xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision b917da4c)
1 #include "qemu/osdep.h"
2 #include "sysemu/sysemu.h"
3 #include "cpu.h"
4 #include "helper_regs.h"
5 #include "hw/ppc/spapr.h"
6 #include "mmu-hash64.h"
7 #include "cpu-models.h"
8 #include "trace.h"
9 #include "kvm_ppc.h"
10 
11 struct SPRSyncState {
12     CPUState *cs;
13     int spr;
14     target_ulong value;
15     target_ulong mask;
16 };
17 
18 static void do_spr_sync(void *arg)
19 {
20     struct SPRSyncState *s = arg;
21     PowerPCCPU *cpu = POWERPC_CPU(s->cs);
22     CPUPPCState *env = &cpu->env;
23 
24     cpu_synchronize_state(s->cs);
25     env->spr[s->spr] &= ~s->mask;
26     env->spr[s->spr] |= s->value;
27 }
28 
29 static void set_spr(CPUState *cs, int spr, target_ulong value,
30                     target_ulong mask)
31 {
32     struct SPRSyncState s = {
33         .cs = cs,
34         .spr = spr,
35         .value = value,
36         .mask = mask
37     };
38     run_on_cpu(cs, do_spr_sync, &s);
39 }
40 
41 static bool has_spr(PowerPCCPU *cpu, int spr)
42 {
43     /* We can test whether the SPR is defined by checking for a valid name */
44     return cpu->env.spr_cb[spr].name != NULL;
45 }
46 
47 static inline bool valid_pte_index(CPUPPCState *env, target_ulong pte_index)
48 {
49     /*
50      * hash value/pteg group index is normalized by htab_mask
51      */
52     if (((pte_index & ~7ULL) / HPTES_PER_GROUP) & ~env->htab_mask) {
53         return false;
54     }
55     return true;
56 }
57 
58 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
59 {
60     MachineState *machine = MACHINE(spapr);
61     MemoryHotplugState *hpms = &spapr->hotplug_memory;
62 
63     if (addr < machine->ram_size) {
64         return true;
65     }
66     if ((addr >= hpms->base)
67         && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
68         return true;
69     }
70 
71     return false;
72 }
73 
74 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
75                             target_ulong opcode, target_ulong *args)
76 {
77     CPUPPCState *env = &cpu->env;
78     target_ulong flags = args[0];
79     target_ulong pte_index = args[1];
80     target_ulong pteh = args[2];
81     target_ulong ptel = args[3];
82     unsigned apshift, spshift;
83     target_ulong raddr;
84     target_ulong index;
85     uint64_t token;
86 
87     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel, &spshift);
88     if (!apshift) {
89         /* Bad page size encoding */
90         return H_PARAMETER;
91     }
92 
93     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
94 
95     if (is_ram_address(spapr, raddr)) {
96         /* Regular RAM - should have WIMG=0010 */
97         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
98             return H_PARAMETER;
99         }
100     } else {
101         /* Looks like an IO address */
102         /* FIXME: What WIMG combinations could be sensible for IO?
103          * For now we allow WIMG=010x, but are there others? */
104         /* FIXME: Should we check against registered IO addresses? */
105         if ((ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)) != HPTE64_R_I) {
106             return H_PARAMETER;
107         }
108     }
109 
110     pteh &= ~0x60ULL;
111 
112     if (!valid_pte_index(env, pte_index)) {
113         return H_PARAMETER;
114     }
115 
116     index = 0;
117     if (likely((flags & H_EXACT) == 0)) {
118         pte_index &= ~7ULL;
119         token = ppc_hash64_start_access(cpu, pte_index);
120         for (; index < 8; index++) {
121             if (!(ppc_hash64_load_hpte0(cpu, token, index) & HPTE64_V_VALID)) {
122                 break;
123             }
124         }
125         ppc_hash64_stop_access(cpu, token);
126         if (index == 8) {
127             return H_PTEG_FULL;
128         }
129     } else {
130         token = ppc_hash64_start_access(cpu, pte_index);
131         if (ppc_hash64_load_hpte0(cpu, token, 0) & HPTE64_V_VALID) {
132             ppc_hash64_stop_access(cpu, token);
133             return H_PTEG_FULL;
134         }
135         ppc_hash64_stop_access(cpu, token);
136     }
137 
138     ppc_hash64_store_hpte(cpu, pte_index + index,
139                           pteh | HPTE64_V_HPTE_DIRTY, ptel);
140 
141     args[0] = pte_index + index;
142     return H_SUCCESS;
143 }
144 
145 typedef enum {
146     REMOVE_SUCCESS = 0,
147     REMOVE_NOT_FOUND = 1,
148     REMOVE_PARM = 2,
149     REMOVE_HW = 3,
150 } RemoveResult;
151 
152 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
153                                 target_ulong avpn,
154                                 target_ulong flags,
155                                 target_ulong *vp, target_ulong *rp)
156 {
157     CPUPPCState *env = &cpu->env;
158     uint64_t token;
159     target_ulong v, r;
160 
161     if (!valid_pte_index(env, ptex)) {
162         return REMOVE_PARM;
163     }
164 
165     token = ppc_hash64_start_access(cpu, ptex);
166     v = ppc_hash64_load_hpte0(cpu, token, 0);
167     r = ppc_hash64_load_hpte1(cpu, token, 0);
168     ppc_hash64_stop_access(cpu, token);
169 
170     if ((v & HPTE64_V_VALID) == 0 ||
171         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
172         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
173         return REMOVE_NOT_FOUND;
174     }
175     *vp = v;
176     *rp = r;
177     ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
178     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
179     return REMOVE_SUCCESS;
180 }
181 
182 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
183                              target_ulong opcode, target_ulong *args)
184 {
185     target_ulong flags = args[0];
186     target_ulong pte_index = args[1];
187     target_ulong avpn = args[2];
188     RemoveResult ret;
189 
190     ret = remove_hpte(cpu, pte_index, avpn, flags,
191                       &args[0], &args[1]);
192 
193     switch (ret) {
194     case REMOVE_SUCCESS:
195         return H_SUCCESS;
196 
197     case REMOVE_NOT_FOUND:
198         return H_NOT_FOUND;
199 
200     case REMOVE_PARM:
201         return H_PARAMETER;
202 
203     case REMOVE_HW:
204         return H_HARDWARE;
205     }
206 
207     g_assert_not_reached();
208 }
209 
210 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
211 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
212 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
213 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
214 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
215 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
216 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
217 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
218 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
219 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
220 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
221 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
222 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
223 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
224 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
225 
226 #define H_BULK_REMOVE_MAX_BATCH        4
227 
228 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
229                                   target_ulong opcode, target_ulong *args)
230 {
231     int i;
232 
233     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
234         target_ulong *tsh = &args[i*2];
235         target_ulong tsl = args[i*2 + 1];
236         target_ulong v, r, ret;
237 
238         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
239             break;
240         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
241             return H_PARAMETER;
242         }
243 
244         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
245         *tsh |= H_BULK_REMOVE_RESPONSE;
246 
247         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
248             *tsh |= H_BULK_REMOVE_PARM;
249             return H_PARAMETER;
250         }
251 
252         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
253                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
254                           &v, &r);
255 
256         *tsh |= ret << 60;
257 
258         switch (ret) {
259         case REMOVE_SUCCESS:
260             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
261             break;
262 
263         case REMOVE_PARM:
264             return H_PARAMETER;
265 
266         case REMOVE_HW:
267             return H_HARDWARE;
268         }
269     }
270 
271     return H_SUCCESS;
272 }
273 
274 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
275                               target_ulong opcode, target_ulong *args)
276 {
277     CPUPPCState *env = &cpu->env;
278     target_ulong flags = args[0];
279     target_ulong pte_index = args[1];
280     target_ulong avpn = args[2];
281     uint64_t token;
282     target_ulong v, r;
283 
284     if (!valid_pte_index(env, pte_index)) {
285         return H_PARAMETER;
286     }
287 
288     token = ppc_hash64_start_access(cpu, pte_index);
289     v = ppc_hash64_load_hpte0(cpu, token, 0);
290     r = ppc_hash64_load_hpte1(cpu, token, 0);
291     ppc_hash64_stop_access(cpu, token);
292 
293     if ((v & HPTE64_V_VALID) == 0 ||
294         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
295         return H_NOT_FOUND;
296     }
297 
298     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
299            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
300     r |= (flags << 55) & HPTE64_R_PP0;
301     r |= (flags << 48) & HPTE64_R_KEY_HI;
302     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
303     ppc_hash64_store_hpte(cpu, pte_index,
304                           (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
305     ppc_hash64_tlb_flush_hpte(cpu, pte_index, v, r);
306     /* Don't need a memory barrier, due to qemu's global lock */
307     ppc_hash64_store_hpte(cpu, pte_index, v | HPTE64_V_HPTE_DIRTY, r);
308     return H_SUCCESS;
309 }
310 
311 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
312                            target_ulong opcode, target_ulong *args)
313 {
314     CPUPPCState *env = &cpu->env;
315     target_ulong flags = args[0];
316     target_ulong pte_index = args[1];
317     uint8_t *hpte;
318     int i, ridx, n_entries = 1;
319 
320     if (!valid_pte_index(env, pte_index)) {
321         return H_PARAMETER;
322     }
323 
324     if (flags & H_READ_4) {
325         /* Clear the two low order bits */
326         pte_index &= ~(3ULL);
327         n_entries = 4;
328     }
329 
330     hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
331 
332     for (i = 0, ridx = 0; i < n_entries; i++) {
333         args[ridx++] = ldq_p(hpte);
334         args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
335         hpte += HASH_PTE_SIZE_64;
336     }
337 
338     return H_SUCCESS;
339 }
340 
341 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
342                                 target_ulong opcode, target_ulong *args)
343 {
344     cpu_synchronize_state(CPU(cpu));
345     cpu->env.spr[SPR_SPRG0] = args[0];
346 
347     return H_SUCCESS;
348 }
349 
350 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
351                                target_ulong opcode, target_ulong *args)
352 {
353     if (!has_spr(cpu, SPR_DABR)) {
354         return H_HARDWARE;              /* DABR register not available */
355     }
356     cpu_synchronize_state(CPU(cpu));
357 
358     if (has_spr(cpu, SPR_DABRX)) {
359         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
360     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
361         return H_RESERVED_DABR;
362     }
363 
364     cpu->env.spr[SPR_DABR] = args[0];
365     return H_SUCCESS;
366 }
367 
368 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
369                                 target_ulong opcode, target_ulong *args)
370 {
371     target_ulong dabrx = args[1];
372 
373     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
374         return H_HARDWARE;
375     }
376 
377     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
378         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
379         return H_PARAMETER;
380     }
381 
382     cpu_synchronize_state(CPU(cpu));
383     cpu->env.spr[SPR_DABRX] = dabrx;
384     cpu->env.spr[SPR_DABR] = args[0];
385 
386     return H_SUCCESS;
387 }
388 
389 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
390                                 target_ulong opcode, target_ulong *args)
391 {
392     target_ulong flags = args[0];
393     hwaddr dst = args[1];
394     hwaddr src = args[2];
395     hwaddr len = TARGET_PAGE_SIZE;
396     uint8_t *pdst, *psrc;
397     target_long ret = H_SUCCESS;
398 
399     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
400                   | H_COPY_PAGE | H_ZERO_PAGE)) {
401         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
402                       flags);
403         return H_PARAMETER;
404     }
405 
406     /* Map-in destination */
407     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
408         return H_PARAMETER;
409     }
410     pdst = cpu_physical_memory_map(dst, &len, 1);
411     if (!pdst || len != TARGET_PAGE_SIZE) {
412         return H_PARAMETER;
413     }
414 
415     if (flags & H_COPY_PAGE) {
416         /* Map-in source, copy to destination, and unmap source again */
417         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
418             ret = H_PARAMETER;
419             goto unmap_out;
420         }
421         psrc = cpu_physical_memory_map(src, &len, 0);
422         if (!psrc || len != TARGET_PAGE_SIZE) {
423             ret = H_PARAMETER;
424             goto unmap_out;
425         }
426         memcpy(pdst, psrc, len);
427         cpu_physical_memory_unmap(psrc, len, 0, len);
428     } else if (flags & H_ZERO_PAGE) {
429         memset(pdst, 0, len);          /* Just clear the destination page */
430     }
431 
432     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
433         kvmppc_dcbst_range(cpu, pdst, len);
434     }
435     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
436         if (kvm_enabled()) {
437             kvmppc_icbi_range(cpu, pdst, len);
438         } else {
439             tb_flush(CPU(cpu));
440         }
441     }
442 
443 unmap_out:
444     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
445     return ret;
446 }
447 
448 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
449 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
450 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
451 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
452 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
453 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
454 
455 #define VPA_MIN_SIZE           640
456 #define VPA_SIZE_OFFSET        0x4
457 #define VPA_SHARED_PROC_OFFSET 0x9
458 #define VPA_SHARED_PROC_VAL    0x2
459 
460 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
461 {
462     CPUState *cs = CPU(ppc_env_get_cpu(env));
463     uint16_t size;
464     uint8_t tmp;
465 
466     if (vpa == 0) {
467         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
468         return H_HARDWARE;
469     }
470 
471     if (vpa % env->dcache_line_size) {
472         return H_PARAMETER;
473     }
474     /* FIXME: bounds check the address */
475 
476     size = lduw_be_phys(cs->as, vpa + 0x4);
477 
478     if (size < VPA_MIN_SIZE) {
479         return H_PARAMETER;
480     }
481 
482     /* VPA is not allowed to cross a page boundary */
483     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
484         return H_PARAMETER;
485     }
486 
487     env->vpa_addr = vpa;
488 
489     tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
490     tmp |= VPA_SHARED_PROC_VAL;
491     stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
492 
493     return H_SUCCESS;
494 }
495 
496 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
497 {
498     if (env->slb_shadow_addr) {
499         return H_RESOURCE;
500     }
501 
502     if (env->dtl_addr) {
503         return H_RESOURCE;
504     }
505 
506     env->vpa_addr = 0;
507     return H_SUCCESS;
508 }
509 
510 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
511 {
512     CPUState *cs = CPU(ppc_env_get_cpu(env));
513     uint32_t size;
514 
515     if (addr == 0) {
516         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
517         return H_HARDWARE;
518     }
519 
520     size = ldl_be_phys(cs->as, addr + 0x4);
521     if (size < 0x8) {
522         return H_PARAMETER;
523     }
524 
525     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
526         return H_PARAMETER;
527     }
528 
529     if (!env->vpa_addr) {
530         return H_RESOURCE;
531     }
532 
533     env->slb_shadow_addr = addr;
534     env->slb_shadow_size = size;
535 
536     return H_SUCCESS;
537 }
538 
539 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
540 {
541     env->slb_shadow_addr = 0;
542     env->slb_shadow_size = 0;
543     return H_SUCCESS;
544 }
545 
546 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
547 {
548     CPUState *cs = CPU(ppc_env_get_cpu(env));
549     uint32_t size;
550 
551     if (addr == 0) {
552         hcall_dprintf("Can't cope with DTL at logical 0\n");
553         return H_HARDWARE;
554     }
555 
556     size = ldl_be_phys(cs->as, addr + 0x4);
557 
558     if (size < 48) {
559         return H_PARAMETER;
560     }
561 
562     if (!env->vpa_addr) {
563         return H_RESOURCE;
564     }
565 
566     env->dtl_addr = addr;
567     env->dtl_size = size;
568 
569     return H_SUCCESS;
570 }
571 
572 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
573 {
574     env->dtl_addr = 0;
575     env->dtl_size = 0;
576 
577     return H_SUCCESS;
578 }
579 
580 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
581                                    target_ulong opcode, target_ulong *args)
582 {
583     target_ulong flags = args[0];
584     target_ulong procno = args[1];
585     target_ulong vpa = args[2];
586     target_ulong ret = H_PARAMETER;
587     CPUPPCState *tenv;
588     PowerPCCPU *tcpu;
589 
590     tcpu = ppc_get_vcpu_by_dt_id(procno);
591     if (!tcpu) {
592         return H_PARAMETER;
593     }
594     tenv = &tcpu->env;
595 
596     switch (flags) {
597     case FLAGS_REGISTER_VPA:
598         ret = register_vpa(tenv, vpa);
599         break;
600 
601     case FLAGS_DEREGISTER_VPA:
602         ret = deregister_vpa(tenv, vpa);
603         break;
604 
605     case FLAGS_REGISTER_SLBSHADOW:
606         ret = register_slb_shadow(tenv, vpa);
607         break;
608 
609     case FLAGS_DEREGISTER_SLBSHADOW:
610         ret = deregister_slb_shadow(tenv, vpa);
611         break;
612 
613     case FLAGS_REGISTER_DTL:
614         ret = register_dtl(tenv, vpa);
615         break;
616 
617     case FLAGS_DEREGISTER_DTL:
618         ret = deregister_dtl(tenv, vpa);
619         break;
620     }
621 
622     return ret;
623 }
624 
625 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
626                            target_ulong opcode, target_ulong *args)
627 {
628     CPUPPCState *env = &cpu->env;
629     CPUState *cs = CPU(cpu);
630 
631     env->msr |= (1ULL << MSR_EE);
632     hreg_compute_hflags(env);
633     if (!cpu_has_work(cs)) {
634         cs->halted = 1;
635         cs->exception_index = EXCP_HLT;
636         cs->exit_request = 1;
637     }
638     return H_SUCCESS;
639 }
640 
641 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
642                            target_ulong opcode, target_ulong *args)
643 {
644     target_ulong rtas_r3 = args[0];
645     uint32_t token = rtas_ld(rtas_r3, 0);
646     uint32_t nargs = rtas_ld(rtas_r3, 1);
647     uint32_t nret = rtas_ld(rtas_r3, 2);
648 
649     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
650                            nret, rtas_r3 + 12 + 4*nargs);
651 }
652 
653 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
654                                    target_ulong opcode, target_ulong *args)
655 {
656     CPUState *cs = CPU(cpu);
657     target_ulong size = args[0];
658     target_ulong addr = args[1];
659 
660     switch (size) {
661     case 1:
662         args[0] = ldub_phys(cs->as, addr);
663         return H_SUCCESS;
664     case 2:
665         args[0] = lduw_phys(cs->as, addr);
666         return H_SUCCESS;
667     case 4:
668         args[0] = ldl_phys(cs->as, addr);
669         return H_SUCCESS;
670     case 8:
671         args[0] = ldq_phys(cs->as, addr);
672         return H_SUCCESS;
673     }
674     return H_PARAMETER;
675 }
676 
677 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
678                                     target_ulong opcode, target_ulong *args)
679 {
680     CPUState *cs = CPU(cpu);
681 
682     target_ulong size = args[0];
683     target_ulong addr = args[1];
684     target_ulong val  = args[2];
685 
686     switch (size) {
687     case 1:
688         stb_phys(cs->as, addr, val);
689         return H_SUCCESS;
690     case 2:
691         stw_phys(cs->as, addr, val);
692         return H_SUCCESS;
693     case 4:
694         stl_phys(cs->as, addr, val);
695         return H_SUCCESS;
696     case 8:
697         stq_phys(cs->as, addr, val);
698         return H_SUCCESS;
699     }
700     return H_PARAMETER;
701 }
702 
703 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
704                                     target_ulong opcode, target_ulong *args)
705 {
706     CPUState *cs = CPU(cpu);
707 
708     target_ulong dst   = args[0]; /* Destination address */
709     target_ulong src   = args[1]; /* Source address */
710     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
711     target_ulong count = args[3]; /* Element count */
712     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
713     uint64_t tmp;
714     unsigned int mask = (1 << esize) - 1;
715     int step = 1 << esize;
716 
717     if (count > 0x80000000) {
718         return H_PARAMETER;
719     }
720 
721     if ((dst & mask) || (src & mask) || (op > 1)) {
722         return H_PARAMETER;
723     }
724 
725     if (dst >= src && dst < (src + (count << esize))) {
726             dst = dst + ((count - 1) << esize);
727             src = src + ((count - 1) << esize);
728             step = -step;
729     }
730 
731     while (count--) {
732         switch (esize) {
733         case 0:
734             tmp = ldub_phys(cs->as, src);
735             break;
736         case 1:
737             tmp = lduw_phys(cs->as, src);
738             break;
739         case 2:
740             tmp = ldl_phys(cs->as, src);
741             break;
742         case 3:
743             tmp = ldq_phys(cs->as, src);
744             break;
745         default:
746             return H_PARAMETER;
747         }
748         if (op == 1) {
749             tmp = ~tmp;
750         }
751         switch (esize) {
752         case 0:
753             stb_phys(cs->as, dst, tmp);
754             break;
755         case 1:
756             stw_phys(cs->as, dst, tmp);
757             break;
758         case 2:
759             stl_phys(cs->as, dst, tmp);
760             break;
761         case 3:
762             stq_phys(cs->as, dst, tmp);
763             break;
764         }
765         dst = dst + step;
766         src = src + step;
767     }
768 
769     return H_SUCCESS;
770 }
771 
772 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
773                                    target_ulong opcode, target_ulong *args)
774 {
775     /* Nothing to do on emulation, KVM will trap this in the kernel */
776     return H_SUCCESS;
777 }
778 
779 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
780                                    target_ulong opcode, target_ulong *args)
781 {
782     /* Nothing to do on emulation, KVM will trap this in the kernel */
783     return H_SUCCESS;
784 }
785 
786 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
787                                            target_ulong mflags,
788                                            target_ulong value1,
789                                            target_ulong value2)
790 {
791     CPUState *cs;
792 
793     if (value1) {
794         return H_P3;
795     }
796     if (value2) {
797         return H_P4;
798     }
799 
800     switch (mflags) {
801     case H_SET_MODE_ENDIAN_BIG:
802         CPU_FOREACH(cs) {
803             set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
804         }
805         spapr_pci_switch_vga(true);
806         return H_SUCCESS;
807 
808     case H_SET_MODE_ENDIAN_LITTLE:
809         CPU_FOREACH(cs) {
810             set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
811         }
812         spapr_pci_switch_vga(false);
813         return H_SUCCESS;
814     }
815 
816     return H_UNSUPPORTED_FLAG;
817 }
818 
819 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
820                                                         target_ulong mflags,
821                                                         target_ulong value1,
822                                                         target_ulong value2)
823 {
824     CPUState *cs;
825     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
826     target_ulong prefix;
827 
828     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
829         return H_P2;
830     }
831     if (value1) {
832         return H_P3;
833     }
834     if (value2) {
835         return H_P4;
836     }
837 
838     switch (mflags) {
839     case H_SET_MODE_ADDR_TRANS_NONE:
840         prefix = 0;
841         break;
842     case H_SET_MODE_ADDR_TRANS_0001_8000:
843         prefix = 0x18000;
844         break;
845     case H_SET_MODE_ADDR_TRANS_C000_0000_0000_4000:
846         prefix = 0xC000000000004000ULL;
847         break;
848     default:
849         return H_UNSUPPORTED_FLAG;
850     }
851 
852     CPU_FOREACH(cs) {
853         CPUPPCState *env = &POWERPC_CPU(cpu)->env;
854 
855         set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
856         env->excp_prefix = prefix;
857     }
858 
859     return H_SUCCESS;
860 }
861 
862 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
863                                target_ulong opcode, target_ulong *args)
864 {
865     target_ulong resource = args[1];
866     target_ulong ret = H_P2;
867 
868     switch (resource) {
869     case H_SET_MODE_RESOURCE_LE:
870         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
871         break;
872     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
873         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
874                                                   args[2], args[3]);
875         break;
876     }
877 
878     return ret;
879 }
880 
881 /*
882  * Return the offset to the requested option vector @vector in the
883  * option vector table @table.
884  */
885 static target_ulong cas_get_option_vector(int vector, target_ulong table)
886 {
887     int i;
888     char nr_vectors, nr_entries;
889 
890     if (!table) {
891         return 0;
892     }
893 
894     nr_vectors = (ldl_phys(&address_space_memory, table) >> 24) + 1;
895     if (!vector || vector > nr_vectors) {
896         return 0;
897     }
898     table++; /* skip nr option vectors */
899 
900     for (i = 0; i < vector - 1; i++) {
901         nr_entries = ldl_phys(&address_space_memory, table) >> 24;
902         table += nr_entries + 2;
903     }
904     return table;
905 }
906 
907 typedef struct {
908     PowerPCCPU *cpu;
909     uint32_t cpu_version;
910     Error *err;
911 } SetCompatState;
912 
913 static void do_set_compat(void *arg)
914 {
915     SetCompatState *s = arg;
916 
917     cpu_synchronize_state(CPU(s->cpu));
918     ppc_set_compat(s->cpu, s->cpu_version, &s->err);
919 }
920 
921 #define get_compat_level(cpuver) ( \
922     ((cpuver) == CPU_POWERPC_LOGICAL_2_05) ? 2050 : \
923     ((cpuver) == CPU_POWERPC_LOGICAL_2_06) ? 2060 : \
924     ((cpuver) == CPU_POWERPC_LOGICAL_2_06_PLUS) ? 2061 : \
925     ((cpuver) == CPU_POWERPC_LOGICAL_2_07) ? 2070 : 0)
926 
927 #define OV5_DRCONF_MEMORY 0x20
928 
929 static target_ulong h_client_architecture_support(PowerPCCPU *cpu_,
930                                                   sPAPRMachineState *spapr,
931                                                   target_ulong opcode,
932                                                   target_ulong *args)
933 {
934     target_ulong list = ppc64_phys_to_real(args[0]);
935     target_ulong ov_table, ov5;
936     PowerPCCPUClass *pcc_ = POWERPC_CPU_GET_CLASS(cpu_);
937     CPUState *cs;
938     bool cpu_match = false, cpu_update = true, memory_update = false;
939     unsigned old_cpu_version = cpu_->cpu_version;
940     unsigned compat_lvl = 0, cpu_version = 0;
941     unsigned max_lvl = get_compat_level(cpu_->max_compat);
942     int counter;
943     char ov5_byte2;
944 
945     /* Parse PVR list */
946     for (counter = 0; counter < 512; ++counter) {
947         uint32_t pvr, pvr_mask;
948 
949         pvr_mask = ldl_be_phys(&address_space_memory, list);
950         list += 4;
951         pvr = ldl_be_phys(&address_space_memory, list);
952         list += 4;
953 
954         trace_spapr_cas_pvr_try(pvr);
955         if (!max_lvl &&
956             ((cpu_->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask))) {
957             cpu_match = true;
958             cpu_version = 0;
959         } else if (pvr == cpu_->cpu_version) {
960             cpu_match = true;
961             cpu_version = cpu_->cpu_version;
962         } else if (!cpu_match) {
963             /* If it is a logical PVR, try to determine the highest level */
964             unsigned lvl = get_compat_level(pvr);
965             if (lvl) {
966                 bool is205 = (pcc_->pcr_mask & PCR_COMPAT_2_05) &&
967                      (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_05));
968                 bool is206 = (pcc_->pcr_mask & PCR_COMPAT_2_06) &&
969                     ((lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06)) ||
970                     (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06_PLUS)));
971 
972                 if (is205 || is206) {
973                     if (!max_lvl) {
974                         /* User did not set the level, choose the highest */
975                         if (compat_lvl <= lvl) {
976                             compat_lvl = lvl;
977                             cpu_version = pvr;
978                         }
979                     } else if (max_lvl >= lvl) {
980                         /* User chose the level, don't set higher than this */
981                         compat_lvl = lvl;
982                         cpu_version = pvr;
983                     }
984                 }
985             }
986         }
987         /* Terminator record */
988         if (~pvr_mask & pvr) {
989             break;
990         }
991     }
992 
993     /* Parsing finished */
994     trace_spapr_cas_pvr(cpu_->cpu_version, cpu_match,
995                         cpu_version, pcc_->pcr_mask);
996 
997     /* Update CPUs */
998     if (old_cpu_version != cpu_version) {
999         CPU_FOREACH(cs) {
1000             SetCompatState s = {
1001                 .cpu = POWERPC_CPU(cs),
1002                 .cpu_version = cpu_version,
1003                 .err = NULL,
1004             };
1005 
1006             run_on_cpu(cs, do_set_compat, &s);
1007 
1008             if (s.err) {
1009                 error_report_err(s.err);
1010                 return H_HARDWARE;
1011             }
1012         }
1013     }
1014 
1015     if (!cpu_version) {
1016         cpu_update = false;
1017     }
1018 
1019     /* For the future use: here @ov_table points to the first option vector */
1020     ov_table = list;
1021 
1022     ov5 = cas_get_option_vector(5, ov_table);
1023     if (!ov5) {
1024         return H_SUCCESS;
1025     }
1026 
1027     /* @list now points to OV 5 */
1028     ov5_byte2 = ldub_phys(&address_space_memory, ov5 + 2);
1029     if (ov5_byte2 & OV5_DRCONF_MEMORY) {
1030         memory_update = true;
1031     }
1032 
1033     if (spapr_h_cas_compose_response(spapr, args[1], args[2],
1034                                      cpu_update, memory_update)) {
1035         qemu_system_reset_request();
1036     }
1037 
1038     return H_SUCCESS;
1039 }
1040 
1041 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1042 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1043 
1044 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1045 {
1046     spapr_hcall_fn *slot;
1047 
1048     if (opcode <= MAX_HCALL_OPCODE) {
1049         assert((opcode & 0x3) == 0);
1050 
1051         slot = &papr_hypercall_table[opcode / 4];
1052     } else {
1053         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1054 
1055         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1056     }
1057 
1058     assert(!(*slot));
1059     *slot = fn;
1060 }
1061 
1062 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1063                              target_ulong *args)
1064 {
1065     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1066 
1067     if ((opcode <= MAX_HCALL_OPCODE)
1068         && ((opcode & 0x3) == 0)) {
1069         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1070 
1071         if (fn) {
1072             return fn(cpu, spapr, opcode, args);
1073         }
1074     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1075                (opcode <= KVMPPC_HCALL_MAX)) {
1076         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1077 
1078         if (fn) {
1079             return fn(cpu, spapr, opcode, args);
1080         }
1081     }
1082 
1083     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1084                   opcode);
1085     return H_FUNCTION;
1086 }
1087 
1088 static void hypercall_register_types(void)
1089 {
1090     /* hcall-pft */
1091     spapr_register_hypercall(H_ENTER, h_enter);
1092     spapr_register_hypercall(H_REMOVE, h_remove);
1093     spapr_register_hypercall(H_PROTECT, h_protect);
1094     spapr_register_hypercall(H_READ, h_read);
1095 
1096     /* hcall-bulk */
1097     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1098 
1099     /* hcall-splpar */
1100     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1101     spapr_register_hypercall(H_CEDE, h_cede);
1102 
1103     /* processor register resource access h-calls */
1104     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1105     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1106     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1107     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1108     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1109 
1110     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1111      * here between the "CI" and the "CACHE" variants, they will use whatever
1112      * mapping attributes qemu is using. When using KVM, the kernel will
1113      * enforce the attributes more strongly
1114      */
1115     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1116     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1117     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1118     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1119     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1120     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1121     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1122 
1123     /* qemu/KVM-PPC specific hcalls */
1124     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1125 
1126     /* ibm,client-architecture-support support */
1127     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1128 }
1129 
1130 type_init(hypercall_register_types)
1131