xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision a47ea61d)
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/ppc.h"
13 #include "hw/ppc/spapr.h"
14 #include "hw/ppc/spapr_cpu_core.h"
15 #include "mmu-hash64.h"
16 #include "cpu-models.h"
17 #include "trace.h"
18 #include "kvm_ppc.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/spapr_ovec.h"
21 #include "hw/ppc/spapr_numa.h"
22 #include "mmu-book3s-v3.h"
23 #include "hw/mem/memory-device.h"
24 
25 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
26 {
27     MachineState *machine = MACHINE(spapr);
28     DeviceMemoryState *dms = machine->device_memory;
29 
30     if (addr < machine->ram_size) {
31         return true;
32     }
33     if ((addr >= dms->base)
34         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
35         return true;
36     }
37 
38     return false;
39 }
40 
41 /* Convert a return code from the KVM ioctl()s implementing resize HPT
42  * into a PAPR hypercall return code */
43 static target_ulong resize_hpt_convert_rc(int ret)
44 {
45     if (ret >= 100000) {
46         return H_LONG_BUSY_ORDER_100_SEC;
47     } else if (ret >= 10000) {
48         return H_LONG_BUSY_ORDER_10_SEC;
49     } else if (ret >= 1000) {
50         return H_LONG_BUSY_ORDER_1_SEC;
51     } else if (ret >= 100) {
52         return H_LONG_BUSY_ORDER_100_MSEC;
53     } else if (ret >= 10) {
54         return H_LONG_BUSY_ORDER_10_MSEC;
55     } else if (ret > 0) {
56         return H_LONG_BUSY_ORDER_1_MSEC;
57     }
58 
59     switch (ret) {
60     case 0:
61         return H_SUCCESS;
62     case -EPERM:
63         return H_AUTHORITY;
64     case -EINVAL:
65         return H_PARAMETER;
66     case -ENXIO:
67         return H_CLOSED;
68     case -ENOSPC:
69         return H_PTEG_FULL;
70     case -EBUSY:
71         return H_BUSY;
72     case -ENOMEM:
73         return H_NO_MEM;
74     default:
75         return H_HARDWARE;
76     }
77 }
78 
79 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
80                                          SpaprMachineState *spapr,
81                                          target_ulong opcode,
82                                          target_ulong *args)
83 {
84     target_ulong flags = args[0];
85     int shift = args[1];
86     uint64_t current_ram_size;
87     int rc;
88 
89     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
90         return H_AUTHORITY;
91     }
92 
93     if (!spapr->htab_shift) {
94         /* Radix guest, no HPT */
95         return H_NOT_AVAILABLE;
96     }
97 
98     trace_spapr_h_resize_hpt_prepare(flags, shift);
99 
100     if (flags != 0) {
101         return H_PARAMETER;
102     }
103 
104     if (shift && ((shift < 18) || (shift > 46))) {
105         return H_PARAMETER;
106     }
107 
108     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
109 
110     /* We only allow the guest to allocate an HPT one order above what
111      * we'd normally give them (to stop a small guest claiming a huge
112      * chunk of resources in the HPT */
113     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
114         return H_RESOURCE;
115     }
116 
117     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
118     if (rc != -ENOSYS) {
119         return resize_hpt_convert_rc(rc);
120     }
121 
122     if (kvm_enabled()) {
123         return H_HARDWARE;
124     }
125 
126     return softmmu_resize_hpt_prepare(cpu, spapr, shift);
127 }
128 
129 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
130 {
131     int ret;
132 
133     cpu_synchronize_state(cs);
134 
135     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
136     if (ret < 0) {
137         error_report("failed to push sregs to KVM: %s", strerror(-ret));
138         exit(1);
139     }
140 }
141 
142 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
143 {
144     CPUState *cs;
145 
146     /*
147      * This is a hack for the benefit of KVM PR - it abuses the SDR1
148      * slot in kvm_sregs to communicate the userspace address of the
149      * HPT
150      */
151     if (!kvm_enabled() || !spapr->htab) {
152         return;
153     }
154 
155     CPU_FOREACH(cs) {
156         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
157     }
158 }
159 
160 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
161                                         SpaprMachineState *spapr,
162                                         target_ulong opcode,
163                                         target_ulong *args)
164 {
165     target_ulong flags = args[0];
166     target_ulong shift = args[1];
167     int rc;
168 
169     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
170         return H_AUTHORITY;
171     }
172 
173     if (!spapr->htab_shift) {
174         /* Radix guest, no HPT */
175         return H_NOT_AVAILABLE;
176     }
177 
178     trace_spapr_h_resize_hpt_commit(flags, shift);
179 
180     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
181     if (rc != -ENOSYS) {
182         rc = resize_hpt_convert_rc(rc);
183         if (rc == H_SUCCESS) {
184             /* Need to set the new htab_shift in the machine state */
185             spapr->htab_shift = shift;
186         }
187         return rc;
188     }
189 
190     if (kvm_enabled()) {
191         return H_HARDWARE;
192     }
193 
194     return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
195 }
196 
197 
198 
199 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
200                                 target_ulong opcode, target_ulong *args)
201 {
202     cpu_synchronize_state(CPU(cpu));
203     cpu->env.spr[SPR_SPRG0] = args[0];
204 
205     return H_SUCCESS;
206 }
207 
208 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
209                                target_ulong opcode, target_ulong *args)
210 {
211     if (!ppc_has_spr(cpu, SPR_DABR)) {
212         return H_HARDWARE;              /* DABR register not available */
213     }
214     cpu_synchronize_state(CPU(cpu));
215 
216     if (ppc_has_spr(cpu, SPR_DABRX)) {
217         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
218     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
219         return H_RESERVED_DABR;
220     }
221 
222     cpu->env.spr[SPR_DABR] = args[0];
223     return H_SUCCESS;
224 }
225 
226 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
227                                 target_ulong opcode, target_ulong *args)
228 {
229     target_ulong dabrx = args[1];
230 
231     if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
232         return H_HARDWARE;
233     }
234 
235     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
236         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
237         return H_PARAMETER;
238     }
239 
240     cpu_synchronize_state(CPU(cpu));
241     cpu->env.spr[SPR_DABRX] = dabrx;
242     cpu->env.spr[SPR_DABR] = args[0];
243 
244     return H_SUCCESS;
245 }
246 
247 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
248                                 target_ulong opcode, target_ulong *args)
249 {
250     target_ulong flags = args[0];
251     hwaddr dst = args[1];
252     hwaddr src = args[2];
253     hwaddr len = TARGET_PAGE_SIZE;
254     uint8_t *pdst, *psrc;
255     target_long ret = H_SUCCESS;
256 
257     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
258                   | H_COPY_PAGE | H_ZERO_PAGE)) {
259         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
260                       flags);
261         return H_PARAMETER;
262     }
263 
264     /* Map-in destination */
265     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
266         return H_PARAMETER;
267     }
268     pdst = cpu_physical_memory_map(dst, &len, true);
269     if (!pdst || len != TARGET_PAGE_SIZE) {
270         return H_PARAMETER;
271     }
272 
273     if (flags & H_COPY_PAGE) {
274         /* Map-in source, copy to destination, and unmap source again */
275         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
276             ret = H_PARAMETER;
277             goto unmap_out;
278         }
279         psrc = cpu_physical_memory_map(src, &len, false);
280         if (!psrc || len != TARGET_PAGE_SIZE) {
281             ret = H_PARAMETER;
282             goto unmap_out;
283         }
284         memcpy(pdst, psrc, len);
285         cpu_physical_memory_unmap(psrc, len, 0, len);
286     } else if (flags & H_ZERO_PAGE) {
287         memset(pdst, 0, len);          /* Just clear the destination page */
288     }
289 
290     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
291         kvmppc_dcbst_range(cpu, pdst, len);
292     }
293     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
294         if (kvm_enabled()) {
295             kvmppc_icbi_range(cpu, pdst, len);
296         } else {
297             tb_flush(CPU(cpu));
298         }
299     }
300 
301 unmap_out:
302     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
303     return ret;
304 }
305 
306 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
307 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
308 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
309 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
310 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
311 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
312 
313 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
314 {
315     CPUState *cs = CPU(cpu);
316     CPUPPCState *env = &cpu->env;
317     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
318     uint16_t size;
319     uint8_t tmp;
320 
321     if (vpa == 0) {
322         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
323         return H_HARDWARE;
324     }
325 
326     if (vpa % env->dcache_line_size) {
327         return H_PARAMETER;
328     }
329     /* FIXME: bounds check the address */
330 
331     size = lduw_be_phys(cs->as, vpa + 0x4);
332 
333     if (size < VPA_MIN_SIZE) {
334         return H_PARAMETER;
335     }
336 
337     /* VPA is not allowed to cross a page boundary */
338     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
339         return H_PARAMETER;
340     }
341 
342     spapr_cpu->vpa_addr = vpa;
343 
344     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
345     tmp |= VPA_SHARED_PROC_VAL;
346     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
347 
348     return H_SUCCESS;
349 }
350 
351 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
352 {
353     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
354 
355     if (spapr_cpu->slb_shadow_addr) {
356         return H_RESOURCE;
357     }
358 
359     if (spapr_cpu->dtl_addr) {
360         return H_RESOURCE;
361     }
362 
363     spapr_cpu->vpa_addr = 0;
364     return H_SUCCESS;
365 }
366 
367 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
368 {
369     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
370     uint32_t size;
371 
372     if (addr == 0) {
373         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
374         return H_HARDWARE;
375     }
376 
377     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
378     if (size < 0x8) {
379         return H_PARAMETER;
380     }
381 
382     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
383         return H_PARAMETER;
384     }
385 
386     if (!spapr_cpu->vpa_addr) {
387         return H_RESOURCE;
388     }
389 
390     spapr_cpu->slb_shadow_addr = addr;
391     spapr_cpu->slb_shadow_size = size;
392 
393     return H_SUCCESS;
394 }
395 
396 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
397 {
398     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
399 
400     spapr_cpu->slb_shadow_addr = 0;
401     spapr_cpu->slb_shadow_size = 0;
402     return H_SUCCESS;
403 }
404 
405 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
406 {
407     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
408     uint32_t size;
409 
410     if (addr == 0) {
411         hcall_dprintf("Can't cope with DTL at logical 0\n");
412         return H_HARDWARE;
413     }
414 
415     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
416 
417     if (size < 48) {
418         return H_PARAMETER;
419     }
420 
421     if (!spapr_cpu->vpa_addr) {
422         return H_RESOURCE;
423     }
424 
425     spapr_cpu->dtl_addr = addr;
426     spapr_cpu->dtl_size = size;
427 
428     return H_SUCCESS;
429 }
430 
431 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
432 {
433     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
434 
435     spapr_cpu->dtl_addr = 0;
436     spapr_cpu->dtl_size = 0;
437 
438     return H_SUCCESS;
439 }
440 
441 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
442                                    target_ulong opcode, target_ulong *args)
443 {
444     target_ulong flags = args[0];
445     target_ulong procno = args[1];
446     target_ulong vpa = args[2];
447     target_ulong ret = H_PARAMETER;
448     PowerPCCPU *tcpu;
449 
450     tcpu = spapr_find_cpu(procno);
451     if (!tcpu) {
452         return H_PARAMETER;
453     }
454 
455     switch (flags) {
456     case FLAGS_REGISTER_VPA:
457         ret = register_vpa(tcpu, vpa);
458         break;
459 
460     case FLAGS_DEREGISTER_VPA:
461         ret = deregister_vpa(tcpu, vpa);
462         break;
463 
464     case FLAGS_REGISTER_SLBSHADOW:
465         ret = register_slb_shadow(tcpu, vpa);
466         break;
467 
468     case FLAGS_DEREGISTER_SLBSHADOW:
469         ret = deregister_slb_shadow(tcpu, vpa);
470         break;
471 
472     case FLAGS_REGISTER_DTL:
473         ret = register_dtl(tcpu, vpa);
474         break;
475 
476     case FLAGS_DEREGISTER_DTL:
477         ret = deregister_dtl(tcpu, vpa);
478         break;
479     }
480 
481     return ret;
482 }
483 
484 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
485                            target_ulong opcode, target_ulong *args)
486 {
487     CPUPPCState *env = &cpu->env;
488     CPUState *cs = CPU(cpu);
489     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
490 
491     env->msr |= (1ULL << MSR_EE);
492     hreg_compute_hflags(env);
493 
494     if (spapr_cpu->prod) {
495         spapr_cpu->prod = false;
496         return H_SUCCESS;
497     }
498 
499     if (!cpu_has_work(cs)) {
500         cs->halted = 1;
501         cs->exception_index = EXCP_HLT;
502         cs->exit_request = 1;
503     }
504 
505     return H_SUCCESS;
506 }
507 
508 /*
509  * Confer to self, aka join. Cede could use the same pattern as well, if
510  * EXCP_HLT can be changed to ECXP_HALTED.
511  */
512 static target_ulong h_confer_self(PowerPCCPU *cpu)
513 {
514     CPUState *cs = CPU(cpu);
515     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
516 
517     if (spapr_cpu->prod) {
518         spapr_cpu->prod = false;
519         return H_SUCCESS;
520     }
521     cs->halted = 1;
522     cs->exception_index = EXCP_HALTED;
523     cs->exit_request = 1;
524 
525     return H_SUCCESS;
526 }
527 
528 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
529                            target_ulong opcode, target_ulong *args)
530 {
531     CPUPPCState *env = &cpu->env;
532     CPUState *cs;
533     bool last_unjoined = true;
534 
535     if (env->msr & (1ULL << MSR_EE)) {
536         return H_BAD_MODE;
537     }
538 
539     /*
540      * Must not join the last CPU running. Interestingly, no such restriction
541      * for H_CONFER-to-self, but that is probably not intended to be used
542      * when H_JOIN is available.
543      */
544     CPU_FOREACH(cs) {
545         PowerPCCPU *c = POWERPC_CPU(cs);
546         CPUPPCState *e = &c->env;
547         if (c == cpu) {
548             continue;
549         }
550 
551         /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
552         if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
553             last_unjoined = false;
554             break;
555         }
556     }
557     if (last_unjoined) {
558         return H_CONTINUE;
559     }
560 
561     return h_confer_self(cpu);
562 }
563 
564 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
565                            target_ulong opcode, target_ulong *args)
566 {
567     target_long target = args[0];
568     uint32_t dispatch = args[1];
569     CPUState *cs = CPU(cpu);
570     SpaprCpuState *spapr_cpu;
571 
572     /*
573      * -1 means confer to all other CPUs without dispatch counter check,
574      *  otherwise it's a targeted confer.
575      */
576     if (target != -1) {
577         PowerPCCPU *target_cpu = spapr_find_cpu(target);
578         uint32_t target_dispatch;
579 
580         if (!target_cpu) {
581             return H_PARAMETER;
582         }
583 
584         /*
585          * target == self is a special case, we wait until prodded, without
586          * dispatch counter check.
587          */
588         if (cpu == target_cpu) {
589             return h_confer_self(cpu);
590         }
591 
592         spapr_cpu = spapr_cpu_state(target_cpu);
593         if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
594             return H_SUCCESS;
595         }
596 
597         target_dispatch = ldl_be_phys(cs->as,
598                                   spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
599         if (target_dispatch != dispatch) {
600             return H_SUCCESS;
601         }
602 
603         /*
604          * The targeted confer does not do anything special beyond yielding
605          * the current vCPU, but even this should be better than nothing.
606          * At least for single-threaded tcg, it gives the target a chance to
607          * run before we run again. Multi-threaded tcg does not really do
608          * anything with EXCP_YIELD yet.
609          */
610     }
611 
612     cs->exception_index = EXCP_YIELD;
613     cs->exit_request = 1;
614     cpu_loop_exit(cs);
615 
616     return H_SUCCESS;
617 }
618 
619 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
620                            target_ulong opcode, target_ulong *args)
621 {
622     target_long target = args[0];
623     PowerPCCPU *tcpu;
624     CPUState *cs;
625     SpaprCpuState *spapr_cpu;
626 
627     tcpu = spapr_find_cpu(target);
628     cs = CPU(tcpu);
629     if (!cs) {
630         return H_PARAMETER;
631     }
632 
633     spapr_cpu = spapr_cpu_state(tcpu);
634     spapr_cpu->prod = true;
635     cs->halted = 0;
636     qemu_cpu_kick(cs);
637 
638     return H_SUCCESS;
639 }
640 
641 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
642                            target_ulong opcode, target_ulong *args)
643 {
644     target_ulong rtas_r3 = args[0];
645     uint32_t token = rtas_ld(rtas_r3, 0);
646     uint32_t nargs = rtas_ld(rtas_r3, 1);
647     uint32_t nret = rtas_ld(rtas_r3, 2);
648 
649     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
650                            nret, rtas_r3 + 12 + 4*nargs);
651 }
652 
653 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
654                                    target_ulong opcode, target_ulong *args)
655 {
656     CPUState *cs = CPU(cpu);
657     target_ulong size = args[0];
658     target_ulong addr = args[1];
659 
660     switch (size) {
661     case 1:
662         args[0] = ldub_phys(cs->as, addr);
663         return H_SUCCESS;
664     case 2:
665         args[0] = lduw_phys(cs->as, addr);
666         return H_SUCCESS;
667     case 4:
668         args[0] = ldl_phys(cs->as, addr);
669         return H_SUCCESS;
670     case 8:
671         args[0] = ldq_phys(cs->as, addr);
672         return H_SUCCESS;
673     }
674     return H_PARAMETER;
675 }
676 
677 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
678                                     target_ulong opcode, target_ulong *args)
679 {
680     CPUState *cs = CPU(cpu);
681 
682     target_ulong size = args[0];
683     target_ulong addr = args[1];
684     target_ulong val  = args[2];
685 
686     switch (size) {
687     case 1:
688         stb_phys(cs->as, addr, val);
689         return H_SUCCESS;
690     case 2:
691         stw_phys(cs->as, addr, val);
692         return H_SUCCESS;
693     case 4:
694         stl_phys(cs->as, addr, val);
695         return H_SUCCESS;
696     case 8:
697         stq_phys(cs->as, addr, val);
698         return H_SUCCESS;
699     }
700     return H_PARAMETER;
701 }
702 
703 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
704                                     target_ulong opcode, target_ulong *args)
705 {
706     CPUState *cs = CPU(cpu);
707 
708     target_ulong dst   = args[0]; /* Destination address */
709     target_ulong src   = args[1]; /* Source address */
710     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
711     target_ulong count = args[3]; /* Element count */
712     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
713     uint64_t tmp;
714     unsigned int mask = (1 << esize) - 1;
715     int step = 1 << esize;
716 
717     if (count > 0x80000000) {
718         return H_PARAMETER;
719     }
720 
721     if ((dst & mask) || (src & mask) || (op > 1)) {
722         return H_PARAMETER;
723     }
724 
725     if (dst >= src && dst < (src + (count << esize))) {
726             dst = dst + ((count - 1) << esize);
727             src = src + ((count - 1) << esize);
728             step = -step;
729     }
730 
731     while (count--) {
732         switch (esize) {
733         case 0:
734             tmp = ldub_phys(cs->as, src);
735             break;
736         case 1:
737             tmp = lduw_phys(cs->as, src);
738             break;
739         case 2:
740             tmp = ldl_phys(cs->as, src);
741             break;
742         case 3:
743             tmp = ldq_phys(cs->as, src);
744             break;
745         default:
746             return H_PARAMETER;
747         }
748         if (op == 1) {
749             tmp = ~tmp;
750         }
751         switch (esize) {
752         case 0:
753             stb_phys(cs->as, dst, tmp);
754             break;
755         case 1:
756             stw_phys(cs->as, dst, tmp);
757             break;
758         case 2:
759             stl_phys(cs->as, dst, tmp);
760             break;
761         case 3:
762             stq_phys(cs->as, dst, tmp);
763             break;
764         }
765         dst = dst + step;
766         src = src + step;
767     }
768 
769     return H_SUCCESS;
770 }
771 
772 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
773                                    target_ulong opcode, target_ulong *args)
774 {
775     /* Nothing to do on emulation, KVM will trap this in the kernel */
776     return H_SUCCESS;
777 }
778 
779 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
780                                    target_ulong opcode, target_ulong *args)
781 {
782     /* Nothing to do on emulation, KVM will trap this in the kernel */
783     return H_SUCCESS;
784 }
785 
786 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
787                                            SpaprMachineState *spapr,
788                                            target_ulong mflags,
789                                            target_ulong value1,
790                                            target_ulong value2)
791 {
792     if (value1) {
793         return H_P3;
794     }
795     if (value2) {
796         return H_P4;
797     }
798 
799     switch (mflags) {
800     case H_SET_MODE_ENDIAN_BIG:
801         spapr_set_all_lpcrs(0, LPCR_ILE);
802         spapr_pci_switch_vga(spapr, true);
803         return H_SUCCESS;
804 
805     case H_SET_MODE_ENDIAN_LITTLE:
806         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
807         spapr_pci_switch_vga(spapr, false);
808         return H_SUCCESS;
809     }
810 
811     return H_UNSUPPORTED_FLAG;
812 }
813 
814 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
815                                                         target_ulong mflags,
816                                                         target_ulong value1,
817                                                         target_ulong value2)
818 {
819     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
820 
821     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
822         return H_P2;
823     }
824     if (value1) {
825         return H_P3;
826     }
827     if (value2) {
828         return H_P4;
829     }
830 
831     if (mflags == 1) {
832         /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
833         return H_UNSUPPORTED_FLAG;
834     }
835 
836     if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
837         /* AIL=2 is reserved in POWER10 (ISA v3.1) */
838         return H_UNSUPPORTED_FLAG;
839     }
840 
841     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
842 
843     return H_SUCCESS;
844 }
845 
846 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
847                                target_ulong opcode, target_ulong *args)
848 {
849     target_ulong resource = args[1];
850     target_ulong ret = H_P2;
851 
852     switch (resource) {
853     case H_SET_MODE_RESOURCE_LE:
854         ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
855         break;
856     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
857         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
858                                                   args[2], args[3]);
859         break;
860     }
861 
862     return ret;
863 }
864 
865 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
866                                 target_ulong opcode, target_ulong *args)
867 {
868     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
869                   opcode, " (H_CLEAN_SLB)");
870     return H_FUNCTION;
871 }
872 
873 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
874                                      target_ulong opcode, target_ulong *args)
875 {
876     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
877                   opcode, " (H_INVALIDATE_PID)");
878     return H_FUNCTION;
879 }
880 
881 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
882                                        uint64_t patbe_old, uint64_t patbe_new)
883 {
884     /*
885      * We have 4 Options:
886      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
887      * HASH->RADIX                                  : Free HPT
888      * RADIX->HASH                                  : Allocate HPT
889      * NOTHING->HASH                                : Allocate HPT
890      * Note: NOTHING implies the case where we said the guest could choose
891      *       later and so assumed radix and now it's called H_REG_PROC_TBL
892      */
893 
894     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
895         /* We assume RADIX, so this catches all the "Do Nothing" cases */
896     } else if (!(patbe_old & PATE1_GR)) {
897         /* HASH->RADIX : Free HPT */
898         spapr_free_hpt(spapr);
899     } else if (!(patbe_new & PATE1_GR)) {
900         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
901         spapr_setup_hpt(spapr);
902     }
903     return;
904 }
905 
906 #define FLAGS_MASK              0x01FULL
907 #define FLAG_MODIFY             0x10
908 #define FLAG_REGISTER           0x08
909 #define FLAG_RADIX              0x04
910 #define FLAG_HASH_PROC_TBL      0x02
911 #define FLAG_GTSE               0x01
912 
913 static target_ulong h_register_process_table(PowerPCCPU *cpu,
914                                              SpaprMachineState *spapr,
915                                              target_ulong opcode,
916                                              target_ulong *args)
917 {
918     target_ulong flags = args[0];
919     target_ulong proc_tbl = args[1];
920     target_ulong page_size = args[2];
921     target_ulong table_size = args[3];
922     target_ulong update_lpcr = 0;
923     target_ulong table_byte_size;
924     uint64_t cproc;
925 
926     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
927         return H_PARAMETER;
928     }
929     if (flags & FLAG_MODIFY) {
930         if (flags & FLAG_REGISTER) {
931             /* Check process table alignment */
932             table_byte_size = 1ULL << (table_size + 12);
933             if (proc_tbl & (table_byte_size - 1)) {
934                 qemu_log_mask(LOG_GUEST_ERROR,
935                     "%s: process table not properly aligned: proc_tbl 0x"
936                     TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
937                     __func__, proc_tbl, table_byte_size);
938             }
939             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
940                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
941                     return H_P2;
942                 } else if (page_size) {
943                     return H_P3;
944                 } else if (table_size > 24) {
945                     return H_P4;
946                 }
947                 cproc = PATE1_GR | proc_tbl | table_size;
948             } else { /* Register new HPT process table */
949                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
950                     /* TODO - Not Supported */
951                     /* Technically caused by flag bits => H_PARAMETER */
952                     return H_PARAMETER;
953                 } else { /* Hash with SLB */
954                     if (proc_tbl >> 38) {
955                         return H_P2;
956                     } else if (page_size & ~0x7) {
957                         return H_P3;
958                     } else if (table_size > 24) {
959                         return H_P4;
960                     }
961                 }
962                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
963             }
964 
965         } else { /* Deregister current process table */
966             /*
967              * Set to benign value: (current GR) | 0. This allows
968              * deregistration in KVM to succeed even if the radix bit
969              * in flags doesn't match the radix bit in the old PATE.
970              */
971             cproc = spapr->patb_entry & PATE1_GR;
972         }
973     } else { /* Maintain current registration */
974         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
975             /* Technically caused by flag bits => H_PARAMETER */
976             return H_PARAMETER; /* Existing Process Table Mismatch */
977         }
978         cproc = spapr->patb_entry;
979     }
980 
981     /* Check if we need to setup OR free the hpt */
982     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
983 
984     spapr->patb_entry = cproc; /* Save new process table */
985 
986     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
987     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
988         update_lpcr |= (LPCR_UPRT | LPCR_HR);
989     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
990         update_lpcr |= LPCR_UPRT;
991     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
992         update_lpcr |= LPCR_GTSE;
993 
994     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
995 
996     if (kvm_enabled()) {
997         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
998                                        flags & FLAG_GTSE, cproc);
999     }
1000     return H_SUCCESS;
1001 }
1002 
1003 #define H_SIGNAL_SYS_RESET_ALL         -1
1004 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1005 
1006 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1007                                        SpaprMachineState *spapr,
1008                                        target_ulong opcode, target_ulong *args)
1009 {
1010     target_long target = args[0];
1011     CPUState *cs;
1012 
1013     if (target < 0) {
1014         /* Broadcast */
1015         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1016             return H_PARAMETER;
1017         }
1018 
1019         CPU_FOREACH(cs) {
1020             PowerPCCPU *c = POWERPC_CPU(cs);
1021 
1022             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1023                 if (c == cpu) {
1024                     continue;
1025                 }
1026             }
1027             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1028         }
1029         return H_SUCCESS;
1030 
1031     } else {
1032         /* Unicast */
1033         cs = CPU(spapr_find_cpu(target));
1034         if (cs) {
1035             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1036             return H_SUCCESS;
1037         }
1038         return H_PARAMETER;
1039     }
1040 }
1041 
1042 /* Returns either a logical PVR or zero if none was found */
1043 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1044                               target_ulong *addr, bool *raw_mode_supported)
1045 {
1046     bool explicit_match = false; /* Matched the CPU's real PVR */
1047     uint32_t best_compat = 0;
1048     int i;
1049 
1050     /*
1051      * We scan the supplied table of PVRs looking for two things
1052      *   1. Is our real CPU PVR in the list?
1053      *   2. What's the "best" listed logical PVR
1054      */
1055     for (i = 0; i < 512; ++i) {
1056         uint32_t pvr, pvr_mask;
1057 
1058         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1059         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1060         *addr += 8;
1061 
1062         if (~pvr_mask & pvr) {
1063             break; /* Terminator record */
1064         }
1065 
1066         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1067             explicit_match = true;
1068         } else {
1069             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1070                 best_compat = pvr;
1071             }
1072         }
1073     }
1074 
1075     *raw_mode_supported = explicit_match;
1076 
1077     /* Parsing finished */
1078     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1079 
1080     return best_compat;
1081 }
1082 
1083 static
1084 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1085                                             SpaprMachineState *spapr,
1086                                             target_ulong vec,
1087                                             target_ulong fdt_bufsize)
1088 {
1089     target_ulong ov_table; /* Working address in data buffer */
1090     uint32_t cas_pvr;
1091     SpaprOptionVector *ov1_guest, *ov5_guest;
1092     bool guest_radix;
1093     bool raw_mode_supported = false;
1094     bool guest_xive;
1095     CPUState *cs;
1096     void *fdt;
1097     uint32_t max_compat = spapr->max_compat_pvr;
1098 
1099     /* CAS is supposed to be called early when only the boot vCPU is active. */
1100     CPU_FOREACH(cs) {
1101         if (cs == CPU(cpu)) {
1102             continue;
1103         }
1104         if (!cs->halted) {
1105             warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1106             return H_MULTI_THREADS_ACTIVE;
1107         }
1108     }
1109 
1110     cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1111     if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1112         /*
1113          * We couldn't find a suitable compatibility mode, and either
1114          * the guest doesn't support "raw" mode for this CPU, or "raw"
1115          * mode is disabled because a maximum compat mode is set.
1116          */
1117         error_report("Couldn't negotiate a suitable PVR during CAS");
1118         return H_HARDWARE;
1119     }
1120 
1121     /* Update CPUs */
1122     if (cpu->compat_pvr != cas_pvr) {
1123         Error *local_err = NULL;
1124 
1125         if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1126             /* We fail to set compat mode (likely because running with KVM PR),
1127              * but maybe we can fallback to raw mode if the guest supports it.
1128              */
1129             if (!raw_mode_supported) {
1130                 error_report_err(local_err);
1131                 return H_HARDWARE;
1132             }
1133             error_free(local_err);
1134         }
1135     }
1136 
1137     /* For the future use: here @ov_table points to the first option vector */
1138     ov_table = vec;
1139 
1140     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1141     if (!ov1_guest) {
1142         warn_report("guest didn't provide option vector 1");
1143         return H_PARAMETER;
1144     }
1145     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1146     if (!ov5_guest) {
1147         spapr_ovec_cleanup(ov1_guest);
1148         warn_report("guest didn't provide option vector 5");
1149         return H_PARAMETER;
1150     }
1151     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1152         error_report("guest requested hash and radix MMU, which is invalid.");
1153         exit(EXIT_FAILURE);
1154     }
1155     if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1156         error_report("guest requested an invalid interrupt mode");
1157         exit(EXIT_FAILURE);
1158     }
1159 
1160     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1161 
1162     guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1163 
1164     /*
1165      * HPT resizing is a bit of a special case, because when enabled
1166      * we assume an HPT guest will support it until it says it
1167      * doesn't, instead of assuming it won't support it until it says
1168      * it does.  Strictly speaking that approach could break for
1169      * guests which don't make a CAS call, but those are so old we
1170      * don't care about them.  Without that assumption we'd have to
1171      * make at least a temporary allocation of an HPT sized for max
1172      * memory, which could be impossibly difficult under KVM HV if
1173      * maxram is large.
1174      */
1175     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1176         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1177 
1178         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1179             error_report(
1180                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1181             exit(1);
1182         }
1183 
1184         if (spapr->htab_shift < maxshift) {
1185             /* Guest doesn't know about HPT resizing, so we
1186              * pre-emptively resize for the maximum permitted RAM.  At
1187              * the point this is called, nothing should have been
1188              * entered into the existing HPT */
1189             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1190             push_sregs_to_kvm_pr(spapr);
1191         }
1192     }
1193 
1194     /* NOTE: there are actually a number of ov5 bits where input from the
1195      * guest is always zero, and the platform/QEMU enables them independently
1196      * of guest input. To model these properly we'd want some sort of mask,
1197      * but since they only currently apply to memory migration as defined
1198      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1199      * to worry about this for now.
1200      */
1201 
1202     /* full range of negotiated ov5 capabilities */
1203     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1204     spapr_ovec_cleanup(ov5_guest);
1205 
1206     spapr_check_mmu_mode(guest_radix);
1207 
1208     spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1209     spapr_ovec_cleanup(ov1_guest);
1210 
1211     /*
1212      * Check for NUMA affinity conditions now that we know which NUMA
1213      * affinity the guest will use.
1214      */
1215     spapr_numa_associativity_check(spapr);
1216 
1217     /*
1218      * Ensure the guest asks for an interrupt mode we support;
1219      * otherwise terminate the boot.
1220      */
1221     if (guest_xive) {
1222         if (!spapr->irq->xive) {
1223             error_report(
1224 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1225             exit(EXIT_FAILURE);
1226         }
1227     } else {
1228         if (!spapr->irq->xics) {
1229             error_report(
1230 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1231             exit(EXIT_FAILURE);
1232         }
1233     }
1234 
1235     spapr_irq_update_active_intc(spapr);
1236 
1237     /*
1238      * Process all pending hot-plug/unplug requests now. An updated full
1239      * rendered FDT will be returned to the guest.
1240      */
1241     spapr_drc_reset_all(spapr);
1242     spapr_clear_pending_hotplug_events(spapr);
1243 
1244     /*
1245      * If spapr_machine_reset() did not set up a HPT but one is necessary
1246      * (because the guest isn't going to use radix) then set it up here.
1247      */
1248     if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1249         /* legacy hash or new hash: */
1250         spapr_setup_hpt(spapr);
1251     }
1252 
1253     fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1254     g_free(spapr->fdt_blob);
1255     spapr->fdt_size = fdt_totalsize(fdt);
1256     spapr->fdt_initial_size = spapr->fdt_size;
1257     spapr->fdt_blob = fdt;
1258 
1259     return H_SUCCESS;
1260 }
1261 
1262 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1263                                                   SpaprMachineState *spapr,
1264                                                   target_ulong opcode,
1265                                                   target_ulong *args)
1266 {
1267     target_ulong vec = ppc64_phys_to_real(args[0]);
1268     target_ulong fdt_buf = args[1];
1269     target_ulong fdt_bufsize = args[2];
1270     target_ulong ret;
1271     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1272 
1273     if (fdt_bufsize < sizeof(hdr)) {
1274         error_report("SLOF provided insufficient CAS buffer "
1275                      TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1276         exit(EXIT_FAILURE);
1277     }
1278 
1279     fdt_bufsize -= sizeof(hdr);
1280 
1281     ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1282     if (ret == H_SUCCESS) {
1283         _FDT((fdt_pack(spapr->fdt_blob)));
1284         spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1285         spapr->fdt_initial_size = spapr->fdt_size;
1286 
1287         cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1288         cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1289                                   spapr->fdt_size);
1290         trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1291     }
1292 
1293     return ret;
1294 }
1295 
1296 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1297                                                    CPUState *cs,
1298                                                    target_ulong ovec_addr)
1299 {
1300     SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1301 
1302     target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1303                                                       ovec_addr, FDT_MAX_SIZE);
1304 
1305     /*
1306      * This adds stdout and generates phandles for boottime and CAS FDTs.
1307      * It is alright to update the FDT here as do_client_architecture_support()
1308      * does not pack it.
1309      */
1310     spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1311 
1312     return ret;
1313 }
1314 
1315 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1316                                               SpaprMachineState *spapr,
1317                                               target_ulong opcode,
1318                                               target_ulong *args)
1319 {
1320     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1321                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1322     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1323     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1324     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1325     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1326     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1327                                                      SPAPR_CAP_CCF_ASSIST);
1328 
1329     switch (safe_cache) {
1330     case SPAPR_CAP_WORKAROUND:
1331         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1332         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1333         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1334         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1335         break;
1336     case SPAPR_CAP_FIXED:
1337         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1338         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1339         break;
1340     default: /* broken */
1341         assert(safe_cache == SPAPR_CAP_BROKEN);
1342         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1343         break;
1344     }
1345 
1346     switch (safe_bounds_check) {
1347     case SPAPR_CAP_WORKAROUND:
1348         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1349         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1350         break;
1351     case SPAPR_CAP_FIXED:
1352         break;
1353     default: /* broken */
1354         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1355         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1356         break;
1357     }
1358 
1359     switch (safe_indirect_branch) {
1360     case SPAPR_CAP_FIXED_NA:
1361         break;
1362     case SPAPR_CAP_FIXED_CCD:
1363         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1364         break;
1365     case SPAPR_CAP_FIXED_IBS:
1366         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1367         break;
1368     case SPAPR_CAP_WORKAROUND:
1369         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1370         if (count_cache_flush_assist) {
1371             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1372         }
1373         break;
1374     default: /* broken */
1375         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1376         break;
1377     }
1378 
1379     args[0] = characteristics;
1380     args[1] = behaviour;
1381     return H_SUCCESS;
1382 }
1383 
1384 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1385                                 target_ulong opcode, target_ulong *args)
1386 {
1387     target_ulong dt = ppc64_phys_to_real(args[0]);
1388     struct fdt_header hdr = { 0 };
1389     unsigned cb;
1390     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1391     void *fdt;
1392 
1393     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1394     cb = fdt32_to_cpu(hdr.totalsize);
1395 
1396     if (!smc->update_dt_enabled) {
1397         return H_SUCCESS;
1398     }
1399 
1400     /* Check that the fdt did not grow out of proportion */
1401     if (cb > spapr->fdt_initial_size * 2) {
1402         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1403                                           fdt32_to_cpu(hdr.magic));
1404         return H_PARAMETER;
1405     }
1406 
1407     fdt = g_malloc0(cb);
1408     cpu_physical_memory_read(dt, fdt, cb);
1409 
1410     /* Check the fdt consistency */
1411     if (fdt_check_full(fdt, cb)) {
1412         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1413                                            fdt32_to_cpu(hdr.magic));
1414         return H_PARAMETER;
1415     }
1416 
1417     g_free(spapr->fdt_blob);
1418     spapr->fdt_size = cb;
1419     spapr->fdt_blob = fdt;
1420     trace_spapr_update_dt(cb);
1421 
1422     return H_SUCCESS;
1423 }
1424 
1425 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1426 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1427 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1428 
1429 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1430 {
1431     spapr_hcall_fn *slot;
1432 
1433     if (opcode <= MAX_HCALL_OPCODE) {
1434         assert((opcode & 0x3) == 0);
1435 
1436         slot = &papr_hypercall_table[opcode / 4];
1437     } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1438         /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1439         assert((opcode & 0x3) == 0);
1440 
1441         slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1442     } else {
1443         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1444 
1445         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1446     }
1447 
1448     assert(!(*slot));
1449     *slot = fn;
1450 }
1451 
1452 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1453                              target_ulong *args)
1454 {
1455     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1456 
1457     if ((opcode <= MAX_HCALL_OPCODE)
1458         && ((opcode & 0x3) == 0)) {
1459         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1460 
1461         if (fn) {
1462             return fn(cpu, spapr, opcode, args);
1463         }
1464     } else if ((opcode >= SVM_HCALL_BASE) &&
1465                (opcode <= SVM_HCALL_MAX)) {
1466         spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1467 
1468         if (fn) {
1469             return fn(cpu, spapr, opcode, args);
1470         }
1471     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1472                (opcode <= KVMPPC_HCALL_MAX)) {
1473         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1474 
1475         if (fn) {
1476             return fn(cpu, spapr, opcode, args);
1477         }
1478     }
1479 
1480     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1481                   opcode);
1482     return H_FUNCTION;
1483 }
1484 
1485 #ifdef CONFIG_TCG
1486 #define PRTS_MASK      0x1f
1487 
1488 static target_ulong h_set_ptbl(PowerPCCPU *cpu,
1489                                SpaprMachineState *spapr,
1490                                target_ulong opcode,
1491                                target_ulong *args)
1492 {
1493     target_ulong ptcr = args[0];
1494 
1495     if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
1496         return H_FUNCTION;
1497     }
1498 
1499     if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
1500         return H_PARAMETER;
1501     }
1502 
1503     spapr->nested_ptcr = ptcr; /* Save new partition table */
1504 
1505     return H_SUCCESS;
1506 }
1507 
1508 static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
1509                                      SpaprMachineState *spapr,
1510                                      target_ulong opcode,
1511                                      target_ulong *args)
1512 {
1513     /*
1514      * The spapr virtual hypervisor nested HV implementation retains no L2
1515      * translation state except for TLB. And the TLB is always invalidated
1516      * across L1<->L2 transitions, so nothing is required here.
1517      */
1518 
1519     return H_SUCCESS;
1520 }
1521 
1522 static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
1523                                         SpaprMachineState *spapr,
1524                                         target_ulong opcode,
1525                                         target_ulong *args)
1526 {
1527     /*
1528      * This HCALL is not required, L1 KVM will take a slow path and walk the
1529      * page tables manually to do the data copy.
1530      */
1531     return H_FUNCTION;
1532 }
1533 
1534 /*
1535  * When this handler returns, the environment is switched to the L2 guest
1536  * and TCG begins running that. spapr_exit_nested() performs the switch from
1537  * L2 back to L1 and returns from the H_ENTER_NESTED hcall.
1538  */
1539 static target_ulong h_enter_nested(PowerPCCPU *cpu,
1540                                    SpaprMachineState *spapr,
1541                                    target_ulong opcode,
1542                                    target_ulong *args)
1543 {
1544     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1545     CPUState *cs = CPU(cpu);
1546     CPUPPCState *env = &cpu->env;
1547     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1548     target_ulong hv_ptr = args[0];
1549     target_ulong regs_ptr = args[1];
1550     target_ulong hdec, now = cpu_ppc_load_tbl(env);
1551     target_ulong lpcr, lpcr_mask;
1552     struct kvmppc_hv_guest_state *hvstate;
1553     struct kvmppc_hv_guest_state hv_state;
1554     struct kvmppc_pt_regs *regs;
1555     hwaddr len;
1556     uint64_t cr;
1557     int i;
1558 
1559     if (spapr->nested_ptcr == 0) {
1560         return H_NOT_AVAILABLE;
1561     }
1562 
1563     len = sizeof(*hvstate);
1564     hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
1565                                 MEMTXATTRS_UNSPECIFIED);
1566     if (len != sizeof(*hvstate)) {
1567         address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
1568         return H_PARAMETER;
1569     }
1570 
1571     memcpy(&hv_state, hvstate, len);
1572 
1573     address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
1574 
1575     /*
1576      * We accept versions 1 and 2. Version 2 fields are unused because TCG
1577      * does not implement DAWR*.
1578      */
1579     if (hv_state.version > HV_GUEST_STATE_VERSION) {
1580         return H_PARAMETER;
1581     }
1582 
1583     spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
1584     if (!spapr_cpu->nested_host_state) {
1585         return H_NO_MEM;
1586     }
1587 
1588     memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
1589 
1590     len = sizeof(*regs);
1591     regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
1592                                 MEMTXATTRS_UNSPECIFIED);
1593     if (!regs || len != sizeof(*regs)) {
1594         address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
1595         g_free(spapr_cpu->nested_host_state);
1596         return H_P2;
1597     }
1598 
1599     len = sizeof(env->gpr);
1600     assert(len == sizeof(regs->gpr));
1601     memcpy(env->gpr, regs->gpr, len);
1602 
1603     env->lr = regs->link;
1604     env->ctr = regs->ctr;
1605     cpu_write_xer(env, regs->xer);
1606 
1607     cr = regs->ccr;
1608     for (i = 7; i >= 0; i--) {
1609         env->crf[i] = cr & 15;
1610         cr >>= 4;
1611     }
1612 
1613     env->msr = regs->msr;
1614     env->nip = regs->nip;
1615 
1616     address_space_unmap(CPU(cpu)->as, regs, len, len, false);
1617 
1618     env->cfar = hv_state.cfar;
1619 
1620     assert(env->spr[SPR_LPIDR] == 0);
1621     env->spr[SPR_LPIDR] = hv_state.lpid;
1622 
1623     lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
1624     lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
1625     lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
1626     lpcr &= ~LPCR_LPES0;
1627     env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
1628 
1629     env->spr[SPR_PCR] = hv_state.pcr;
1630     /* hv_state.amor is not used */
1631     env->spr[SPR_DPDES] = hv_state.dpdes;
1632     env->spr[SPR_HFSCR] = hv_state.hfscr;
1633     hdec = hv_state.hdec_expiry - now;
1634     spapr_cpu->nested_tb_offset = hv_state.tb_offset;
1635     /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
1636     env->spr[SPR_SRR0] = hv_state.srr0;
1637     env->spr[SPR_SRR1] = hv_state.srr1;
1638     env->spr[SPR_SPRG0] = hv_state.sprg[0];
1639     env->spr[SPR_SPRG1] = hv_state.sprg[1];
1640     env->spr[SPR_SPRG2] = hv_state.sprg[2];
1641     env->spr[SPR_SPRG3] = hv_state.sprg[3];
1642     env->spr[SPR_BOOKS_PID] = hv_state.pidr;
1643     env->spr[SPR_PPR] = hv_state.ppr;
1644 
1645     cpu_ppc_hdecr_init(env);
1646     cpu_ppc_store_hdecr(env, hdec);
1647 
1648     /*
1649      * The hv_state.vcpu_token is not needed. It is used by the KVM
1650      * implementation to remember which L2 vCPU last ran on which physical
1651      * CPU so as to invalidate process scope translations if it is moved
1652      * between physical CPUs. For now TLBs are always flushed on L1<->L2
1653      * transitions so this is not a problem.
1654      *
1655      * Could validate that the same vcpu_token does not attempt to run on
1656      * different L1 vCPUs at the same time, but that would be a L1 KVM bug
1657      * and it's not obviously worth a new data structure to do it.
1658      */
1659 
1660     env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
1661     spapr_cpu->in_nested = true;
1662 
1663     hreg_compute_hflags(env);
1664     tlb_flush(cs);
1665     env->reserve_addr = -1; /* Reset the reservation */
1666 
1667     /*
1668      * The spapr hcall helper sets env->gpr[3] to the return value, but at
1669      * this point the L1 is not returning from the hcall but rather we
1670      * start running the L2, so r3 must not be clobbered, so return env->gpr[3]
1671      * to leave it unchanged.
1672      */
1673     return env->gpr[3];
1674 }
1675 
1676 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1677 {
1678     CPUState *cs = CPU(cpu);
1679     CPUPPCState *env = &cpu->env;
1680     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1681     target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
1682     target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
1683     target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
1684     struct kvmppc_hv_guest_state *hvstate;
1685     struct kvmppc_pt_regs *regs;
1686     hwaddr len;
1687     uint64_t cr;
1688     int i;
1689 
1690     assert(spapr_cpu->in_nested);
1691 
1692     cpu_ppc_hdecr_exit(env);
1693 
1694     len = sizeof(*hvstate);
1695     hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
1696                                 MEMTXATTRS_UNSPECIFIED);
1697     if (len != sizeof(*hvstate)) {
1698         address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
1699         r3_return = H_PARAMETER;
1700         goto out_restore_l1;
1701     }
1702 
1703     hvstate->cfar = env->cfar;
1704     hvstate->lpcr = env->spr[SPR_LPCR];
1705     hvstate->pcr = env->spr[SPR_PCR];
1706     hvstate->dpdes = env->spr[SPR_DPDES];
1707     hvstate->hfscr = env->spr[SPR_HFSCR];
1708 
1709     if (excp == POWERPC_EXCP_HDSI) {
1710         hvstate->hdar = env->spr[SPR_HDAR];
1711         hvstate->hdsisr = env->spr[SPR_HDSISR];
1712         hvstate->asdr = env->spr[SPR_ASDR];
1713     } else if (excp == POWERPC_EXCP_HISI) {
1714         hvstate->asdr = env->spr[SPR_ASDR];
1715     }
1716 
1717     /* HEIR should be implemented for HV mode and saved here. */
1718     hvstate->srr0 = env->spr[SPR_SRR0];
1719     hvstate->srr1 = env->spr[SPR_SRR1];
1720     hvstate->sprg[0] = env->spr[SPR_SPRG0];
1721     hvstate->sprg[1] = env->spr[SPR_SPRG1];
1722     hvstate->sprg[2] = env->spr[SPR_SPRG2];
1723     hvstate->sprg[3] = env->spr[SPR_SPRG3];
1724     hvstate->pidr = env->spr[SPR_BOOKS_PID];
1725     hvstate->ppr = env->spr[SPR_PPR];
1726 
1727     /* Is it okay to specify write length larger than actual data written? */
1728     address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
1729 
1730     len = sizeof(*regs);
1731     regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
1732                                 MEMTXATTRS_UNSPECIFIED);
1733     if (!regs || len != sizeof(*regs)) {
1734         address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
1735         r3_return = H_P2;
1736         goto out_restore_l1;
1737     }
1738 
1739     len = sizeof(env->gpr);
1740     assert(len == sizeof(regs->gpr));
1741     memcpy(regs->gpr, env->gpr, len);
1742 
1743     regs->link = env->lr;
1744     regs->ctr = env->ctr;
1745     regs->xer = cpu_read_xer(env);
1746 
1747     cr = 0;
1748     for (i = 0; i < 8; i++) {
1749         cr |= (env->crf[i] & 15) << (4 * (7 - i));
1750     }
1751     regs->ccr = cr;
1752 
1753     if (excp == POWERPC_EXCP_MCHECK ||
1754         excp == POWERPC_EXCP_RESET ||
1755         excp == POWERPC_EXCP_SYSCALL) {
1756         regs->nip = env->spr[SPR_SRR0];
1757         regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
1758     } else {
1759         regs->nip = env->spr[SPR_HSRR0];
1760         regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
1761     }
1762 
1763     /* Is it okay to specify write length larger than actual data written? */
1764     address_space_unmap(CPU(cpu)->as, regs, len, len, true);
1765 
1766 out_restore_l1:
1767     memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
1768     env->lr = spapr_cpu->nested_host_state->lr;
1769     env->ctr = spapr_cpu->nested_host_state->ctr;
1770     memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
1771     env->cfar = spapr_cpu->nested_host_state->cfar;
1772     env->xer = spapr_cpu->nested_host_state->xer;
1773     env->so = spapr_cpu->nested_host_state->so;
1774     env->ov = spapr_cpu->nested_host_state->ov;
1775     env->ov32 = spapr_cpu->nested_host_state->ov32;
1776     env->ca32 = spapr_cpu->nested_host_state->ca32;
1777     env->msr = spapr_cpu->nested_host_state->msr;
1778     env->nip = spapr_cpu->nested_host_state->nip;
1779 
1780     assert(env->spr[SPR_LPIDR] != 0);
1781     env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
1782     env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
1783     env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
1784     env->spr[SPR_DPDES] = 0;
1785     env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
1786     env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
1787     env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
1788     env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
1789     env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
1790     env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
1791     env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
1792     env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
1793     env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
1794 
1795     /*
1796      * Return the interrupt vector address from H_ENTER_NESTED to the L1
1797      * (or error code).
1798      */
1799     env->gpr[3] = r3_return;
1800 
1801     env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
1802     spapr_cpu->in_nested = false;
1803 
1804     hreg_compute_hflags(env);
1805     tlb_flush(cs);
1806     env->reserve_addr = -1; /* Reset the reservation */
1807 
1808     g_free(spapr_cpu->nested_host_state);
1809     spapr_cpu->nested_host_state = NULL;
1810 }
1811 
1812 static void hypercall_register_nested(void)
1813 {
1814     spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
1815     spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
1816     spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
1817     spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
1818 }
1819 
1820 static void hypercall_register_softmmu(void)
1821 {
1822     /* DO NOTHING */
1823 }
1824 #else
1825 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1826 {
1827     g_assert_not_reached();
1828 }
1829 
1830 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1831                             target_ulong opcode, target_ulong *args)
1832 {
1833     g_assert_not_reached();
1834 }
1835 
1836 static void hypercall_register_nested(void)
1837 {
1838     /* DO NOTHING */
1839 }
1840 
1841 static void hypercall_register_softmmu(void)
1842 {
1843     /* hcall-pft */
1844     spapr_register_hypercall(H_ENTER, h_softmmu);
1845     spapr_register_hypercall(H_REMOVE, h_softmmu);
1846     spapr_register_hypercall(H_PROTECT, h_softmmu);
1847     spapr_register_hypercall(H_READ, h_softmmu);
1848 
1849     /* hcall-bulk */
1850     spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1851 }
1852 #endif
1853 
1854 static void hypercall_register_types(void)
1855 {
1856     hypercall_register_softmmu();
1857 
1858     /* hcall-hpt-resize */
1859     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1860     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1861 
1862     /* hcall-splpar */
1863     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1864     spapr_register_hypercall(H_CEDE, h_cede);
1865     spapr_register_hypercall(H_CONFER, h_confer);
1866     spapr_register_hypercall(H_PROD, h_prod);
1867 
1868     /* hcall-join */
1869     spapr_register_hypercall(H_JOIN, h_join);
1870 
1871     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1872 
1873     /* processor register resource access h-calls */
1874     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1875     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1876     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1877     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1878     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1879 
1880     /* In Memory Table MMU h-calls */
1881     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1882     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1883     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1884 
1885     /* hcall-get-cpu-characteristics */
1886     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1887                              h_get_cpu_characteristics);
1888 
1889     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1890      * here between the "CI" and the "CACHE" variants, they will use whatever
1891      * mapping attributes qemu is using. When using KVM, the kernel will
1892      * enforce the attributes more strongly
1893      */
1894     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1895     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1896     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1897     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1898     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1899     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1900     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1901 
1902     /* qemu/KVM-PPC specific hcalls */
1903     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1904 
1905     /* ibm,client-architecture-support support */
1906     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1907 
1908     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1909 
1910     hypercall_register_nested();
1911 }
1912 
1913 type_init(hypercall_register_types)
1914