1 #include "qemu/osdep.h" 2 #include "qapi/error.h" 3 #include "sysemu/hw_accel.h" 4 #include "sysemu/runstate.h" 5 #include "qemu/log.h" 6 #include "qemu/main-loop.h" 7 #include "qemu/module.h" 8 #include "qemu/error-report.h" 9 #include "cpu.h" 10 #include "exec/exec-all.h" 11 #include "helper_regs.h" 12 #include "hw/ppc/spapr.h" 13 #include "hw/ppc/spapr_cpu_core.h" 14 #include "mmu-hash64.h" 15 #include "cpu-models.h" 16 #include "trace.h" 17 #include "kvm_ppc.h" 18 #include "hw/ppc/spapr_ovec.h" 19 #include "mmu-book3s-v3.h" 20 #include "hw/mem/memory-device.h" 21 22 static bool has_spr(PowerPCCPU *cpu, int spr) 23 { 24 /* We can test whether the SPR is defined by checking for a valid name */ 25 return cpu->env.spr_cb[spr].name != NULL; 26 } 27 28 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex) 29 { 30 /* 31 * hash value/pteg group index is normalized by HPT mask 32 */ 33 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) { 34 return false; 35 } 36 return true; 37 } 38 39 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) 40 { 41 MachineState *machine = MACHINE(spapr); 42 DeviceMemoryState *dms = machine->device_memory; 43 44 if (addr < machine->ram_size) { 45 return true; 46 } 47 if ((addr >= dms->base) 48 && ((addr - dms->base) < memory_region_size(&dms->mr))) { 49 return true; 50 } 51 52 return false; 53 } 54 55 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr, 56 target_ulong opcode, target_ulong *args) 57 { 58 target_ulong flags = args[0]; 59 target_ulong ptex = args[1]; 60 target_ulong pteh = args[2]; 61 target_ulong ptel = args[3]; 62 unsigned apshift; 63 target_ulong raddr; 64 target_ulong slot; 65 const ppc_hash_pte64_t *hptes; 66 67 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel); 68 if (!apshift) { 69 /* Bad page size encoding */ 70 return H_PARAMETER; 71 } 72 73 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1); 74 75 if (is_ram_address(spapr, raddr)) { 76 /* Regular RAM - should have WIMG=0010 */ 77 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { 78 return H_PARAMETER; 79 } 80 } else { 81 target_ulong wimg_flags; 82 /* Looks like an IO address */ 83 /* FIXME: What WIMG combinations could be sensible for IO? 84 * For now we allow WIMG=010x, but are there others? */ 85 /* FIXME: Should we check against registered IO addresses? */ 86 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)); 87 88 if (wimg_flags != HPTE64_R_I && 89 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) { 90 return H_PARAMETER; 91 } 92 } 93 94 pteh &= ~0x60ULL; 95 96 if (!valid_ptex(cpu, ptex)) { 97 return H_PARAMETER; 98 } 99 100 slot = ptex & 7ULL; 101 ptex = ptex & ~7ULL; 102 103 if (likely((flags & H_EXACT) == 0)) { 104 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 105 for (slot = 0; slot < 8; slot++) { 106 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) { 107 break; 108 } 109 } 110 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 111 if (slot == 8) { 112 return H_PTEG_FULL; 113 } 114 } else { 115 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1); 116 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) { 117 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1); 118 return H_PTEG_FULL; 119 } 120 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 121 } 122 123 spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel); 124 125 args[0] = ptex + slot; 126 return H_SUCCESS; 127 } 128 129 typedef enum { 130 REMOVE_SUCCESS = 0, 131 REMOVE_NOT_FOUND = 1, 132 REMOVE_PARM = 2, 133 REMOVE_HW = 3, 134 } RemoveResult; 135 136 static RemoveResult remove_hpte(PowerPCCPU *cpu 137 , target_ulong ptex, 138 target_ulong avpn, 139 target_ulong flags, 140 target_ulong *vp, target_ulong *rp) 141 { 142 const ppc_hash_pte64_t *hptes; 143 target_ulong v, r; 144 145 if (!valid_ptex(cpu, ptex)) { 146 return REMOVE_PARM; 147 } 148 149 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 150 v = ppc_hash64_hpte0(cpu, hptes, 0); 151 r = ppc_hash64_hpte1(cpu, hptes, 0); 152 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 153 154 if ((v & HPTE64_V_VALID) == 0 || 155 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || 156 ((flags & H_ANDCOND) && (v & avpn) != 0)) { 157 return REMOVE_NOT_FOUND; 158 } 159 *vp = v; 160 *rp = r; 161 spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0); 162 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 163 return REMOVE_SUCCESS; 164 } 165 166 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, 167 target_ulong opcode, target_ulong *args) 168 { 169 CPUPPCState *env = &cpu->env; 170 target_ulong flags = args[0]; 171 target_ulong ptex = args[1]; 172 target_ulong avpn = args[2]; 173 RemoveResult ret; 174 175 ret = remove_hpte(cpu, ptex, avpn, flags, 176 &args[0], &args[1]); 177 178 switch (ret) { 179 case REMOVE_SUCCESS: 180 check_tlb_flush(env, true); 181 return H_SUCCESS; 182 183 case REMOVE_NOT_FOUND: 184 return H_NOT_FOUND; 185 186 case REMOVE_PARM: 187 return H_PARAMETER; 188 189 case REMOVE_HW: 190 return H_HARDWARE; 191 } 192 193 g_assert_not_reached(); 194 } 195 196 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL 197 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL 198 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL 199 #define H_BULK_REMOVE_END 0xc000000000000000ULL 200 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL 201 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL 202 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL 203 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL 204 #define H_BULK_REMOVE_HW 0x3000000000000000ULL 205 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL 206 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL 207 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL 208 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL 209 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL 210 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL 211 212 #define H_BULK_REMOVE_MAX_BATCH 4 213 214 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, 215 target_ulong opcode, target_ulong *args) 216 { 217 CPUPPCState *env = &cpu->env; 218 int i; 219 target_ulong rc = H_SUCCESS; 220 221 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { 222 target_ulong *tsh = &args[i*2]; 223 target_ulong tsl = args[i*2 + 1]; 224 target_ulong v, r, ret; 225 226 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { 227 break; 228 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { 229 return H_PARAMETER; 230 } 231 232 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; 233 *tsh |= H_BULK_REMOVE_RESPONSE; 234 235 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { 236 *tsh |= H_BULK_REMOVE_PARM; 237 return H_PARAMETER; 238 } 239 240 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl, 241 (*tsh & H_BULK_REMOVE_FLAGS) >> 26, 242 &v, &r); 243 244 *tsh |= ret << 60; 245 246 switch (ret) { 247 case REMOVE_SUCCESS: 248 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; 249 break; 250 251 case REMOVE_PARM: 252 rc = H_PARAMETER; 253 goto exit; 254 255 case REMOVE_HW: 256 rc = H_HARDWARE; 257 goto exit; 258 } 259 } 260 exit: 261 check_tlb_flush(env, true); 262 263 return rc; 264 } 265 266 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr, 267 target_ulong opcode, target_ulong *args) 268 { 269 CPUPPCState *env = &cpu->env; 270 target_ulong flags = args[0]; 271 target_ulong ptex = args[1]; 272 target_ulong avpn = args[2]; 273 const ppc_hash_pte64_t *hptes; 274 target_ulong v, r; 275 276 if (!valid_ptex(cpu, ptex)) { 277 return H_PARAMETER; 278 } 279 280 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 281 v = ppc_hash64_hpte0(cpu, hptes, 0); 282 r = ppc_hash64_hpte1(cpu, hptes, 0); 283 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 284 285 if ((v & HPTE64_V_VALID) == 0 || 286 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { 287 return H_NOT_FOUND; 288 } 289 290 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | 291 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); 292 r |= (flags << 55) & HPTE64_R_PP0; 293 r |= (flags << 48) & HPTE64_R_KEY_HI; 294 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); 295 spapr_store_hpte(cpu, ptex, 296 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); 297 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 298 /* Flush the tlb */ 299 check_tlb_flush(env, true); 300 /* Don't need a memory barrier, due to qemu's global lock */ 301 spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r); 302 return H_SUCCESS; 303 } 304 305 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr, 306 target_ulong opcode, target_ulong *args) 307 { 308 target_ulong flags = args[0]; 309 target_ulong ptex = args[1]; 310 int i, ridx, n_entries = 1; 311 const ppc_hash_pte64_t *hptes; 312 313 if (!valid_ptex(cpu, ptex)) { 314 return H_PARAMETER; 315 } 316 317 if (flags & H_READ_4) { 318 /* Clear the two low order bits */ 319 ptex &= ~(3ULL); 320 n_entries = 4; 321 } 322 323 hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries); 324 for (i = 0, ridx = 0; i < n_entries; i++) { 325 args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i); 326 args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i); 327 } 328 ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries); 329 330 return H_SUCCESS; 331 } 332 333 struct SpaprPendingHpt { 334 /* These fields are read-only after initialization */ 335 int shift; 336 QemuThread thread; 337 338 /* These fields are protected by the BQL */ 339 bool complete; 340 341 /* These fields are private to the preparation thread if 342 * !complete, otherwise protected by the BQL */ 343 int ret; 344 void *hpt; 345 }; 346 347 static void free_pending_hpt(SpaprPendingHpt *pending) 348 { 349 if (pending->hpt) { 350 qemu_vfree(pending->hpt); 351 } 352 353 g_free(pending); 354 } 355 356 static void *hpt_prepare_thread(void *opaque) 357 { 358 SpaprPendingHpt *pending = opaque; 359 size_t size = 1ULL << pending->shift; 360 361 pending->hpt = qemu_memalign(size, size); 362 if (pending->hpt) { 363 memset(pending->hpt, 0, size); 364 pending->ret = H_SUCCESS; 365 } else { 366 pending->ret = H_NO_MEM; 367 } 368 369 qemu_mutex_lock_iothread(); 370 371 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) { 372 /* Ready to go */ 373 pending->complete = true; 374 } else { 375 /* We've been cancelled, clean ourselves up */ 376 free_pending_hpt(pending); 377 } 378 379 qemu_mutex_unlock_iothread(); 380 return NULL; 381 } 382 383 /* Must be called with BQL held */ 384 static void cancel_hpt_prepare(SpaprMachineState *spapr) 385 { 386 SpaprPendingHpt *pending = spapr->pending_hpt; 387 388 /* Let the thread know it's cancelled */ 389 spapr->pending_hpt = NULL; 390 391 if (!pending) { 392 /* Nothing to do */ 393 return; 394 } 395 396 if (!pending->complete) { 397 /* thread will clean itself up */ 398 return; 399 } 400 401 free_pending_hpt(pending); 402 } 403 404 /* Convert a return code from the KVM ioctl()s implementing resize HPT 405 * into a PAPR hypercall return code */ 406 static target_ulong resize_hpt_convert_rc(int ret) 407 { 408 if (ret >= 100000) { 409 return H_LONG_BUSY_ORDER_100_SEC; 410 } else if (ret >= 10000) { 411 return H_LONG_BUSY_ORDER_10_SEC; 412 } else if (ret >= 1000) { 413 return H_LONG_BUSY_ORDER_1_SEC; 414 } else if (ret >= 100) { 415 return H_LONG_BUSY_ORDER_100_MSEC; 416 } else if (ret >= 10) { 417 return H_LONG_BUSY_ORDER_10_MSEC; 418 } else if (ret > 0) { 419 return H_LONG_BUSY_ORDER_1_MSEC; 420 } 421 422 switch (ret) { 423 case 0: 424 return H_SUCCESS; 425 case -EPERM: 426 return H_AUTHORITY; 427 case -EINVAL: 428 return H_PARAMETER; 429 case -ENXIO: 430 return H_CLOSED; 431 case -ENOSPC: 432 return H_PTEG_FULL; 433 case -EBUSY: 434 return H_BUSY; 435 case -ENOMEM: 436 return H_NO_MEM; 437 default: 438 return H_HARDWARE; 439 } 440 } 441 442 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, 443 SpaprMachineState *spapr, 444 target_ulong opcode, 445 target_ulong *args) 446 { 447 target_ulong flags = args[0]; 448 int shift = args[1]; 449 SpaprPendingHpt *pending = spapr->pending_hpt; 450 uint64_t current_ram_size; 451 int rc; 452 453 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 454 return H_AUTHORITY; 455 } 456 457 if (!spapr->htab_shift) { 458 /* Radix guest, no HPT */ 459 return H_NOT_AVAILABLE; 460 } 461 462 trace_spapr_h_resize_hpt_prepare(flags, shift); 463 464 if (flags != 0) { 465 return H_PARAMETER; 466 } 467 468 if (shift && ((shift < 18) || (shift > 46))) { 469 return H_PARAMETER; 470 } 471 472 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 473 474 /* We only allow the guest to allocate an HPT one order above what 475 * we'd normally give them (to stop a small guest claiming a huge 476 * chunk of resources in the HPT */ 477 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { 478 return H_RESOURCE; 479 } 480 481 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); 482 if (rc != -ENOSYS) { 483 return resize_hpt_convert_rc(rc); 484 } 485 486 if (pending) { 487 /* something already in progress */ 488 if (pending->shift == shift) { 489 /* and it's suitable */ 490 if (pending->complete) { 491 return pending->ret; 492 } else { 493 return H_LONG_BUSY_ORDER_100_MSEC; 494 } 495 } 496 497 /* not suitable, cancel and replace */ 498 cancel_hpt_prepare(spapr); 499 } 500 501 if (!shift) { 502 /* nothing to do */ 503 return H_SUCCESS; 504 } 505 506 /* start new prepare */ 507 508 pending = g_new0(SpaprPendingHpt, 1); 509 pending->shift = shift; 510 pending->ret = H_HARDWARE; 511 512 qemu_thread_create(&pending->thread, "sPAPR HPT prepare", 513 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED); 514 515 spapr->pending_hpt = pending; 516 517 /* In theory we could estimate the time more accurately based on 518 * the new size, but there's not much point */ 519 return H_LONG_BUSY_ORDER_100_MSEC; 520 } 521 522 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot) 523 { 524 uint8_t *addr = htab; 525 526 addr += pteg * HASH_PTEG_SIZE_64; 527 addr += slot * HASH_PTE_SIZE_64; 528 return ldq_p(addr); 529 } 530 531 static void new_hpte_store(void *htab, uint64_t pteg, int slot, 532 uint64_t pte0, uint64_t pte1) 533 { 534 uint8_t *addr = htab; 535 536 addr += pteg * HASH_PTEG_SIZE_64; 537 addr += slot * HASH_PTE_SIZE_64; 538 539 stq_p(addr, pte0); 540 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1); 541 } 542 543 static int rehash_hpte(PowerPCCPU *cpu, 544 const ppc_hash_pte64_t *hptes, 545 void *old_hpt, uint64_t oldsize, 546 void *new_hpt, uint64_t newsize, 547 uint64_t pteg, int slot) 548 { 549 uint64_t old_hash_mask = (oldsize >> 7) - 1; 550 uint64_t new_hash_mask = (newsize >> 7) - 1; 551 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot); 552 target_ulong pte1; 553 uint64_t avpn; 554 unsigned base_pg_shift; 555 uint64_t hash, new_pteg, replace_pte0; 556 557 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) { 558 return H_SUCCESS; 559 } 560 561 pte1 = ppc_hash64_hpte1(cpu, hptes, slot); 562 563 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1); 564 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */ 565 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23); 566 567 if (pte0 & HPTE64_V_SECONDARY) { 568 pteg = ~pteg; 569 } 570 571 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) { 572 uint64_t offset, vsid; 573 574 /* We only have 28 - 23 bits of offset in avpn */ 575 offset = (avpn & 0x1f) << 23; 576 vsid = avpn >> 5; 577 /* We can find more bits from the pteg value */ 578 if (base_pg_shift < 23) { 579 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift; 580 } 581 582 hash = vsid ^ (offset >> base_pg_shift); 583 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) { 584 uint64_t offset, vsid; 585 586 /* We only have 40 - 23 bits of seg_off in avpn */ 587 offset = (avpn & 0x1ffff) << 23; 588 vsid = avpn >> 17; 589 if (base_pg_shift < 23) { 590 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) 591 << base_pg_shift; 592 } 593 594 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift); 595 } else { 596 error_report("rehash_pte: Bad segment size in HPTE"); 597 return H_HARDWARE; 598 } 599 600 new_pteg = hash & new_hash_mask; 601 if (pte0 & HPTE64_V_SECONDARY) { 602 assert(~pteg == (hash & old_hash_mask)); 603 new_pteg = ~new_pteg; 604 } else { 605 assert(pteg == (hash & old_hash_mask)); 606 } 607 assert((oldsize != newsize) || (pteg == new_pteg)); 608 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot); 609 /* 610 * Strictly speaking, we don't need all these tests, since we only 611 * ever rehash bolted HPTEs. We might in future handle non-bolted 612 * HPTEs, though so make the logic correct for those cases as 613 * well. 614 */ 615 if (replace_pte0 & HPTE64_V_VALID) { 616 assert(newsize < oldsize); 617 if (replace_pte0 & HPTE64_V_BOLTED) { 618 if (pte0 & HPTE64_V_BOLTED) { 619 /* Bolted collision, nothing we can do */ 620 return H_PTEG_FULL; 621 } else { 622 /* Discard this hpte */ 623 return H_SUCCESS; 624 } 625 } 626 } 627 628 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1); 629 return H_SUCCESS; 630 } 631 632 static int rehash_hpt(PowerPCCPU *cpu, 633 void *old_hpt, uint64_t oldsize, 634 void *new_hpt, uint64_t newsize) 635 { 636 uint64_t n_ptegs = oldsize >> 7; 637 uint64_t pteg; 638 int slot; 639 int rc; 640 641 for (pteg = 0; pteg < n_ptegs; pteg++) { 642 hwaddr ptex = pteg * HPTES_PER_GROUP; 643 const ppc_hash_pte64_t *hptes 644 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 645 646 if (!hptes) { 647 return H_HARDWARE; 648 } 649 650 for (slot = 0; slot < HPTES_PER_GROUP; slot++) { 651 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize, 652 pteg, slot); 653 if (rc != H_SUCCESS) { 654 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 655 return rc; 656 } 657 } 658 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 659 } 660 661 return H_SUCCESS; 662 } 663 664 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) 665 { 666 int ret; 667 668 cpu_synchronize_state(cs); 669 670 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); 671 if (ret < 0) { 672 error_report("failed to push sregs to KVM: %s", strerror(-ret)); 673 exit(1); 674 } 675 } 676 677 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr) 678 { 679 CPUState *cs; 680 681 /* 682 * This is a hack for the benefit of KVM PR - it abuses the SDR1 683 * slot in kvm_sregs to communicate the userspace address of the 684 * HPT 685 */ 686 if (!kvm_enabled() || !spapr->htab) { 687 return; 688 } 689 690 CPU_FOREACH(cs) { 691 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); 692 } 693 } 694 695 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, 696 SpaprMachineState *spapr, 697 target_ulong opcode, 698 target_ulong *args) 699 { 700 target_ulong flags = args[0]; 701 target_ulong shift = args[1]; 702 SpaprPendingHpt *pending = spapr->pending_hpt; 703 int rc; 704 size_t newsize; 705 706 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 707 return H_AUTHORITY; 708 } 709 710 if (!spapr->htab_shift) { 711 /* Radix guest, no HPT */ 712 return H_NOT_AVAILABLE; 713 } 714 715 trace_spapr_h_resize_hpt_commit(flags, shift); 716 717 rc = kvmppc_resize_hpt_commit(cpu, flags, shift); 718 if (rc != -ENOSYS) { 719 rc = resize_hpt_convert_rc(rc); 720 if (rc == H_SUCCESS) { 721 /* Need to set the new htab_shift in the machine state */ 722 spapr->htab_shift = shift; 723 } 724 return rc; 725 } 726 727 if (flags != 0) { 728 return H_PARAMETER; 729 } 730 731 if (!pending || (pending->shift != shift)) { 732 /* no matching prepare */ 733 return H_CLOSED; 734 } 735 736 if (!pending->complete) { 737 /* prepare has not completed */ 738 return H_BUSY; 739 } 740 741 /* Shouldn't have got past PREPARE without an HPT */ 742 g_assert(spapr->htab_shift); 743 744 newsize = 1ULL << pending->shift; 745 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr), 746 pending->hpt, newsize); 747 if (rc == H_SUCCESS) { 748 qemu_vfree(spapr->htab); 749 spapr->htab = pending->hpt; 750 spapr->htab_shift = pending->shift; 751 752 push_sregs_to_kvm_pr(spapr); 753 754 pending->hpt = NULL; /* so it's not free()d */ 755 } 756 757 /* Clean up */ 758 spapr->pending_hpt = NULL; 759 free_pending_hpt(pending); 760 761 return rc; 762 } 763 764 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, 765 target_ulong opcode, target_ulong *args) 766 { 767 cpu_synchronize_state(CPU(cpu)); 768 cpu->env.spr[SPR_SPRG0] = args[0]; 769 770 return H_SUCCESS; 771 } 772 773 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 774 target_ulong opcode, target_ulong *args) 775 { 776 if (!has_spr(cpu, SPR_DABR)) { 777 return H_HARDWARE; /* DABR register not available */ 778 } 779 cpu_synchronize_state(CPU(cpu)); 780 781 if (has_spr(cpu, SPR_DABRX)) { 782 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ 783 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ 784 return H_RESERVED_DABR; 785 } 786 787 cpu->env.spr[SPR_DABR] = args[0]; 788 return H_SUCCESS; 789 } 790 791 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 792 target_ulong opcode, target_ulong *args) 793 { 794 target_ulong dabrx = args[1]; 795 796 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) { 797 return H_HARDWARE; 798 } 799 800 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 801 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { 802 return H_PARAMETER; 803 } 804 805 cpu_synchronize_state(CPU(cpu)); 806 cpu->env.spr[SPR_DABRX] = dabrx; 807 cpu->env.spr[SPR_DABR] = args[0]; 808 809 return H_SUCCESS; 810 } 811 812 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, 813 target_ulong opcode, target_ulong *args) 814 { 815 target_ulong flags = args[0]; 816 hwaddr dst = args[1]; 817 hwaddr src = args[2]; 818 hwaddr len = TARGET_PAGE_SIZE; 819 uint8_t *pdst, *psrc; 820 target_long ret = H_SUCCESS; 821 822 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE 823 | H_COPY_PAGE | H_ZERO_PAGE)) { 824 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", 825 flags); 826 return H_PARAMETER; 827 } 828 829 /* Map-in destination */ 830 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { 831 return H_PARAMETER; 832 } 833 pdst = cpu_physical_memory_map(dst, &len, 1); 834 if (!pdst || len != TARGET_PAGE_SIZE) { 835 return H_PARAMETER; 836 } 837 838 if (flags & H_COPY_PAGE) { 839 /* Map-in source, copy to destination, and unmap source again */ 840 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { 841 ret = H_PARAMETER; 842 goto unmap_out; 843 } 844 psrc = cpu_physical_memory_map(src, &len, 0); 845 if (!psrc || len != TARGET_PAGE_SIZE) { 846 ret = H_PARAMETER; 847 goto unmap_out; 848 } 849 memcpy(pdst, psrc, len); 850 cpu_physical_memory_unmap(psrc, len, 0, len); 851 } else if (flags & H_ZERO_PAGE) { 852 memset(pdst, 0, len); /* Just clear the destination page */ 853 } 854 855 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { 856 kvmppc_dcbst_range(cpu, pdst, len); 857 } 858 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { 859 if (kvm_enabled()) { 860 kvmppc_icbi_range(cpu, pdst, len); 861 } else { 862 tb_flush(CPU(cpu)); 863 } 864 } 865 866 unmap_out: 867 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); 868 return ret; 869 } 870 871 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL 872 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL 873 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL 874 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL 875 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL 876 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL 877 878 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) 879 { 880 CPUState *cs = CPU(cpu); 881 CPUPPCState *env = &cpu->env; 882 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 883 uint16_t size; 884 uint8_t tmp; 885 886 if (vpa == 0) { 887 hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); 888 return H_HARDWARE; 889 } 890 891 if (vpa % env->dcache_line_size) { 892 return H_PARAMETER; 893 } 894 /* FIXME: bounds check the address */ 895 896 size = lduw_be_phys(cs->as, vpa + 0x4); 897 898 if (size < VPA_MIN_SIZE) { 899 return H_PARAMETER; 900 } 901 902 /* VPA is not allowed to cross a page boundary */ 903 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { 904 return H_PARAMETER; 905 } 906 907 spapr_cpu->vpa_addr = vpa; 908 909 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); 910 tmp |= VPA_SHARED_PROC_VAL; 911 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); 912 913 return H_SUCCESS; 914 } 915 916 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) 917 { 918 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 919 920 if (spapr_cpu->slb_shadow_addr) { 921 return H_RESOURCE; 922 } 923 924 if (spapr_cpu->dtl_addr) { 925 return H_RESOURCE; 926 } 927 928 spapr_cpu->vpa_addr = 0; 929 return H_SUCCESS; 930 } 931 932 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 933 { 934 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 935 uint32_t size; 936 937 if (addr == 0) { 938 hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); 939 return H_HARDWARE; 940 } 941 942 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 943 if (size < 0x8) { 944 return H_PARAMETER; 945 } 946 947 if ((addr / 4096) != ((addr + size - 1) / 4096)) { 948 return H_PARAMETER; 949 } 950 951 if (!spapr_cpu->vpa_addr) { 952 return H_RESOURCE; 953 } 954 955 spapr_cpu->slb_shadow_addr = addr; 956 spapr_cpu->slb_shadow_size = size; 957 958 return H_SUCCESS; 959 } 960 961 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 962 { 963 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 964 965 spapr_cpu->slb_shadow_addr = 0; 966 spapr_cpu->slb_shadow_size = 0; 967 return H_SUCCESS; 968 } 969 970 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) 971 { 972 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 973 uint32_t size; 974 975 if (addr == 0) { 976 hcall_dprintf("Can't cope with DTL at logical 0\n"); 977 return H_HARDWARE; 978 } 979 980 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 981 982 if (size < 48) { 983 return H_PARAMETER; 984 } 985 986 if (!spapr_cpu->vpa_addr) { 987 return H_RESOURCE; 988 } 989 990 spapr_cpu->dtl_addr = addr; 991 spapr_cpu->dtl_size = size; 992 993 return H_SUCCESS; 994 } 995 996 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) 997 { 998 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 999 1000 spapr_cpu->dtl_addr = 0; 1001 spapr_cpu->dtl_size = 0; 1002 1003 return H_SUCCESS; 1004 } 1005 1006 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, 1007 target_ulong opcode, target_ulong *args) 1008 { 1009 target_ulong flags = args[0]; 1010 target_ulong procno = args[1]; 1011 target_ulong vpa = args[2]; 1012 target_ulong ret = H_PARAMETER; 1013 PowerPCCPU *tcpu; 1014 1015 tcpu = spapr_find_cpu(procno); 1016 if (!tcpu) { 1017 return H_PARAMETER; 1018 } 1019 1020 switch (flags) { 1021 case FLAGS_REGISTER_VPA: 1022 ret = register_vpa(tcpu, vpa); 1023 break; 1024 1025 case FLAGS_DEREGISTER_VPA: 1026 ret = deregister_vpa(tcpu, vpa); 1027 break; 1028 1029 case FLAGS_REGISTER_SLBSHADOW: 1030 ret = register_slb_shadow(tcpu, vpa); 1031 break; 1032 1033 case FLAGS_DEREGISTER_SLBSHADOW: 1034 ret = deregister_slb_shadow(tcpu, vpa); 1035 break; 1036 1037 case FLAGS_REGISTER_DTL: 1038 ret = register_dtl(tcpu, vpa); 1039 break; 1040 1041 case FLAGS_DEREGISTER_DTL: 1042 ret = deregister_dtl(tcpu, vpa); 1043 break; 1044 } 1045 1046 return ret; 1047 } 1048 1049 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, 1050 target_ulong opcode, target_ulong *args) 1051 { 1052 CPUPPCState *env = &cpu->env; 1053 CPUState *cs = CPU(cpu); 1054 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1055 1056 env->msr |= (1ULL << MSR_EE); 1057 hreg_compute_hflags(env); 1058 1059 if (spapr_cpu->prod) { 1060 spapr_cpu->prod = false; 1061 return H_SUCCESS; 1062 } 1063 1064 if (!cpu_has_work(cs)) { 1065 cs->halted = 1; 1066 cs->exception_index = EXCP_HLT; 1067 cs->exit_request = 1; 1068 } 1069 1070 return H_SUCCESS; 1071 } 1072 1073 /* 1074 * Confer to self, aka join. Cede could use the same pattern as well, if 1075 * EXCP_HLT can be changed to ECXP_HALTED. 1076 */ 1077 static target_ulong h_confer_self(PowerPCCPU *cpu) 1078 { 1079 CPUState *cs = CPU(cpu); 1080 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1081 1082 if (spapr_cpu->prod) { 1083 spapr_cpu->prod = false; 1084 return H_SUCCESS; 1085 } 1086 cs->halted = 1; 1087 cs->exception_index = EXCP_HALTED; 1088 cs->exit_request = 1; 1089 1090 return H_SUCCESS; 1091 } 1092 1093 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, 1094 target_ulong opcode, target_ulong *args) 1095 { 1096 CPUPPCState *env = &cpu->env; 1097 CPUState *cs; 1098 bool last_unjoined = true; 1099 1100 if (env->msr & (1ULL << MSR_EE)) { 1101 return H_BAD_MODE; 1102 } 1103 1104 /* 1105 * Must not join the last CPU running. Interestingly, no such restriction 1106 * for H_CONFER-to-self, but that is probably not intended to be used 1107 * when H_JOIN is available. 1108 */ 1109 CPU_FOREACH(cs) { 1110 PowerPCCPU *c = POWERPC_CPU(cs); 1111 CPUPPCState *e = &c->env; 1112 if (c == cpu) { 1113 continue; 1114 } 1115 1116 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ 1117 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { 1118 last_unjoined = false; 1119 break; 1120 } 1121 } 1122 if (last_unjoined) { 1123 return H_CONTINUE; 1124 } 1125 1126 return h_confer_self(cpu); 1127 } 1128 1129 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, 1130 target_ulong opcode, target_ulong *args) 1131 { 1132 target_long target = args[0]; 1133 uint32_t dispatch = args[1]; 1134 CPUState *cs = CPU(cpu); 1135 SpaprCpuState *spapr_cpu; 1136 1137 /* 1138 * -1 means confer to all other CPUs without dispatch counter check, 1139 * otherwise it's a targeted confer. 1140 */ 1141 if (target != -1) { 1142 PowerPCCPU *target_cpu = spapr_find_cpu(target); 1143 uint32_t target_dispatch; 1144 1145 if (!target_cpu) { 1146 return H_PARAMETER; 1147 } 1148 1149 /* 1150 * target == self is a special case, we wait until prodded, without 1151 * dispatch counter check. 1152 */ 1153 if (cpu == target_cpu) { 1154 return h_confer_self(cpu); 1155 } 1156 1157 spapr_cpu = spapr_cpu_state(target_cpu); 1158 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { 1159 return H_SUCCESS; 1160 } 1161 1162 target_dispatch = ldl_be_phys(cs->as, 1163 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 1164 if (target_dispatch != dispatch) { 1165 return H_SUCCESS; 1166 } 1167 1168 /* 1169 * The targeted confer does not do anything special beyond yielding 1170 * the current vCPU, but even this should be better than nothing. 1171 * At least for single-threaded tcg, it gives the target a chance to 1172 * run before we run again. Multi-threaded tcg does not really do 1173 * anything with EXCP_YIELD yet. 1174 */ 1175 } 1176 1177 cs->exception_index = EXCP_YIELD; 1178 cs->exit_request = 1; 1179 cpu_loop_exit(cs); 1180 1181 return H_SUCCESS; 1182 } 1183 1184 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, 1185 target_ulong opcode, target_ulong *args) 1186 { 1187 target_long target = args[0]; 1188 PowerPCCPU *tcpu; 1189 CPUState *cs; 1190 SpaprCpuState *spapr_cpu; 1191 1192 tcpu = spapr_find_cpu(target); 1193 cs = CPU(tcpu); 1194 if (!cs) { 1195 return H_PARAMETER; 1196 } 1197 1198 spapr_cpu = spapr_cpu_state(tcpu); 1199 spapr_cpu->prod = true; 1200 cs->halted = 0; 1201 qemu_cpu_kick(cs); 1202 1203 return H_SUCCESS; 1204 } 1205 1206 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, 1207 target_ulong opcode, target_ulong *args) 1208 { 1209 target_ulong rtas_r3 = args[0]; 1210 uint32_t token = rtas_ld(rtas_r3, 0); 1211 uint32_t nargs = rtas_ld(rtas_r3, 1); 1212 uint32_t nret = rtas_ld(rtas_r3, 2); 1213 1214 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, 1215 nret, rtas_r3 + 12 + 4*nargs); 1216 } 1217 1218 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, 1219 target_ulong opcode, target_ulong *args) 1220 { 1221 CPUState *cs = CPU(cpu); 1222 target_ulong size = args[0]; 1223 target_ulong addr = args[1]; 1224 1225 switch (size) { 1226 case 1: 1227 args[0] = ldub_phys(cs->as, addr); 1228 return H_SUCCESS; 1229 case 2: 1230 args[0] = lduw_phys(cs->as, addr); 1231 return H_SUCCESS; 1232 case 4: 1233 args[0] = ldl_phys(cs->as, addr); 1234 return H_SUCCESS; 1235 case 8: 1236 args[0] = ldq_phys(cs->as, addr); 1237 return H_SUCCESS; 1238 } 1239 return H_PARAMETER; 1240 } 1241 1242 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, 1243 target_ulong opcode, target_ulong *args) 1244 { 1245 CPUState *cs = CPU(cpu); 1246 1247 target_ulong size = args[0]; 1248 target_ulong addr = args[1]; 1249 target_ulong val = args[2]; 1250 1251 switch (size) { 1252 case 1: 1253 stb_phys(cs->as, addr, val); 1254 return H_SUCCESS; 1255 case 2: 1256 stw_phys(cs->as, addr, val); 1257 return H_SUCCESS; 1258 case 4: 1259 stl_phys(cs->as, addr, val); 1260 return H_SUCCESS; 1261 case 8: 1262 stq_phys(cs->as, addr, val); 1263 return H_SUCCESS; 1264 } 1265 return H_PARAMETER; 1266 } 1267 1268 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, 1269 target_ulong opcode, target_ulong *args) 1270 { 1271 CPUState *cs = CPU(cpu); 1272 1273 target_ulong dst = args[0]; /* Destination address */ 1274 target_ulong src = args[1]; /* Source address */ 1275 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ 1276 target_ulong count = args[3]; /* Element count */ 1277 target_ulong op = args[4]; /* 0 = copy, 1 = invert */ 1278 uint64_t tmp; 1279 unsigned int mask = (1 << esize) - 1; 1280 int step = 1 << esize; 1281 1282 if (count > 0x80000000) { 1283 return H_PARAMETER; 1284 } 1285 1286 if ((dst & mask) || (src & mask) || (op > 1)) { 1287 return H_PARAMETER; 1288 } 1289 1290 if (dst >= src && dst < (src + (count << esize))) { 1291 dst = dst + ((count - 1) << esize); 1292 src = src + ((count - 1) << esize); 1293 step = -step; 1294 } 1295 1296 while (count--) { 1297 switch (esize) { 1298 case 0: 1299 tmp = ldub_phys(cs->as, src); 1300 break; 1301 case 1: 1302 tmp = lduw_phys(cs->as, src); 1303 break; 1304 case 2: 1305 tmp = ldl_phys(cs->as, src); 1306 break; 1307 case 3: 1308 tmp = ldq_phys(cs->as, src); 1309 break; 1310 default: 1311 return H_PARAMETER; 1312 } 1313 if (op == 1) { 1314 tmp = ~tmp; 1315 } 1316 switch (esize) { 1317 case 0: 1318 stb_phys(cs->as, dst, tmp); 1319 break; 1320 case 1: 1321 stw_phys(cs->as, dst, tmp); 1322 break; 1323 case 2: 1324 stl_phys(cs->as, dst, tmp); 1325 break; 1326 case 3: 1327 stq_phys(cs->as, dst, tmp); 1328 break; 1329 } 1330 dst = dst + step; 1331 src = src + step; 1332 } 1333 1334 return H_SUCCESS; 1335 } 1336 1337 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, 1338 target_ulong opcode, target_ulong *args) 1339 { 1340 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1341 return H_SUCCESS; 1342 } 1343 1344 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, 1345 target_ulong opcode, target_ulong *args) 1346 { 1347 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1348 return H_SUCCESS; 1349 } 1350 1351 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, 1352 target_ulong mflags, 1353 target_ulong value1, 1354 target_ulong value2) 1355 { 1356 if (value1) { 1357 return H_P3; 1358 } 1359 if (value2) { 1360 return H_P4; 1361 } 1362 1363 switch (mflags) { 1364 case H_SET_MODE_ENDIAN_BIG: 1365 spapr_set_all_lpcrs(0, LPCR_ILE); 1366 spapr_pci_switch_vga(true); 1367 return H_SUCCESS; 1368 1369 case H_SET_MODE_ENDIAN_LITTLE: 1370 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); 1371 spapr_pci_switch_vga(false); 1372 return H_SUCCESS; 1373 } 1374 1375 return H_UNSUPPORTED_FLAG; 1376 } 1377 1378 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, 1379 target_ulong mflags, 1380 target_ulong value1, 1381 target_ulong value2) 1382 { 1383 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 1384 1385 if (!(pcc->insns_flags2 & PPC2_ISA207S)) { 1386 return H_P2; 1387 } 1388 if (value1) { 1389 return H_P3; 1390 } 1391 if (value2) { 1392 return H_P4; 1393 } 1394 1395 if (mflags == AIL_RESERVED) { 1396 return H_UNSUPPORTED_FLAG; 1397 } 1398 1399 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); 1400 1401 return H_SUCCESS; 1402 } 1403 1404 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, 1405 target_ulong opcode, target_ulong *args) 1406 { 1407 target_ulong resource = args[1]; 1408 target_ulong ret = H_P2; 1409 1410 switch (resource) { 1411 case H_SET_MODE_RESOURCE_LE: 1412 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]); 1413 break; 1414 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 1415 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], 1416 args[2], args[3]); 1417 break; 1418 } 1419 1420 return ret; 1421 } 1422 1423 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, 1424 target_ulong opcode, target_ulong *args) 1425 { 1426 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1427 opcode, " (H_CLEAN_SLB)"); 1428 return H_FUNCTION; 1429 } 1430 1431 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, 1432 target_ulong opcode, target_ulong *args) 1433 { 1434 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1435 opcode, " (H_INVALIDATE_PID)"); 1436 return H_FUNCTION; 1437 } 1438 1439 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, 1440 uint64_t patbe_old, uint64_t patbe_new) 1441 { 1442 /* 1443 * We have 4 Options: 1444 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing 1445 * HASH->RADIX : Free HPT 1446 * RADIX->HASH : Allocate HPT 1447 * NOTHING->HASH : Allocate HPT 1448 * Note: NOTHING implies the case where we said the guest could choose 1449 * later and so assumed radix and now it's called H_REG_PROC_TBL 1450 */ 1451 1452 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { 1453 /* We assume RADIX, so this catches all the "Do Nothing" cases */ 1454 } else if (!(patbe_old & PATE1_GR)) { 1455 /* HASH->RADIX : Free HPT */ 1456 spapr_free_hpt(spapr); 1457 } else if (!(patbe_new & PATE1_GR)) { 1458 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ 1459 spapr_setup_hpt_and_vrma(spapr); 1460 } 1461 return; 1462 } 1463 1464 #define FLAGS_MASK 0x01FULL 1465 #define FLAG_MODIFY 0x10 1466 #define FLAG_REGISTER 0x08 1467 #define FLAG_RADIX 0x04 1468 #define FLAG_HASH_PROC_TBL 0x02 1469 #define FLAG_GTSE 0x01 1470 1471 static target_ulong h_register_process_table(PowerPCCPU *cpu, 1472 SpaprMachineState *spapr, 1473 target_ulong opcode, 1474 target_ulong *args) 1475 { 1476 target_ulong flags = args[0]; 1477 target_ulong proc_tbl = args[1]; 1478 target_ulong page_size = args[2]; 1479 target_ulong table_size = args[3]; 1480 target_ulong update_lpcr = 0; 1481 uint64_t cproc; 1482 1483 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ 1484 return H_PARAMETER; 1485 } 1486 if (flags & FLAG_MODIFY) { 1487 if (flags & FLAG_REGISTER) { 1488 if (flags & FLAG_RADIX) { /* Register new RADIX process table */ 1489 if (proc_tbl & 0xfff || proc_tbl >> 60) { 1490 return H_P2; 1491 } else if (page_size) { 1492 return H_P3; 1493 } else if (table_size > 24) { 1494 return H_P4; 1495 } 1496 cproc = PATE1_GR | proc_tbl | table_size; 1497 } else { /* Register new HPT process table */ 1498 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ 1499 /* TODO - Not Supported */ 1500 /* Technically caused by flag bits => H_PARAMETER */ 1501 return H_PARAMETER; 1502 } else { /* Hash with SLB */ 1503 if (proc_tbl >> 38) { 1504 return H_P2; 1505 } else if (page_size & ~0x7) { 1506 return H_P3; 1507 } else if (table_size > 24) { 1508 return H_P4; 1509 } 1510 } 1511 cproc = (proc_tbl << 25) | page_size << 5 | table_size; 1512 } 1513 1514 } else { /* Deregister current process table */ 1515 /* 1516 * Set to benign value: (current GR) | 0. This allows 1517 * deregistration in KVM to succeed even if the radix bit 1518 * in flags doesn't match the radix bit in the old PATE. 1519 */ 1520 cproc = spapr->patb_entry & PATE1_GR; 1521 } 1522 } else { /* Maintain current registration */ 1523 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { 1524 /* Technically caused by flag bits => H_PARAMETER */ 1525 return H_PARAMETER; /* Existing Process Table Mismatch */ 1526 } 1527 cproc = spapr->patb_entry; 1528 } 1529 1530 /* Check if we need to setup OR free the hpt */ 1531 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); 1532 1533 spapr->patb_entry = cproc; /* Save new process table */ 1534 1535 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ 1536 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ 1537 update_lpcr |= (LPCR_UPRT | LPCR_HR); 1538 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ 1539 update_lpcr |= LPCR_UPRT; 1540 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ 1541 update_lpcr |= LPCR_GTSE; 1542 1543 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); 1544 1545 if (kvm_enabled()) { 1546 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, 1547 flags & FLAG_GTSE, cproc); 1548 } 1549 return H_SUCCESS; 1550 } 1551 1552 #define H_SIGNAL_SYS_RESET_ALL -1 1553 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 1554 1555 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, 1556 SpaprMachineState *spapr, 1557 target_ulong opcode, target_ulong *args) 1558 { 1559 target_long target = args[0]; 1560 CPUState *cs; 1561 1562 if (target < 0) { 1563 /* Broadcast */ 1564 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1565 return H_PARAMETER; 1566 } 1567 1568 CPU_FOREACH(cs) { 1569 PowerPCCPU *c = POWERPC_CPU(cs); 1570 1571 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1572 if (c == cpu) { 1573 continue; 1574 } 1575 } 1576 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1577 } 1578 return H_SUCCESS; 1579 1580 } else { 1581 /* Unicast */ 1582 cs = CPU(spapr_find_cpu(target)); 1583 if (cs) { 1584 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1585 return H_SUCCESS; 1586 } 1587 return H_PARAMETER; 1588 } 1589 } 1590 1591 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu, 1592 target_ulong *addr, bool *raw_mode_supported, 1593 Error **errp) 1594 { 1595 bool explicit_match = false; /* Matched the CPU's real PVR */ 1596 uint32_t max_compat = spapr->max_compat_pvr; 1597 uint32_t best_compat = 0; 1598 int i; 1599 1600 /* 1601 * We scan the supplied table of PVRs looking for two things 1602 * 1. Is our real CPU PVR in the list? 1603 * 2. What's the "best" listed logical PVR 1604 */ 1605 for (i = 0; i < 512; ++i) { 1606 uint32_t pvr, pvr_mask; 1607 1608 pvr_mask = ldl_be_phys(&address_space_memory, *addr); 1609 pvr = ldl_be_phys(&address_space_memory, *addr + 4); 1610 *addr += 8; 1611 1612 if (~pvr_mask & pvr) { 1613 break; /* Terminator record */ 1614 } 1615 1616 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { 1617 explicit_match = true; 1618 } else { 1619 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { 1620 best_compat = pvr; 1621 } 1622 } 1623 } 1624 1625 if ((best_compat == 0) && (!explicit_match || max_compat)) { 1626 /* We couldn't find a suitable compatibility mode, and either 1627 * the guest doesn't support "raw" mode for this CPU, or raw 1628 * mode is disabled because a maximum compat mode is set */ 1629 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS"); 1630 return 0; 1631 } 1632 1633 *raw_mode_supported = explicit_match; 1634 1635 /* Parsing finished */ 1636 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); 1637 1638 return best_compat; 1639 } 1640 1641 static target_ulong h_client_architecture_support(PowerPCCPU *cpu, 1642 SpaprMachineState *spapr, 1643 target_ulong opcode, 1644 target_ulong *args) 1645 { 1646 /* Working address in data buffer */ 1647 target_ulong addr = ppc64_phys_to_real(args[0]); 1648 target_ulong ov_table; 1649 uint32_t cas_pvr; 1650 SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates; 1651 bool guest_radix; 1652 Error *local_err = NULL; 1653 bool raw_mode_supported = false; 1654 bool guest_xive; 1655 1656 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err); 1657 if (local_err) { 1658 error_report_err(local_err); 1659 return H_HARDWARE; 1660 } 1661 1662 /* Update CPUs */ 1663 if (cpu->compat_pvr != cas_pvr) { 1664 ppc_set_compat_all(cas_pvr, &local_err); 1665 if (local_err) { 1666 /* We fail to set compat mode (likely because running with KVM PR), 1667 * but maybe we can fallback to raw mode if the guest supports it. 1668 */ 1669 if (!raw_mode_supported) { 1670 error_report_err(local_err); 1671 return H_HARDWARE; 1672 } 1673 error_free(local_err); 1674 local_err = NULL; 1675 } 1676 } 1677 1678 /* For the future use: here @ov_table points to the first option vector */ 1679 ov_table = addr; 1680 1681 ov1_guest = spapr_ovec_parse_vector(ov_table, 1); 1682 ov5_guest = spapr_ovec_parse_vector(ov_table, 5); 1683 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { 1684 error_report("guest requested hash and radix MMU, which is invalid."); 1685 exit(EXIT_FAILURE); 1686 } 1687 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { 1688 error_report("guest requested an invalid interrupt mode"); 1689 exit(EXIT_FAILURE); 1690 } 1691 1692 /* The radix/hash bit in byte 24 requires special handling: */ 1693 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); 1694 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300); 1695 1696 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); 1697 1698 /* 1699 * HPT resizing is a bit of a special case, because when enabled 1700 * we assume an HPT guest will support it until it says it 1701 * doesn't, instead of assuming it won't support it until it says 1702 * it does. Strictly speaking that approach could break for 1703 * guests which don't make a CAS call, but those are so old we 1704 * don't care about them. Without that assumption we'd have to 1705 * make at least a temporary allocation of an HPT sized for max 1706 * memory, which could be impossibly difficult under KVM HV if 1707 * maxram is large. 1708 */ 1709 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { 1710 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1711 1712 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { 1713 error_report( 1714 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); 1715 exit(1); 1716 } 1717 1718 if (spapr->htab_shift < maxshift) { 1719 /* Guest doesn't know about HPT resizing, so we 1720 * pre-emptively resize for the maximum permitted RAM. At 1721 * the point this is called, nothing should have been 1722 * entered into the existing HPT */ 1723 spapr_reallocate_hpt(spapr, maxshift, &error_fatal); 1724 push_sregs_to_kvm_pr(spapr); 1725 } 1726 } 1727 1728 /* NOTE: there are actually a number of ov5 bits where input from the 1729 * guest is always zero, and the platform/QEMU enables them independently 1730 * of guest input. To model these properly we'd want some sort of mask, 1731 * but since they only currently apply to memory migration as defined 1732 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need 1733 * to worry about this for now. 1734 */ 1735 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); 1736 1737 /* also clear the radix/hash bit from the current ov5_cas bits to 1738 * be in sync with the newly ov5 bits. Else the radix bit will be 1739 * seen as being removed and this will generate a reset loop 1740 */ 1741 spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300); 1742 1743 /* full range of negotiated ov5 capabilities */ 1744 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); 1745 spapr_ovec_cleanup(ov5_guest); 1746 /* capabilities that have been added since CAS-generated guest reset. 1747 * if capabilities have since been removed, generate another reset 1748 */ 1749 ov5_updates = spapr_ovec_new(); 1750 spapr->cas_reboot = spapr_ovec_diff(ov5_updates, 1751 ov5_cas_old, spapr->ov5_cas); 1752 spapr_ovec_cleanup(ov5_cas_old); 1753 /* Now that processing is finished, set the radix/hash bit for the 1754 * guest if it requested a valid mode; otherwise terminate the boot. */ 1755 if (guest_radix) { 1756 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1757 error_report("Guest requested unavailable MMU mode (radix)."); 1758 exit(EXIT_FAILURE); 1759 } 1760 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300); 1761 } else { 1762 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1763 && !kvmppc_has_cap_mmu_hash_v3()) { 1764 error_report("Guest requested unavailable MMU mode (hash)."); 1765 exit(EXIT_FAILURE); 1766 } 1767 } 1768 spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest, 1769 OV1_PPC_3_00); 1770 spapr_ovec_cleanup(ov1_guest); 1771 if (!spapr->cas_reboot) { 1772 /* If spapr_machine_reset() did not set up a HPT but one is necessary 1773 * (because the guest isn't going to use radix) then set it up here. */ 1774 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { 1775 /* legacy hash or new hash: */ 1776 spapr_setup_hpt_and_vrma(spapr); 1777 } 1778 spapr->cas_reboot = 1779 (spapr_h_cas_compose_response(spapr, args[1], args[2], 1780 ov5_updates) != 0); 1781 } 1782 1783 /* 1784 * Ensure the guest asks for an interrupt mode we support; otherwise 1785 * terminate the boot. 1786 */ 1787 if (guest_xive) { 1788 if (spapr->irq->ov5 == SPAPR_OV5_XIVE_LEGACY) { 1789 error_report( 1790 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); 1791 exit(EXIT_FAILURE); 1792 } 1793 } else { 1794 if (spapr->irq->ov5 == SPAPR_OV5_XIVE_EXPLOIT) { 1795 error_report( 1796 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); 1797 exit(EXIT_FAILURE); 1798 } 1799 } 1800 1801 /* 1802 * Generate a machine reset when we have an update of the 1803 * interrupt mode. Only required when the machine supports both 1804 * modes. 1805 */ 1806 if (!spapr->cas_reboot) { 1807 spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT) 1808 && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH; 1809 } 1810 1811 spapr_ovec_cleanup(ov5_updates); 1812 1813 if (spapr->cas_reboot) { 1814 qemu_system_reset_request(SHUTDOWN_CAUSE_SUBSYSTEM_RESET); 1815 } 1816 1817 return H_SUCCESS; 1818 } 1819 1820 static target_ulong h_home_node_associativity(PowerPCCPU *cpu, 1821 SpaprMachineState *spapr, 1822 target_ulong opcode, 1823 target_ulong *args) 1824 { 1825 target_ulong flags = args[0]; 1826 target_ulong procno = args[1]; 1827 PowerPCCPU *tcpu; 1828 int idx; 1829 1830 /* only support procno from H_REGISTER_VPA */ 1831 if (flags != 0x1) { 1832 return H_FUNCTION; 1833 } 1834 1835 tcpu = spapr_find_cpu(procno); 1836 if (tcpu == NULL) { 1837 return H_P2; 1838 } 1839 1840 /* sequence is the same as in the "ibm,associativity" property */ 1841 1842 idx = 0; 1843 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ 1844 ((uint64_t)(b) & 0xffffffff)) 1845 args[idx++] = ASSOCIATIVITY(0, 0); 1846 args[idx++] = ASSOCIATIVITY(0, tcpu->node_id); 1847 args[idx++] = ASSOCIATIVITY(procno, -1); 1848 for ( ; idx < 6; idx++) { 1849 args[idx] = -1; 1850 } 1851 #undef ASSOCIATIVITY 1852 1853 return H_SUCCESS; 1854 } 1855 1856 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, 1857 SpaprMachineState *spapr, 1858 target_ulong opcode, 1859 target_ulong *args) 1860 { 1861 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & 1862 ~H_CPU_CHAR_THR_RECONF_TRIG; 1863 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; 1864 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); 1865 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); 1866 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); 1867 uint8_t count_cache_flush_assist = spapr_get_cap(spapr, 1868 SPAPR_CAP_CCF_ASSIST); 1869 1870 switch (safe_cache) { 1871 case SPAPR_CAP_WORKAROUND: 1872 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; 1873 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; 1874 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; 1875 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1876 break; 1877 case SPAPR_CAP_FIXED: 1878 break; 1879 default: /* broken */ 1880 assert(safe_cache == SPAPR_CAP_BROKEN); 1881 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1882 break; 1883 } 1884 1885 switch (safe_bounds_check) { 1886 case SPAPR_CAP_WORKAROUND: 1887 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; 1888 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1889 break; 1890 case SPAPR_CAP_FIXED: 1891 break; 1892 default: /* broken */ 1893 assert(safe_bounds_check == SPAPR_CAP_BROKEN); 1894 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1895 break; 1896 } 1897 1898 switch (safe_indirect_branch) { 1899 case SPAPR_CAP_FIXED_NA: 1900 break; 1901 case SPAPR_CAP_FIXED_CCD: 1902 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; 1903 break; 1904 case SPAPR_CAP_FIXED_IBS: 1905 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; 1906 break; 1907 case SPAPR_CAP_WORKAROUND: 1908 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; 1909 if (count_cache_flush_assist) { 1910 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; 1911 } 1912 break; 1913 default: /* broken */ 1914 assert(safe_indirect_branch == SPAPR_CAP_BROKEN); 1915 break; 1916 } 1917 1918 args[0] = characteristics; 1919 args[1] = behaviour; 1920 return H_SUCCESS; 1921 } 1922 1923 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, 1924 target_ulong opcode, target_ulong *args) 1925 { 1926 target_ulong dt = ppc64_phys_to_real(args[0]); 1927 struct fdt_header hdr = { 0 }; 1928 unsigned cb; 1929 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1930 void *fdt; 1931 1932 cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); 1933 cb = fdt32_to_cpu(hdr.totalsize); 1934 1935 if (!smc->update_dt_enabled) { 1936 return H_SUCCESS; 1937 } 1938 1939 /* Check that the fdt did not grow out of proportion */ 1940 if (cb > spapr->fdt_initial_size * 2) { 1941 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, 1942 fdt32_to_cpu(hdr.magic)); 1943 return H_PARAMETER; 1944 } 1945 1946 fdt = g_malloc0(cb); 1947 cpu_physical_memory_read(dt, fdt, cb); 1948 1949 /* Check the fdt consistency */ 1950 if (fdt_check_full(fdt, cb)) { 1951 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, 1952 fdt32_to_cpu(hdr.magic)); 1953 return H_PARAMETER; 1954 } 1955 1956 g_free(spapr->fdt_blob); 1957 spapr->fdt_size = cb; 1958 spapr->fdt_blob = fdt; 1959 trace_spapr_update_dt(cb); 1960 1961 return H_SUCCESS; 1962 } 1963 1964 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; 1965 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; 1966 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; 1967 1968 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) 1969 { 1970 spapr_hcall_fn *slot; 1971 1972 if (opcode <= MAX_HCALL_OPCODE) { 1973 assert((opcode & 0x3) == 0); 1974 1975 slot = &papr_hypercall_table[opcode / 4]; 1976 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { 1977 /* we only have SVM-related hcall numbers assigned in multiples of 4 */ 1978 assert((opcode & 0x3) == 0); 1979 1980 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 1981 } else { 1982 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); 1983 1984 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1985 } 1986 1987 assert(!(*slot)); 1988 *slot = fn; 1989 } 1990 1991 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, 1992 target_ulong *args) 1993 { 1994 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1995 1996 if ((opcode <= MAX_HCALL_OPCODE) 1997 && ((opcode & 0x3) == 0)) { 1998 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; 1999 2000 if (fn) { 2001 return fn(cpu, spapr, opcode, args); 2002 } 2003 } else if ((opcode >= SVM_HCALL_BASE) && 2004 (opcode <= SVM_HCALL_MAX)) { 2005 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 2006 2007 if (fn) { 2008 return fn(cpu, spapr, opcode, args); 2009 } 2010 } else if ((opcode >= KVMPPC_HCALL_BASE) && 2011 (opcode <= KVMPPC_HCALL_MAX)) { 2012 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 2013 2014 if (fn) { 2015 return fn(cpu, spapr, opcode, args); 2016 } 2017 } 2018 2019 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", 2020 opcode); 2021 return H_FUNCTION; 2022 } 2023 2024 static void hypercall_register_types(void) 2025 { 2026 /* hcall-pft */ 2027 spapr_register_hypercall(H_ENTER, h_enter); 2028 spapr_register_hypercall(H_REMOVE, h_remove); 2029 spapr_register_hypercall(H_PROTECT, h_protect); 2030 spapr_register_hypercall(H_READ, h_read); 2031 2032 /* hcall-bulk */ 2033 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); 2034 2035 /* hcall-hpt-resize */ 2036 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); 2037 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); 2038 2039 /* hcall-splpar */ 2040 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); 2041 spapr_register_hypercall(H_CEDE, h_cede); 2042 spapr_register_hypercall(H_CONFER, h_confer); 2043 spapr_register_hypercall(H_PROD, h_prod); 2044 2045 /* hcall-join */ 2046 spapr_register_hypercall(H_JOIN, h_join); 2047 2048 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); 2049 2050 /* processor register resource access h-calls */ 2051 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); 2052 spapr_register_hypercall(H_SET_DABR, h_set_dabr); 2053 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); 2054 spapr_register_hypercall(H_PAGE_INIT, h_page_init); 2055 spapr_register_hypercall(H_SET_MODE, h_set_mode); 2056 2057 /* In Memory Table MMU h-calls */ 2058 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); 2059 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); 2060 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); 2061 2062 /* hcall-get-cpu-characteristics */ 2063 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, 2064 h_get_cpu_characteristics); 2065 2066 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate 2067 * here between the "CI" and the "CACHE" variants, they will use whatever 2068 * mapping attributes qemu is using. When using KVM, the kernel will 2069 * enforce the attributes more strongly 2070 */ 2071 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); 2072 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); 2073 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); 2074 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); 2075 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); 2076 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); 2077 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); 2078 2079 /* qemu/KVM-PPC specific hcalls */ 2080 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); 2081 2082 /* ibm,client-architecture-support support */ 2083 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); 2084 2085 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); 2086 2087 /* Virtual Processor Home Node */ 2088 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, 2089 h_home_node_associativity); 2090 } 2091 2092 type_init(hypercall_register_types) 2093