpu->dtl_size = 0; 438 439 return H_SUCCESS; 440 } 441 442 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, 443 target_ulong opcode, target_ulong *args) 444 { 445 target_ulong flags = args[0]; 446 target_ulong procno = args[1]; 447 target_ulong vpa = args[2]; 448 target_ulong ret = H_PARAMETER; 449 PowerPCCPU *tcpu; 450 451 tcpu = spapr_find_cpu(procno); 452 if (!tcpu) { 453 return H_PARAMETER; 454 } 455 456 switch (flags) { 457 case FLAGS_REGISTER_VPA: 458 ret = register_vpa(tcpu, vpa); 459 break; 460 461 case FLAGS_DEREGISTER_VPA: 462 ret = deregister_vpa(tcpu, vpa); 463 break; 464 465 case FLAGS_REGISTER_SLBSHADOW: 466 ret = register_slb_shadow(tcpu, vpa); 467 break; 468 469 case FLAGS_DEREGISTER_SLBSHADOW: 470 ret = deregister_slb_shadow(tcpu, vpa); 471 break; 472 473 case FLAGS_REGISTER_DTL: 474 ret = register_dtl(tcpu, vpa); 475 break; 476 477 case FLAGS_DEREGISTER_DTL: 478 ret = deregister_dtl(tcpu, vpa); 479 break; 480 } 481 482 return ret; 483 } 484 485 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, 486 target_ulong opcode, target_ulong *args) 487 { 488 CPUPPCState *env = &cpu->env; 489 CPUState *cs = CPU(cpu); 490 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 491 492 env->msr |= (1ULL << MSR_EE); 493 hreg_compute_hflags(env); 494 ppc_maybe_interrupt(env); 495 496 if (spapr_cpu->prod) { 497 spapr_cpu->prod = false; 498 return H_SUCCESS; 499 } 500 501 if (!cpu_has_work(cs)) { 502 cs->halted = 1; 503 cs->exception_index = EXCP_HLT; 504 cs->exit_request = 1; 505 ppc_maybe_interrupt(env); 506 } 507 508 return H_SUCCESS; 509 } 510 511 /* 512 * Confer to self, aka join. Cede could use the same pattern as well, if 513 * EXCP_HLT can be changed to ECXP_HALTED. 514 */ 515 static target_ulong h_confer_self(PowerPCCPU *cpu) 516 { 517 CPUState *cs = CPU(cpu); 518 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 519 520 if (spapr_cpu->prod) { 521 spapr_cpu->prod = false; 522 return H_SUCCESS; 523 } 524 cs->halted = 1; 525 cs->exception_index = EXCP_HALTED; 526 cs->exit_request = 1; 527 ppc_maybe_interrupt(&cpu->env); 528 529 return H_SUCCESS; 530 } 531 532 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, 533 target_ulong opcode, target_ulong *args) 534 { 535 CPUPPCState *env = &cpu->env; 536 CPUState *cs; 537 bool last_unjoined = true; 538 539 if (env->msr & (1ULL << MSR_EE)) { 540 return H_BAD_MODE; 541 } 542 543 /* 544 * Must not join the last CPU running. Interestingly, no such restriction 545 * for H_CONFER-to-self, but that is probably not intended to be used 546 * when H_JOIN is available. 547 */ 548 CPU_FOREACH(cs) { 549 PowerPCCPU *c = POWERPC_CPU(cs); 550 CPUPPCState *e = &c->env; 551 if (c == cpu) { 552 continue; 553 } 554 555 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ 556 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { 557 last_unjoined = false; 558 break; 559 } 560 } 561 if (last_unjoined) { 562 return H_CONTINUE; 563 } 564 565 return h_confer_self(cpu); 566 } 567 568 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, 569 target_ulong opcode, target_ulong *args) 570 { 571 target_long target = args[0]; 572 uint32_t dispatch = args[1]; 573 CPUState *cs = CPU(cpu); 574 SpaprCpuState *spapr_cpu; 575 576 /* 577 * -1 means confer to all other CPUs without dispatch counter check, 578 * otherwise it's a targeted confer. 579 */ 580 if (target != -1) { 581 PowerPCCPU *target_cpu = spapr_find_cpu(target); 582 uint32_t target_dispatch; 583 584 if (!target_cpu) { 585 return H_PARAMETER; 586 } 587 588 /* 589 * target == self is a special case, we wait until prodded, without 590 * dispatch counter check. 591 */ 592 if (cpu == target_cpu) { 593 return h_confer_self(cpu); 594 } 595 596 spapr_cpu = spapr_cpu_state(target_cpu); 597 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { 598 return H_SUCCESS; 599 } 600 601 target_dispatch = ldl_be_phys(cs->as, 602 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 603 if (target_dispatch != dispatch) { 604 return H_SUCCESS; 605 } 606 607 /* 608 * The targeted confer does not do anything special beyond yielding 609 * the current vCPU, but even this should be better than nothing. 610 * At least for single-threaded tcg, it gives the target a chance to 611 * run before we run again. Multi-threaded tcg does not really do 612 * anything with EXCP_YIELD yet. 613 */ 614 } 615 616 cs->exception_index = EXCP_YIELD; 617 cs->exit_request = 1; 618 cpu_loop_exit(cs); 619 620 return H_SUCCESS; 621 } 622 623 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, 624 target_ulong opcode, target_ulong *args) 625 { 626 target_long target = args[0]; 627 PowerPCCPU *tcpu; 628 CPUState *cs; 629 SpaprCpuState *spapr_cpu; 630 631 tcpu = spapr_find_cpu(target); 632 cs = CPU(tcpu); 633 if (!cs) { 634 return H_PARAMETER; 635 } 636 637 spapr_cpu = spapr_cpu_state(tcpu); 638 spapr_cpu->prod = true; 639 cs->halted = 0; 640 ppc_maybe_interrupt(&cpu->env); 641 qemu_cpu_kick(cs); 642 643 return H_SUCCESS; 644 } 645 646 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, 647 target_ulong opcode, target_ulong *args) 648 { 649 target_ulong rtas_r3 = args[0]; 650 uint32_t token = rtas_ld(rtas_r3, 0); 651 uint32_t nargs = rtas_ld(rtas_r3, 1); 652 uint32_t nret = rtas_ld(rtas_r3, 2); 653 654 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, 655 nret, rtas_r3 + 12 + 4*nargs); 656 } 657 658 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, 659 target_ulong opcode, target_ulong *args) 660 { 661 CPUState *cs = CPU(cpu); 662 target_ulong size = args[0]; 663 target_ulong addr = args[1]; 664 665 switch (size) { 666 case 1: 667 args[0] = ldub_phys(cs->as, addr); 668 return H_SUCCESS; 669 case 2: 670 args[0] = lduw_phys(cs->as, addr); 671 return H_SUCCESS; 672 case 4: 673 args[0] = ldl_phys(cs->as, addr); 674 return H_SUCCESS; 675 case 8: 676 args[0] = ldq_phys(cs->as, addr); 677 return H_SUCCESS; 678 } 679 return H_PARAMETER; 680 } 681 682 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, 683 target_ulong opcode, target_ulong *args) 684 { 685 CPUState *cs = CPU(cpu); 686 687 target_ulong size = args[0]; 688 target_ulong addr = args[1]; 689 target_ulong val = args[2]; 690 691 switch (size) { 692 case 1: 693 stb_phys(cs->as, addr, val); 694 return H_SUCCESS; 695 case 2: 696 stw_phys(cs->as, addr, val); 697 return H_SUCCESS; 698 case 4: 699 stl_phys(cs->as, addr, val); 700 return H_SUCCESS; 701 case 8: 702 stq_phys(cs->as, addr, val); 703 return H_SUCCESS; 704 } 705 return H_PARAMETER; 706 } 707 708 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, 709 target_ulong opcode, target_ulong *args) 710 { 711 CPUState *cs = CPU(cpu); 712 713 target_ulong dst = args[0]; /* Destination address */ 714 target_ulong src = args[1]; /* Source address */ 715 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ 716 target_ulong count = args[3]; /* Element count */ 717 target_ulong op = args[4]; /* 0 = copy, 1 = invert */ 718 uint64_t tmp; 719 unsigned int mask = (1 << esize) - 1; 720 int step = 1 << esize; 721 722 if (count > 0x80000000) { 723 return H_PARAMETER; 724 } 725 726 if ((dst & mask) || (src & mask) || (op > 1)) { 727 return H_PARAMETER; 728 } 729 730 if (dst >= src && dst < (src + (count << esize))) { 731 dst = dst + ((count - 1) << esize); 732 src = src + ((count - 1) << esize); 733 step = -step; 734 } 735 736 while (count--) { 737 switch (esize) { 738 case 0: 739 tmp = ldub_phys(cs->as, src); 740 break; 741 case 1: 742 tmp = lduw_phys(cs->as, src); 743 break; 744 case 2: 745 tmp = ldl_phys(cs->as, src); 746 break; 747 case 3: 748 tmp = ldq_phys(cs->as, src); 749 break; 750 default: 751 return H_PARAMETER; 752 } 753 if (op == 1) { 754 tmp = ~tmp; 755 } 756 switch (esize) { 757 case 0: 758 stb_phys(cs->as, dst, tmp); 759 break; 760 case 1: 761 stw_phys(cs->as, dst, tmp); 762 break; 763 case 2: 764 stl_phys(cs->as, dst, tmp); 765 break; 766 case 3: 767 stq_phys(cs->as, dst, tmp); 768 break; 769 } 770 dst = dst + step; 771 src = src + step; 772 } 773 774 return H_SUCCESS; 775 } 776 777 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, 778 target_ulong opcode, target_ulong *args) 779 { 780 /* Nothing to do on emulation, KVM will trap this in the kernel */ 781 return H_SUCCESS; 782 } 783 784 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, 785 target_ulong opcode, target_ulong *args) 786 { 787 /* Nothing to do on emulation, KVM will trap this in the kernel */ 788 return H_SUCCESS; 789 } 790 791 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, 792 SpaprMachineState *spapr, 793 target_ulong mflags, 794 target_ulong value1, 795 target_ulong value2) 796 { 797 if (value1) { 798 return H_P3; 799 } 800 if (value2) { 801 return H_P4; 802 } 803 804 switch (mflags) { 805 case H_SET_MODE_ENDIAN_BIG: 806 spapr_set_all_lpcrs(0, LPCR_ILE); 807 spapr_pci_switch_vga(spapr, true); 808 return H_SUCCESS; 809 810 case H_SET_MODE_ENDIAN_LITTLE: 811 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); 812 spapr_pci_switch_vga(spapr, false); 813 return H_SUCCESS; 814 } 815 816 return H_UNSUPPORTED_FLAG; 817 } 818 819 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, 820 target_ulong mflags, 821 target_ulong value1, 822 target_ulong value2) 823 { 824 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 825 826 if (!(pcc->insns_flags2 & PPC2_ISA207S)) { 827 return H_P2; 828 } 829 if (value1) { 830 return H_P3; 831 } 832 if (value2) { 833 return H_P4; 834 } 835 836 if (mflags == 1) { 837 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */ 838 return H_UNSUPPORTED_FLAG; 839 } 840 841 if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) { 842 /* AIL=2 is reserved in POWER10 (ISA v3.1) */ 843 return H_UNSUPPORTED_FLAG; 844 } 845 846 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); 847 848 return H_SUCCESS; 849 } 850 851 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, 852 target_ulong opcode, target_ulong *args) 853 { 854 target_ulong resource = args[1]; 855 target_ulong ret = H_P2; 856 857 switch (resource) { 858 case H_SET_MODE_RESOURCE_LE: 859 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]); 860 break; 861 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 862 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], 863 args[2], args[3]); 864 break; 865 } 866 867 return ret; 868 } 869 870 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, 871 target_ulong opcode, target_ulong *args) 872 { 873 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 874 opcode, " (H_CLEAN_SLB)"); 875 return H_FUNCTION; 876 } 877 878 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, 879 target_ulong opcode, target_ulong *args) 880 { 881 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 882 opcode, " (H_INVALIDATE_PID)"); 883 return H_FUNCTION; 884 } 885 886 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, 887 uint64_t patbe_old, uint64_t patbe_new) 888 { 889 /* 890 * We have 4 Options: 891 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing 892 * HASH->RADIX : Free HPT 893 * RADIX->HASH : Allocate HPT 894 * NOTHING->HASH : Allocate HPT 895 * Note: NOTHING implies the case where we said the guest could choose 896 * later and so assumed radix and now it's called H_REG_PROC_TBL 897 */ 898 899 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { 900 /* We assume RADIX, so this catches all the "Do Nothing" cases */ 901 } else if (!(patbe_old & PATE1_GR)) { 902 /* HASH->RADIX : Free HPT */ 903 spapr_free_hpt(spapr); 904 } else if (!(patbe_new & PATE1_GR)) { 905 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ 906 spapr_setup_hpt(spapr); 907 } 908 return; 909 } 910 911 #define FLAGS_MASK 0x01FULL 912 #define FLAG_MODIFY 0x10 913 #define FLAG_REGISTER 0x08 914 #define FLAG_RADIX 0x04 915 #define FLAG_HASH_PROC_TBL 0x02 916 #define FLAG_GTSE 0x01 917 918 static target_ulong h_register_process_table(PowerPCCPU *cpu, 919 SpaprMachineState *spapr, 920 target_ulong opcode, 921 target_ulong *args) 922 { 923 target_ulong flags = args[0]; 924 target_ulong proc_tbl = args[1]; 925 target_ulong page_size = args[2]; 926 target_ulong table_size = args[3]; 927 target_ulong update_lpcr = 0; 928 target_ulong table_byte_size; 929 uint64_t cproc; 930 931 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ 932 return H_PARAMETER; 933 } 934 if (flags & FLAG_MODIFY) { 935 if (flags & FLAG_REGISTER) { 936 /* Check process table alignment */ 937 table_byte_size = 1ULL << (table_size + 12); 938 if (proc_tbl & (table_byte_size - 1)) { 939 qemu_log_mask(LOG_GUEST_ERROR, 940 "%s: process table not properly aligned: proc_tbl 0x" 941 TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n", 942 __func__, proc_tbl, table_byte_size); 943 } 944 if (flags & FLAG_RADIX) { /* Register new RADIX process table */ 945 if (proc_tbl & 0xfff || proc_tbl >> 60) { 946 return H_P2; 947 } else if (page_size) { 948 return H_P3; 949 } else if (table_size > 24) { 950 return H_P4; 951 } 952 cproc = PATE1_GR | proc_tbl | table_size; 953 } else { /* Register new HPT process table */ 954 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ 955 /* TODO - Not Supported */ 956 /* Technically caused by flag bits => H_PARAMETER */ 957 return H_PARAMETER; 958 } else { /* Hash with SLB */ 959 if (proc_tbl >> 38) { 960 return H_P2; 961 } else if (page_size & ~0x7) { 962 return H_P3; 963 } else if (table_size > 24) { 964 return H_P4; 965 } 966 } 967 cproc = (proc_tbl << 25) | page_size << 5 | table_size; 968 } 969 970 } else { /* Deregister current process table */ 971 /* 972 * Set to benign value: (current GR) | 0. This allows 973 * deregistration in KVM to succeed even if the radix bit 974 * in flags doesn't match the radix bit in the old PATE. 975 */ 976 cproc = spapr->patb_entry & PATE1_GR; 977 } 978 } else { /* Maintain current registration */ 979 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { 980 /* Technically caused by flag bits => H_PARAMETER */ 981 return H_PARAMETER; /* Existing Process Table Mismatch */ 982 } 983 cproc = spapr->patb_entry; 984 } 985 986 /* Check if we need to setup OR free the hpt */ 987 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); 988 989 spapr->patb_entry = cproc; /* Save new process table */ 990 991 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ 992 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ 993 update_lpcr |= (LPCR_UPRT | LPCR_HR); 994 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ 995 update_lpcr |= LPCR_UPRT; 996 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ 997 update_lpcr |= LPCR_GTSE; 998 999 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); 1000 1001 if (kvm_enabled()) { 1002 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, 1003 flags & FLAG_GTSE, cproc); 1004 } 1005 return H_SUCCESS; 1006 } 1007 1008 #define H_SIGNAL_SYS_RESET_ALL -1 1009 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 1010 1011 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, 1012 SpaprMachineState *spapr, 1013 target_ulong opcode, target_ulong *args) 1014 { 1015 target_long target = args[0]; 1016 CPUState *cs; 1017 1018 if (target < 0) { 1019 /* Broadcast */ 1020 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1021 return H_PARAMETER; 1022 } 1023 1024 CPU_FOREACH(cs) { 1025 PowerPCCPU *c = POWERPC_CPU(cs); 1026 1027 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1028 if (c == cpu) { 1029 continue; 1030 } 1031 } 1032 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1033 } 1034 return H_SUCCESS; 1035 1036 } else { 1037 /* Unicast */ 1038 cs = CPU(spapr_find_cpu(target)); 1039 if (cs) { 1040 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1041 return H_SUCCESS; 1042 } 1043 return H_PARAMETER; 1044 } 1045 } 1046 1047 /* Returns either a logical PVR or zero if none was found */ 1048 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat, 1049 target_ulong *addr, bool *raw_mode_supported) 1050 { 1051 bool explicit_match = false; /* Matched the CPU's real PVR */ 1052 uint32_t best_compat = 0; 1053 int i; 1054 1055 /* 1056 * We scan the supplied table of PVRs looking for two things 1057 * 1. Is our real CPU PVR in the list? 1058 * 2. What's the "best" listed logical PVR 1059 */ 1060 for (i = 0; i < 512; ++i) { 1061 uint32_t pvr, pvr_mask; 1062 1063 pvr_mask = ldl_be_phys(&address_space_memory, *addr); 1064 pvr = ldl_be_phys(&address_space_memory, *addr + 4); 1065 *addr += 8; 1066 1067 if (~pvr_mask & pvr) { 1068 break; /* Terminator record */ 1069 } 1070 1071 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { 1072 explicit_match = true; 1073 } else { 1074 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { 1075 best_compat = pvr; 1076 } 1077 } 1078 } 1079 1080 *raw_mode_supported = explicit_match; 1081 1082 /* Parsing finished */ 1083 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); 1084 1085 return best_compat; 1086 } 1087 1088 static 1089 target_ulong do_client_architecture_support(PowerPCCPU *cpu, 1090 SpaprMachineState *spapr, 1091 target_ulong vec, 1092 target_ulong fdt_bufsize) 1093 { 1094 target_ulong ov_table; /* Working address in data buffer */ 1095 uint32_t cas_pvr; 1096 SpaprOptionVector *ov1_guest, *ov5_guest; 1097 bool guest_radix; 1098 bool raw_mode_supported = false; 1099 bool guest_xive; 1100 CPUState *cs; 1101 void *fdt; 1102 uint32_t max_compat = spapr->max_compat_pvr; 1103 1104 /* CAS is supposed to be called early when only the boot vCPU is active. */ 1105 CPU_FOREACH(cs) { 1106 if (cs == CPU(cpu)) { 1107 continue; 1108 } 1109 if (!cs->halted) { 1110 warn_report("guest has multiple active vCPUs at CAS, which is not allowed"); 1111 return H_MULTI_THREADS_ACTIVE; 1112 } 1113 } 1114 1115 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported); 1116 if (!cas_pvr && (!raw_mode_supported || max_compat)) { 1117 /* 1118 * We couldn't find a suitable compatibility mode, and either 1119 * the guest doesn't support "raw" mode for this CPU, or "raw" 1120 * mode is disabled because a maximum compat mode is set. 1121 */ 1122 error_report("Couldn't negotiate a suitable PVR during CAS"); 1123 return H_HARDWARE; 1124 } 1125 1126 /* Update CPUs */ 1127 if (cpu->compat_pvr != cas_pvr) { 1128 Error *local_err = NULL; 1129 1130 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) { 1131 /* We fail to set compat mode (likely because running with KVM PR), 1132 * but maybe we can fallback to raw mode if the guest supports it. 1133 */ 1134 if (!raw_mode_supported) { 1135 error_report_err(local_err); 1136 return H_HARDWARE; 1137 } 1138 error_free(local_err); 1139 } 1140 } 1141 1142 /* For the future use: here @ov_table points to the first option vector */ 1143 ov_table = vec; 1144 1145 ov1_guest = spapr_ovec_parse_vector(ov_table, 1); 1146 if (!ov1_guest) { 1147 warn_report("guest didn't provide option vector 1"); 1148 return H_PARAMETER; 1149 } 1150 ov5_guest = spapr_ovec_parse_vector(ov_table, 5); 1151 if (!ov5_guest) { 1152 spapr_ovec_cleanup(ov1_guest); 1153 warn_report("guest didn't provide option vector 5"); 1154 return H_PARAMETER; 1155 } 1156 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { 1157 error_report("guest requested hash and radix MMU, which is invalid."); 1158 exit(EXIT_FAILURE); 1159 } 1160 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { 1161 error_report("guest requested an invalid interrupt mode"); 1162 exit(EXIT_FAILURE); 1163 } 1164 1165 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); 1166 1167 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); 1168 1169 /* 1170 * HPT resizing is a bit of a special case, because when enabled 1171 * we assume an HPT guest will support it until it says it 1172 * doesn't, instead of assuming it won't support it until it says 1173 * it does. Strictly speaking that approach could break for 1174 * guests which don't make a CAS call, but those are so old we 1175 * don't care about them. Without that assumption we'd have to 1176 * make at least a temporary allocation of an HPT sized for max 1177 * memory, which could be impossibly difficult under KVM HV if 1178 * maxram is large. 1179 */ 1180 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { 1181 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1182 1183 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { 1184 error_report( 1185 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); 1186 exit(1); 1187 } 1188 1189 if (spapr->htab_shift < maxshift) { 1190 /* Guest doesn't know about HPT resizing, so we 1191 * pre-emptively resize for the maximum permitted RAM. At 1192 * the point this is called, nothing should have been 1193 * entered into the existing HPT */ 1194 spapr_reallocate_hpt(spapr, maxshift, &error_fatal); 1195 push_sregs_to_kvm_pr(spapr); 1196 } 1197 } 1198 1199 /* NOTE: there are actually a number of ov5 bits where input from the 1200 * guest is always zero, and the platform/QEMU enables them independently 1201 * of guest input. To model these properly we'd want some sort of mask, 1202 * but since they only currently apply to memory migration as defined 1203 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need 1204 * to worry about this for now. 1205 */ 1206 1207 /* full range of negotiated ov5 capabilities */ 1208 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); 1209 spapr_ovec_cleanup(ov5_guest); 1210 1211 spapr_check_mmu_mode(guest_radix); 1212 1213 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00); 1214 spapr_ovec_cleanup(ov1_guest); 1215 1216 /* 1217 * Check for NUMA affinity conditions now that we know which NUMA 1218 * affinity the guest will use. 1219 */ 1220 spapr_numa_associativity_check(spapr); 1221 1222 /* 1223 * Ensure the guest asks for an interrupt mode we support; 1224 * otherwise terminate the boot. 1225 */ 1226 if (guest_xive) { 1227 if (!spapr->irq->xive) { 1228 error_report( 1229 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); 1230 exit(EXIT_FAILURE); 1231 } 1232 } else { 1233 if (!spapr->irq->xics) { 1234 error_report( 1235 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); 1236 exit(EXIT_FAILURE); 1237 } 1238 } 1239 1240 spapr_irq_update_active_intc(spapr); 1241 1242 /* 1243 * Process all pending hot-plug/unplug requests now. An updated full 1244 * rendered FDT will be returned to the guest. 1245 */ 1246 spapr_drc_reset_all(spapr); 1247 spapr_clear_pending_hotplug_events(spapr); 1248 1249 /* 1250 * If spapr_machine_reset() did not set up a HPT but one is necessary 1251 * (because the guest isn't going to use radix) then set it up here. 1252 */ 1253 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { 1254 /* legacy hash or new hash: */ 1255 spapr_setup_hpt(spapr); 1256 } 1257 1258 fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize); 1259 g_free(spapr->fdt_blob); 1260 spapr->fdt_size = fdt_totalsize(fdt); 1261 spapr->fdt_initial_size = spapr->fdt_size; 1262 spapr->fdt_blob = fdt; 1263 1264 /* 1265 * Set the machine->fdt pointer again since we just freed 1266 * it above (by freeing spapr->fdt_blob). We set this 1267 * pointer to enable support for the 'dumpdtb' QMP/HMP 1268 * command. 1269 */ 1270 MACHINE(spapr)->fdt = fdt; 1271 1272 return H_SUCCESS; 1273 } 1274 1275 static target_ulong h_client_architecture_support(PowerPCCPU *cpu, 1276 SpaprMachineState *spapr, 1277 target_ulong opcode, 1278 target_ulong *args) 1279 { 1280 target_ulong vec = ppc64_phys_to_real(args[0]); 1281 target_ulong fdt_buf = args[1]; 1282 target_ulong fdt_bufsize = args[2]; 1283 target_ulong ret; 1284 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 1285 1286 if (fdt_bufsize < sizeof(hdr)) { 1287 error_report("SLOF provided insufficient CAS buffer " 1288 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr)); 1289 exit(EXIT_FAILURE); 1290 } 1291 1292 fdt_bufsize -= sizeof(hdr); 1293 1294 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize); 1295 if (ret == H_SUCCESS) { 1296 _FDT((fdt_pack(spapr->fdt_blob))); 1297 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob); 1298 spapr->fdt_initial_size = spapr->fdt_size; 1299 1300 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr)); 1301 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob, 1302 spapr->fdt_size); 1303 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr)); 1304 } 1305 1306 return ret; 1307 } 1308 1309 target_ulong spapr_vof_client_architecture_support(MachineState *ms, 1310 CPUState *cs, 1311 target_ulong ovec_addr) 1312 { 1313 SpaprMachineState *spapr = SPAPR_MACHINE(ms); 1314 1315 target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr, 1316 ovec_addr, FDT_MAX_SIZE); 1317 1318 /* 1319 * This adds stdout and generates phandles for boottime and CAS FDTs. 1320 * It is alright to update the FDT here as do_client_architecture_support() 1321 * does not pack it. 1322 */ 1323 spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob); 1324 1325 return ret; 1326 } 1327 1328 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, 1329 SpaprMachineState *spapr, 1330 target_ulong opcode, 1331 target_ulong *args) 1332 { 1333 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & 1334 ~H_CPU_CHAR_THR_RECONF_TRIG; 1335 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; 1336 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); 1337 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); 1338 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); 1339 uint8_t count_cache_flush_assist = spapr_get_cap(spapr, 1340 SPAPR_CAP_CCF_ASSIST); 1341 1342 switch (safe_cache) { 1343 case SPAPR_CAP_WORKAROUND: 1344 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; 1345 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; 1346 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; 1347 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1348 break; 1349 case SPAPR_CAP_FIXED: 1350 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY; 1351 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS; 1352 break; 1353 default: /* broken */ 1354 assert(safe_cache == SPAPR_CAP_BROKEN); 1355 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1356 break; 1357 } 1358 1359 switch (safe_bounds_check) { 1360 case SPAPR_CAP_WORKAROUND: 1361 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; 1362 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1363 break; 1364 case SPAPR_CAP_FIXED: 1365 break; 1366 default: /* broken */ 1367 assert(safe_bounds_check == SPAPR_CAP_BROKEN); 1368 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1369 break; 1370 } 1371 1372 switch (safe_indirect_branch) { 1373 case SPAPR_CAP_FIXED_NA: 1374 break; 1375 case SPAPR_CAP_FIXED_CCD: 1376 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; 1377 break; 1378 case SPAPR_CAP_FIXED_IBS: 1379 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; 1380 break; 1381 case SPAPR_CAP_WORKAROUND: 1382 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; 1383 if (count_cache_flush_assist) { 1384 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; 1385 } 1386 break; 1387 default: /* broken */ 1388 assert(safe_indirect_branch == SPAPR_CAP_BROKEN); 1389 break; 1390 } 1391 1392 args[0] = characteristics; 1393 args[1] = behaviour; 1394 return H_SUCCESS; 1395 } 1396 1397 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, 1398 target_ulong opcode, target_ulong *args) 1399 { 1400 target_ulong dt = ppc64_phys_to_real(args[0]); 1401 struct fdt_header hdr = { 0 }; 1402 unsigned cb; 1403 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1404 void *fdt; 1405 1406 cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); 1407 cb = fdt32_to_cpu(hdr.totalsize); 1408 1409 if (!smc->update_dt_enabled) { 1410 return H_SUCCESS; 1411 } 1412 1413 /* Check that the fdt did not grow out of proportion */ 1414 if (cb > spapr->fdt_initial_size * 2) { 1415 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, 1416 fdt32_to_cpu(hdr.magic)); 1417 return H_PARAMETER; 1418 } 1419 1420 fdt = g_malloc0(cb); 1421 cpu_physical_memory_read(dt, fdt, cb); 1422 1423 /* Check the fdt consistency */ 1424 if (fdt_check_full(fdt, cb)) { 1425 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, 1426 fdt32_to_cpu(hdr.magic)); 1427 return H_PARAMETER; 1428 } 1429 1430 g_free(spapr->fdt_blob); 1431 spapr->fdt_size = cb; 1432 spapr->fdt_blob = fdt; 1433 trace_spapr_update_dt(cb); 1434 1435 return H_SUCCESS; 1436 } 1437 1438 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; 1439 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; 1440 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; 1441 1442 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) 1443 { 1444 spapr_hcall_fn *slot; 1445 1446 if (opcode <= MAX_HCALL_OPCODE) { 1447 assert((opcode & 0x3) == 0); 1448 1449 slot = &papr_hypercall_table[opcode / 4]; 1450 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { 1451 /* we only have SVM-related hcall numbers assigned in multiples of 4 */ 1452 assert((opcode & 0x3) == 0); 1453 1454 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 1455 } else { 1456 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); 1457 1458 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1459 } 1460 1461 assert(!(*slot)); 1462 *slot = fn; 1463 } 1464 1465 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, 1466 target_ulong *args) 1467 { 1468 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1469 1470 if ((opcode <= MAX_HCALL_OPCODE) 1471 && ((opcode & 0x3) == 0)) { 1472 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; 1473 1474 if (fn) { 1475 return fn(cpu, spapr, opcode, args); 1476 } 1477 } else if ((opcode >= SVM_HCALL_BASE) && 1478 (opcode <= SVM_HCALL_MAX)) { 1479 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 1480 1481 if (fn) { 1482 return fn(cpu, spapr, opcode, args); 1483 } 1484 } else if ((opcode >= KVMPPC_HCALL_BASE) && 1485 (opcode <= KVMPPC_HCALL_MAX)) { 1486 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1487 1488 if (fn) { 1489 return fn(cpu, spapr, opcode, args); 1490 } 1491 } 1492 1493 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", 1494 opcode); 1495 return H_FUNCTION; 1496 } 1497 1498 #ifdef CONFIG_TCG 1499 #define PRTS_MASK 0x1f 1500 1501 static target_ulong h_set_ptbl(PowerPCCPU *cpu, 1502 SpaprMachineState *spapr, 1503 target_ulong opcode, 1504 target_ulong *args) 1505 { 1506 target_ulong ptcr = args[0]; 1507 1508 if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) { 1509 return H_FUNCTION; 1510 } 1511 1512 if ((ptcr & PRTS_MASK) + 12 - 4 > 12) { 1513 return H_PARAMETER; 1514 } 1515 1516 spapr->nested_ptcr = ptcr; /* Save new partition table */ 1517 1518 return H_SUCCESS; 1519 } 1520 1521 static target_ulong h_tlb_invalidate(PowerPCCPU *cpu, 1522 SpaprMachineState *spapr, 1523 target_ulong opcode, 1524 target_ulong *args) 1525 { 1526 /* 1527 * The spapr virtual hypervisor nested HV implementation retains no L2 1528 * translation state except for TLB. And the TLB is always invalidated 1529 * across L1<->L2 transitions, so nothing is required here. 1530 */ 1531 1532 return H_SUCCESS; 1533 } 1534 1535 static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu, 1536 SpaprMachineState *spapr, 1537 target_ulong opcode, 1538 target_ulong *args) 1539 { 1540 /* 1541 * This HCALL is not required, L1 KVM will take a slow path and walk the 1542 * page tables manually to do the data copy. 1543 */ 1544 return H_FUNCTION; 1545 } 1546 1547 /* 1548 * When this handler returns, the environment is switched to the L2 guest 1549 * and TCG begins running that. spapr_exit_nested() performs the switch from 1550 * L2 back to L1 and returns from the H_ENTER_NESTED hcall. 1551 */ 1552 static target_ulong h_enter_nested(PowerPCCPU *cpu, 1553 SpaprMachineState *spapr, 1554 target_ulong opcode, 1555 target_ulong *args) 1556 { 1557 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 1558 CPUState *cs = CPU(cpu); 1559 CPUPPCState *env = &cpu->env; 1560 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1561 target_ulong hv_ptr = args[0]; 1562 target_ulong regs_ptr = args[1]; 1563 target_ulong hdec, now = cpu_ppc_load_tbl(env); 1564 target_ulong lpcr, lpcr_mask; 1565 struct kvmppc_hv_guest_state *hvstate; 1566 struct kvmppc_hv_guest_state hv_state; 1567 struct kvmppc_pt_regs *regs; 1568 hwaddr len; 1569 1570 if (spapr->nested_ptcr == 0) { 1571 return H_NOT_AVAILABLE; 1572 } 1573 1574 len = sizeof(*hvstate); 1575 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false, 1576 MEMTXATTRS_UNSPECIFIED); 1577 if (len != sizeof(*hvstate)) { 1578 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false); 1579 return H_PARAMETER; 1580 } 1581 1582 memcpy(&hv_state, hvstate, len); 1583 1584 address_space_unmap(CPU(cpu)->as, hvstate, len, len, false); 1585 1586 /* 1587 * We accept versions 1 and 2. Version 2 fields are unused because TCG 1588 * does not implement DAWR*. 1589 */ 1590 if (hv_state.version > HV_GUEST_STATE_VERSION) { 1591 return H_PARAMETER; 1592 } 1593 1594 spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1); 1595 if (!spapr_cpu->nested_host_state) { 1596 return H_NO_MEM; 1597 } 1598 1599 memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState)); 1600 1601 len = sizeof(*regs); 1602 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false, 1603 MEMTXATTRS_UNSPECIFIED); 1604 if (!regs || len != sizeof(*regs)) { 1605 address_space_unmap(CPU(cpu)->as, regs, len, 0, false); 1606 g_free(spapr_cpu->nested_host_state); 1607 return H_P2; 1608 } 1609 1610 len = sizeof(env->gpr); 1611 assert(len == sizeof(regs->gpr)); 1612 memcpy(env->gpr, regs->gpr, len); 1613 1614 env->lr = regs->link; 1615 env->ctr = regs->ctr; 1616 cpu_write_xer(env, regs->xer); 1617 ppc_set_cr(env, regs->ccr); 1618 1619 env->msr = regs->msr; 1620 env->nip = regs->nip; 1621 1622 address_space_unmap(CPU(cpu)->as, regs, len, len, false); 1623 1624 env->cfar = hv_state.cfar; 1625 1626 assert(env->spr[SPR_LPIDR] == 0); 1627 env->spr[SPR_LPIDR] = hv_state.lpid; 1628 1629 lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER; 1630 lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask); 1631 lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE; 1632 lpcr &= ~LPCR_LPES0; 1633 env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask; 1634 1635 env->spr[SPR_PCR] = hv_state.pcr; 1636 /* hv_state.amor is not used */ 1637 env->spr[SPR_DPDES] = hv_state.dpdes; 1638 env->spr[SPR_HFSCR] = hv_state.hfscr; 1639 hdec = hv_state.hdec_expiry - now; 1640 spapr_cpu->nested_tb_offset = hv_state.tb_offset; 1641 /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/ 1642 env->spr[SPR_SRR0] = hv_state.srr0; 1643 env->spr[SPR_SRR1] = hv_state.srr1; 1644 env->spr[SPR_SPRG0] = hv_state.sprg[0]; 1645 env->spr[SPR_SPRG1] = hv_state.sprg[1]; 1646 env->spr[SPR_SPRG2] = hv_state.sprg[2]; 1647 env->spr[SPR_SPRG3] = hv_state.sprg[3]; 1648 env->spr[SPR_BOOKS_PID] = hv_state.pidr; 1649 env->spr[SPR_PPR] = hv_state.ppr; 1650 1651 cpu_ppc_hdecr_init(env); 1652 cpu_ppc_store_hdecr(env, hdec); 1653 1654 /* 1655 * The hv_state.vcpu_token is not needed. It is used by the KVM 1656 * implementation to remember which L2 vCPU last ran on which physical 1657 * CPU so as to invalidate process scope translations if it is moved 1658 * between physical CPUs. For now TLBs are always flushed on L1<->L2 1659 * transitions so this is not a problem. 1660 * 1661 * Could validate that the same vcpu_token does not attempt to run on 1662 * different L1 vCPUs at the same time, but that would be a L1 KVM bug 1663 * and it's not obviously worth a new data structure to do it. 1664 */ 1665 1666 env->tb_env->tb_offset += spapr_cpu->nested_tb_offset; 1667 spapr_cpu->in_nested = true; 1668 1669 hreg_compute_hflags(env); 1670 ppc_maybe_interrupt(env); 1671 tlb_flush(cs); 1672 env->reserve_addr = -1; /* Reset the reservation */ 1673 1674 /* 1675 * The spapr hcall helper sets env->gpr[3] to the return value, but at 1676 * this point the L1 is not returning from the hcall but rather we 1677 * start running the L2, so r3 must not be clobbered, so return env->gpr[3] 1678 * to leave it unchanged. 1679 */ 1680 return env->gpr[3]; 1681 } 1682 1683 void spapr_exit_nested(PowerPCCPU *cpu, int excp) 1684 { 1685 CPUState *cs = CPU(cpu); 1686 CPUPPCState *env = &cpu->env; 1687 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1688 target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */ 1689 target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4]; 1690 target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5]; 1691 struct kvmppc_hv_guest_state *hvstate; 1692 struct kvmppc_pt_regs *regs; 1693 hwaddr len; 1694 1695 assert(spapr_cpu->in_nested); 1696 1697 cpu_ppc_hdecr_exit(env); 1698 1699 len = sizeof(*hvstate); 1700 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true, 1701 MEMTXATTRS_UNSPECIFIED); 1702 if (len != sizeof(*hvstate)) { 1703 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true); 1704 r3_return = H_PARAMETER; 1705 goto out_restore_l1; 1706 } 1707 1708 hvstate->cfar = env->cfar; 1709 hvstate->lpcr = env->spr[SPR_LPCR]; 1710 hvstate->pcr = env->spr[SPR_PCR]; 1711 hvstate->dpdes = env->spr[SPR_DPDES]; 1712 hvstate->hfscr = env->spr[SPR_HFSCR]; 1713 1714 if (excp == POWERPC_EXCP_HDSI) { 1715 hvstate->hdar = env->spr[SPR_HDAR]; 1716 hvstate->hdsisr = env->spr[SPR_HDSISR]; 1717 hvstate->asdr = env->spr[SPR_ASDR]; 1718 } else if (excp == POWERPC_EXCP_HISI) { 1719 hvstate->asdr = env->spr[SPR_ASDR]; 1720 } 1721 1722 /* HEIR should be implemented for HV mode and saved here. */ 1723 hvstate->srr0 = env->spr[SPR_SRR0]; 1724 hvstate->srr1 = env->spr[SPR_SRR1]; 1725 hvstate->sprg[0] = env->spr[SPR_SPRG0]; 1726 hvstate->sprg[1] = env->spr[SPR_SPRG1]; 1727 hvstate->sprg[2] = env->spr[SPR_SPRG2]; 1728 hvstate->sprg[3] = env->spr[SPR_SPRG3]; 1729 hvstate->pidr = env->spr[SPR_BOOKS_PID]; 1730 hvstate->ppr = env->spr[SPR_PPR]; 1731 1732 /* Is it okay to specify write length larger than actual data written? */ 1733 address_space_unmap(CPU(cpu)->as, hvstate, len, len, true); 1734 1735 len = sizeof(*regs); 1736 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true, 1737 MEMTXATTRS_UNSPECIFIED); 1738 if (!regs || len != sizeof(*regs)) { 1739 address_space_unmap(CPU(cpu)->as, regs, len, 0, true); 1740 r3_return = H_P2; 1741 goto out_restore_l1; 1742 } 1743 1744 len = sizeof(env->gpr); 1745 assert(len == sizeof(regs->gpr)); 1746 memcpy(regs->gpr, env->gpr, len); 1747 1748 regs->link = env->lr; 1749 regs->ctr = env->ctr; 1750 regs->xer = cpu_read_xer(env); 1751 regs->ccr = ppc_get_cr(env); 1752 1753 if (excp == POWERPC_EXCP_MCHECK || 1754 excp == POWERPC_EXCP_RESET || 1755 excp == POWERPC_EXCP_SYSCALL) { 1756 regs->nip = env->spr[SPR_SRR0]; 1757 regs->msr = env->spr[SPR_SRR1] & env->msr_mask; 1758 } else { 1759 regs->nip = env->spr[SPR_HSRR0]; 1760 regs->msr = env->spr[SPR_HSRR1] & env->msr_mask; 1761 } 1762 1763 /* Is it okay to specify write length larger than actual data written? */ 1764 address_space_unmap(CPU(cpu)->as, regs, len, len, true); 1765 1766 out_restore_l1: 1767 memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr)); 1768 env->lr = spapr_cpu->nested_host_state->lr; 1769 env->ctr = spapr_cpu->nested_host_state->ctr; 1770 memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf)); 1771 env->cfar = spapr_cpu->nested_host_state->cfar; 1772 env->xer = spapr_cpu->nested_host_state->xer; 1773 env->so = spapr_cpu->nested_host_state->so; 1774 env->ov = spapr_cpu->nested_host_state->ov; 1775 env->ov32 = spapr_cpu->nested_host_state->ov32; 1776 env->ca32 = spapr_cpu->nested_host_state->ca32; 1777 env->msr = spapr_cpu->nested_host_state->msr; 1778 env->nip = spapr_cpu->nested_host_state->nip; 1779 1780 assert(env->spr[SPR_LPIDR] != 0); 1781 env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR]; 1782 env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR]; 1783 env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR]; 1784 env->spr[SPR_DPDES] = 0; 1785 env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR]; 1786 env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0]; 1787 env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1]; 1788 env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0]; 1789 env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1]; 1790 env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2]; 1791 env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3]; 1792 env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID]; 1793 env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR]; 1794 1795 /* 1796 * Return the interrupt vector address from H_ENTER_NESTED to the L1 1797 * (or error code). 1798 */ 1799 env->gpr[3] = r3_return; 1800 1801 env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset; 1802 spapr_cpu->in_nested = false; 1803 1804 hreg_compute_hflags(env); 1805 ppc_maybe_interrupt(env); 1806 tlb_flush(cs); 1807 env->reserve_addr = -1; /* Reset the reservation */ 1808 1809 g_free(spapr_cpu->nested_host_state); 1810 spapr_cpu->nested_host_state = NULL; 1811 } 1812 1813 static void hypercall_register_nested(void) 1814 { 1815 spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl); 1816 spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested); 1817 spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate); 1818 spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest); 1819 } 1820 1821 static void hypercall_register_softmmu(void) 1822 { 1823 /* DO NOTHING */ 1824 } 1825 #else 1826 void spapr_exit_nested(PowerPCCPU *cpu, int excp) 1827 { 1828 g_assert_not_reached(); 1829 } 1830 1831 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr, 1832 target_ulong opcode, target_ulong *args) 1833 { 1834 g_assert_not_reached(); 1835 } 1836 1837 static void hypercall_register_nested(void) 1838 { 1839 /* DO NOTHING */ 1840 } 1841 1842 static void hypercall_register_softmmu(void) 1843 { 1844 /* hcall-pft */ 1845 spapr_register_hypercall(H_ENTER, h_softmmu); 1846 spapr_register_hypercall(H_REMOVE, h_softmmu); 1847 spapr_register_hypercall(H_PROTECT, h_softmmu); 1848 spapr_register_hypercall(H_READ, h_softmmu); 1849 1850 /* hcall-bulk */ 1851 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu); 1852 } 1853 #endif 1854 1855 static void hypercall_register_types(void) 1856 { 1857 hypercall_register_softmmu(); 1858 1859 /* hcall-hpt-resize */ 1860 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); 1861 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); 1862 1863 /* hcall-splpar */ 1864 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); 1865 spapr_register_hypercall(H_CEDE, h_cede); 1866 spapr_register_hypercall(H_CONFER, h_confer); 1867 spapr_register_hypercall(H_PROD, h_prod); 1868 1869 /* hcall-join */ 1870 spapr_register_hypercall(H_JOIN, h_join); 1871 1872 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); 1873 1874 /* processor register resource access h-calls */ 1875 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); 1876 spapr_register_hypercall(H_SET_DABR, h_set_dabr); 1877 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); 1878 spapr_register_hypercall(H_PAGE_INIT, h_page_init); 1879 spapr_register_hypercall(H_SET_MODE, h_set_mode); 1880 1881 /* In Memory Table MMU h-calls */ 1882 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); 1883 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); 1884 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); 1885 1886 /* hcall-get-cpu-characteristics */ 1887 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, 1888 h_get_cpu_characteristics); 1889 1890 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate 1891 * here between the "CI" and the "CACHE" variants, they will use whatever 1892 * mapping attributes qemu is using. When using KVM, the kernel will 1893 * enforce the attributes more strongly 1894 */ 1895 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); 1896 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); 1897 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); 1898 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); 1899 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); 1900 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); 1901 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); 1902 1903 /* qemu/KVM-PPC specific hcalls */ 1904 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); 1905 1906 /* ibm,client-architecture-support support */ 1907 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); 1908 1909 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); 1910 1911 hypercall_register_nested(); 1912 } 1913 1914 type_init(hypercall_register_types) 1915