xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision 9aa3397f)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/error-report.h"
7 #include "cpu.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "mmu-hash64.h"
12 #include "cpu-models.h"
13 #include "trace.h"
14 #include "kvm_ppc.h"
15 #include "hw/ppc/spapr_ovec.h"
16 #include "qemu/error-report.h"
17 #include "mmu-book3s-v3.h"
18 
19 struct SPRSyncState {
20     int spr;
21     target_ulong value;
22     target_ulong mask;
23 };
24 
25 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
26 {
27     struct SPRSyncState *s = arg.host_ptr;
28     PowerPCCPU *cpu = POWERPC_CPU(cs);
29     CPUPPCState *env = &cpu->env;
30 
31     cpu_synchronize_state(cs);
32     env->spr[s->spr] &= ~s->mask;
33     env->spr[s->spr] |= s->value;
34 }
35 
36 static void set_spr(CPUState *cs, int spr, target_ulong value,
37                     target_ulong mask)
38 {
39     struct SPRSyncState s = {
40         .spr = spr,
41         .value = value,
42         .mask = mask
43     };
44     run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
45 }
46 
47 static bool has_spr(PowerPCCPU *cpu, int spr)
48 {
49     /* We can test whether the SPR is defined by checking for a valid name */
50     return cpu->env.spr_cb[spr].name != NULL;
51 }
52 
53 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
54 {
55     /*
56      * hash value/pteg group index is normalized by HPT mask
57      */
58     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
59         return false;
60     }
61     return true;
62 }
63 
64 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
65 {
66     MachineState *machine = MACHINE(spapr);
67     MemoryHotplugState *hpms = &spapr->hotplug_memory;
68 
69     if (addr < machine->ram_size) {
70         return true;
71     }
72     if ((addr >= hpms->base)
73         && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
74         return true;
75     }
76 
77     return false;
78 }
79 
80 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
81                             target_ulong opcode, target_ulong *args)
82 {
83     target_ulong flags = args[0];
84     target_ulong ptex = args[1];
85     target_ulong pteh = args[2];
86     target_ulong ptel = args[3];
87     unsigned apshift;
88     target_ulong raddr;
89     target_ulong slot;
90     const ppc_hash_pte64_t *hptes;
91 
92     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
93     if (!apshift) {
94         /* Bad page size encoding */
95         return H_PARAMETER;
96     }
97 
98     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
99 
100     if (is_ram_address(spapr, raddr)) {
101         /* Regular RAM - should have WIMG=0010 */
102         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
103             return H_PARAMETER;
104         }
105     } else {
106         target_ulong wimg_flags;
107         /* Looks like an IO address */
108         /* FIXME: What WIMG combinations could be sensible for IO?
109          * For now we allow WIMG=010x, but are there others? */
110         /* FIXME: Should we check against registered IO addresses? */
111         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
112 
113         if (wimg_flags != HPTE64_R_I &&
114             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
115             return H_PARAMETER;
116         }
117     }
118 
119     pteh &= ~0x60ULL;
120 
121     if (!valid_ptex(cpu, ptex)) {
122         return H_PARAMETER;
123     }
124 
125     slot = ptex & 7ULL;
126     ptex = ptex & ~7ULL;
127 
128     if (likely((flags & H_EXACT) == 0)) {
129         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
130         for (slot = 0; slot < 8; slot++) {
131             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
132                 break;
133             }
134         }
135         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
136         if (slot == 8) {
137             return H_PTEG_FULL;
138         }
139     } else {
140         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
141         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
142             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
143             return H_PTEG_FULL;
144         }
145         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
146     }
147 
148     ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
149 
150     args[0] = ptex + slot;
151     return H_SUCCESS;
152 }
153 
154 typedef enum {
155     REMOVE_SUCCESS = 0,
156     REMOVE_NOT_FOUND = 1,
157     REMOVE_PARM = 2,
158     REMOVE_HW = 3,
159 } RemoveResult;
160 
161 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
162                                 target_ulong avpn,
163                                 target_ulong flags,
164                                 target_ulong *vp, target_ulong *rp)
165 {
166     const ppc_hash_pte64_t *hptes;
167     target_ulong v, r;
168 
169     if (!valid_ptex(cpu, ptex)) {
170         return REMOVE_PARM;
171     }
172 
173     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
174     v = ppc_hash64_hpte0(cpu, hptes, 0);
175     r = ppc_hash64_hpte1(cpu, hptes, 0);
176     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
177 
178     if ((v & HPTE64_V_VALID) == 0 ||
179         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
180         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
181         return REMOVE_NOT_FOUND;
182     }
183     *vp = v;
184     *rp = r;
185     ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
186     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
187     return REMOVE_SUCCESS;
188 }
189 
190 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
191                              target_ulong opcode, target_ulong *args)
192 {
193     CPUPPCState *env = &cpu->env;
194     target_ulong flags = args[0];
195     target_ulong ptex = args[1];
196     target_ulong avpn = args[2];
197     RemoveResult ret;
198 
199     ret = remove_hpte(cpu, ptex, avpn, flags,
200                       &args[0], &args[1]);
201 
202     switch (ret) {
203     case REMOVE_SUCCESS:
204         check_tlb_flush(env, true);
205         return H_SUCCESS;
206 
207     case REMOVE_NOT_FOUND:
208         return H_NOT_FOUND;
209 
210     case REMOVE_PARM:
211         return H_PARAMETER;
212 
213     case REMOVE_HW:
214         return H_HARDWARE;
215     }
216 
217     g_assert_not_reached();
218 }
219 
220 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
221 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
222 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
223 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
224 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
225 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
226 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
227 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
228 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
229 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
230 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
231 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
232 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
233 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
234 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
235 
236 #define H_BULK_REMOVE_MAX_BATCH        4
237 
238 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
239                                   target_ulong opcode, target_ulong *args)
240 {
241     CPUPPCState *env = &cpu->env;
242     int i;
243     target_ulong rc = H_SUCCESS;
244 
245     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
246         target_ulong *tsh = &args[i*2];
247         target_ulong tsl = args[i*2 + 1];
248         target_ulong v, r, ret;
249 
250         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
251             break;
252         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
253             return H_PARAMETER;
254         }
255 
256         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
257         *tsh |= H_BULK_REMOVE_RESPONSE;
258 
259         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
260             *tsh |= H_BULK_REMOVE_PARM;
261             return H_PARAMETER;
262         }
263 
264         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
265                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
266                           &v, &r);
267 
268         *tsh |= ret << 60;
269 
270         switch (ret) {
271         case REMOVE_SUCCESS:
272             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
273             break;
274 
275         case REMOVE_PARM:
276             rc = H_PARAMETER;
277             goto exit;
278 
279         case REMOVE_HW:
280             rc = H_HARDWARE;
281             goto exit;
282         }
283     }
284  exit:
285     check_tlb_flush(env, true);
286 
287     return rc;
288 }
289 
290 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
291                               target_ulong opcode, target_ulong *args)
292 {
293     CPUPPCState *env = &cpu->env;
294     target_ulong flags = args[0];
295     target_ulong ptex = args[1];
296     target_ulong avpn = args[2];
297     const ppc_hash_pte64_t *hptes;
298     target_ulong v, r;
299 
300     if (!valid_ptex(cpu, ptex)) {
301         return H_PARAMETER;
302     }
303 
304     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
305     v = ppc_hash64_hpte0(cpu, hptes, 0);
306     r = ppc_hash64_hpte1(cpu, hptes, 0);
307     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
308 
309     if ((v & HPTE64_V_VALID) == 0 ||
310         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
311         return H_NOT_FOUND;
312     }
313 
314     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
315            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
316     r |= (flags << 55) & HPTE64_R_PP0;
317     r |= (flags << 48) & HPTE64_R_KEY_HI;
318     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
319     ppc_hash64_store_hpte(cpu, ptex,
320                           (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
321     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
322     /* Flush the tlb */
323     check_tlb_flush(env, true);
324     /* Don't need a memory barrier, due to qemu's global lock */
325     ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
326     return H_SUCCESS;
327 }
328 
329 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
330                            target_ulong opcode, target_ulong *args)
331 {
332     target_ulong flags = args[0];
333     target_ulong ptex = args[1];
334     uint8_t *hpte;
335     int i, ridx, n_entries = 1;
336 
337     if (!valid_ptex(cpu, ptex)) {
338         return H_PARAMETER;
339     }
340 
341     if (flags & H_READ_4) {
342         /* Clear the two low order bits */
343         ptex &= ~(3ULL);
344         n_entries = 4;
345     }
346 
347     hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
348 
349     for (i = 0, ridx = 0; i < n_entries; i++) {
350         args[ridx++] = ldq_p(hpte);
351         args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
352         hpte += HASH_PTE_SIZE_64;
353     }
354 
355     return H_SUCCESS;
356 }
357 
358 struct sPAPRPendingHPT {
359     /* These fields are read-only after initialization */
360     int shift;
361     QemuThread thread;
362 
363     /* These fields are protected by the BQL */
364     bool complete;
365 
366     /* These fields are private to the preparation thread if
367      * !complete, otherwise protected by the BQL */
368     int ret;
369     void *hpt;
370 };
371 
372 static void free_pending_hpt(sPAPRPendingHPT *pending)
373 {
374     if (pending->hpt) {
375         qemu_vfree(pending->hpt);
376     }
377 
378     g_free(pending);
379 }
380 
381 static void *hpt_prepare_thread(void *opaque)
382 {
383     sPAPRPendingHPT *pending = opaque;
384     size_t size = 1ULL << pending->shift;
385 
386     pending->hpt = qemu_memalign(size, size);
387     if (pending->hpt) {
388         memset(pending->hpt, 0, size);
389         pending->ret = H_SUCCESS;
390     } else {
391         pending->ret = H_NO_MEM;
392     }
393 
394     qemu_mutex_lock_iothread();
395 
396     if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
397         /* Ready to go */
398         pending->complete = true;
399     } else {
400         /* We've been cancelled, clean ourselves up */
401         free_pending_hpt(pending);
402     }
403 
404     qemu_mutex_unlock_iothread();
405     return NULL;
406 }
407 
408 /* Must be called with BQL held */
409 static void cancel_hpt_prepare(sPAPRMachineState *spapr)
410 {
411     sPAPRPendingHPT *pending = spapr->pending_hpt;
412 
413     /* Let the thread know it's cancelled */
414     spapr->pending_hpt = NULL;
415 
416     if (!pending) {
417         /* Nothing to do */
418         return;
419     }
420 
421     if (!pending->complete) {
422         /* thread will clean itself up */
423         return;
424     }
425 
426     free_pending_hpt(pending);
427 }
428 
429 /* Convert a return code from the KVM ioctl()s implementing resize HPT
430  * into a PAPR hypercall return code */
431 static target_ulong resize_hpt_convert_rc(int ret)
432 {
433     if (ret >= 100000) {
434         return H_LONG_BUSY_ORDER_100_SEC;
435     } else if (ret >= 10000) {
436         return H_LONG_BUSY_ORDER_10_SEC;
437     } else if (ret >= 1000) {
438         return H_LONG_BUSY_ORDER_1_SEC;
439     } else if (ret >= 100) {
440         return H_LONG_BUSY_ORDER_100_MSEC;
441     } else if (ret >= 10) {
442         return H_LONG_BUSY_ORDER_10_MSEC;
443     } else if (ret > 0) {
444         return H_LONG_BUSY_ORDER_1_MSEC;
445     }
446 
447     switch (ret) {
448     case 0:
449         return H_SUCCESS;
450     case -EPERM:
451         return H_AUTHORITY;
452     case -EINVAL:
453         return H_PARAMETER;
454     case -ENXIO:
455         return H_CLOSED;
456     case -ENOSPC:
457         return H_PTEG_FULL;
458     case -EBUSY:
459         return H_BUSY;
460     case -ENOMEM:
461         return H_NO_MEM;
462     default:
463         return H_HARDWARE;
464     }
465 }
466 
467 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
468                                          sPAPRMachineState *spapr,
469                                          target_ulong opcode,
470                                          target_ulong *args)
471 {
472     target_ulong flags = args[0];
473     int shift = args[1];
474     sPAPRPendingHPT *pending = spapr->pending_hpt;
475     uint64_t current_ram_size = MACHINE(spapr)->ram_size;
476     int rc;
477 
478     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
479         return H_AUTHORITY;
480     }
481 
482     if (!spapr->htab_shift) {
483         /* Radix guest, no HPT */
484         return H_NOT_AVAILABLE;
485     }
486 
487     trace_spapr_h_resize_hpt_prepare(flags, shift);
488 
489     if (flags != 0) {
490         return H_PARAMETER;
491     }
492 
493     if (shift && ((shift < 18) || (shift > 46))) {
494         return H_PARAMETER;
495     }
496 
497     current_ram_size = pc_existing_dimms_capacity(&error_fatal);
498 
499     /* We only allow the guest to allocate an HPT one order above what
500      * we'd normally give them (to stop a small guest claiming a huge
501      * chunk of resources in the HPT */
502     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
503         return H_RESOURCE;
504     }
505 
506     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
507     if (rc != -ENOSYS) {
508         return resize_hpt_convert_rc(rc);
509     }
510 
511     if (pending) {
512         /* something already in progress */
513         if (pending->shift == shift) {
514             /* and it's suitable */
515             if (pending->complete) {
516                 return pending->ret;
517             } else {
518                 return H_LONG_BUSY_ORDER_100_MSEC;
519             }
520         }
521 
522         /* not suitable, cancel and replace */
523         cancel_hpt_prepare(spapr);
524     }
525 
526     if (!shift) {
527         /* nothing to do */
528         return H_SUCCESS;
529     }
530 
531     /* start new prepare */
532 
533     pending = g_new0(sPAPRPendingHPT, 1);
534     pending->shift = shift;
535     pending->ret = H_HARDWARE;
536 
537     qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
538                        hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
539 
540     spapr->pending_hpt = pending;
541 
542     /* In theory we could estimate the time more accurately based on
543      * the new size, but there's not much point */
544     return H_LONG_BUSY_ORDER_100_MSEC;
545 }
546 
547 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
548 {
549     uint8_t *addr = htab;
550 
551     addr += pteg * HASH_PTEG_SIZE_64;
552     addr += slot * HASH_PTE_SIZE_64;
553     return  ldq_p(addr);
554 }
555 
556 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
557                            uint64_t pte0, uint64_t pte1)
558 {
559     uint8_t *addr = htab;
560 
561     addr += pteg * HASH_PTEG_SIZE_64;
562     addr += slot * HASH_PTE_SIZE_64;
563 
564     stq_p(addr, pte0);
565     stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
566 }
567 
568 static int rehash_hpte(PowerPCCPU *cpu,
569                        const ppc_hash_pte64_t *hptes,
570                        void *old_hpt, uint64_t oldsize,
571                        void *new_hpt, uint64_t newsize,
572                        uint64_t pteg, int slot)
573 {
574     uint64_t old_hash_mask = (oldsize >> 7) - 1;
575     uint64_t new_hash_mask = (newsize >> 7) - 1;
576     target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
577     target_ulong pte1;
578     uint64_t avpn;
579     unsigned base_pg_shift;
580     uint64_t hash, new_pteg, replace_pte0;
581 
582     if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
583         return H_SUCCESS;
584     }
585 
586     pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
587 
588     base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
589     assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
590     avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
591 
592     if (pte0 & HPTE64_V_SECONDARY) {
593         pteg = ~pteg;
594     }
595 
596     if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
597         uint64_t offset, vsid;
598 
599         /* We only have 28 - 23 bits of offset in avpn */
600         offset = (avpn & 0x1f) << 23;
601         vsid = avpn >> 5;
602         /* We can find more bits from the pteg value */
603         if (base_pg_shift < 23) {
604             offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
605         }
606 
607         hash = vsid ^ (offset >> base_pg_shift);
608     } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
609         uint64_t offset, vsid;
610 
611         /* We only have 40 - 23 bits of seg_off in avpn */
612         offset = (avpn & 0x1ffff) << 23;
613         vsid = avpn >> 17;
614         if (base_pg_shift < 23) {
615             offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
616                 << base_pg_shift;
617         }
618 
619         hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
620     } else {
621         error_report("rehash_pte: Bad segment size in HPTE");
622         return H_HARDWARE;
623     }
624 
625     new_pteg = hash & new_hash_mask;
626     if (pte0 & HPTE64_V_SECONDARY) {
627         assert(~pteg == (hash & old_hash_mask));
628         new_pteg = ~new_pteg;
629     } else {
630         assert(pteg == (hash & old_hash_mask));
631     }
632     assert((oldsize != newsize) || (pteg == new_pteg));
633     replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
634     /*
635      * Strictly speaking, we don't need all these tests, since we only
636      * ever rehash bolted HPTEs.  We might in future handle non-bolted
637      * HPTEs, though so make the logic correct for those cases as
638      * well.
639      */
640     if (replace_pte0 & HPTE64_V_VALID) {
641         assert(newsize < oldsize);
642         if (replace_pte0 & HPTE64_V_BOLTED) {
643             if (pte0 & HPTE64_V_BOLTED) {
644                 /* Bolted collision, nothing we can do */
645                 return H_PTEG_FULL;
646             } else {
647                 /* Discard this hpte */
648                 return H_SUCCESS;
649             }
650         }
651     }
652 
653     new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
654     return H_SUCCESS;
655 }
656 
657 static int rehash_hpt(PowerPCCPU *cpu,
658                       void *old_hpt, uint64_t oldsize,
659                       void *new_hpt, uint64_t newsize)
660 {
661     uint64_t n_ptegs = oldsize >> 7;
662     uint64_t pteg;
663     int slot;
664     int rc;
665 
666     for (pteg = 0; pteg < n_ptegs; pteg++) {
667         hwaddr ptex = pteg * HPTES_PER_GROUP;
668         const ppc_hash_pte64_t *hptes
669             = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
670 
671         if (!hptes) {
672             return H_HARDWARE;
673         }
674 
675         for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
676             rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
677                              pteg, slot);
678             if (rc != H_SUCCESS) {
679                 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
680                 return rc;
681             }
682         }
683         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
684     }
685 
686     return H_SUCCESS;
687 }
688 
689 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
690                                         sPAPRMachineState *spapr,
691                                         target_ulong opcode,
692                                         target_ulong *args)
693 {
694     target_ulong flags = args[0];
695     target_ulong shift = args[1];
696     sPAPRPendingHPT *pending = spapr->pending_hpt;
697     int rc;
698     size_t newsize;
699 
700     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
701         return H_AUTHORITY;
702     }
703 
704     trace_spapr_h_resize_hpt_commit(flags, shift);
705 
706     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
707     if (rc != -ENOSYS) {
708         return resize_hpt_convert_rc(rc);
709     }
710 
711     if (flags != 0) {
712         return H_PARAMETER;
713     }
714 
715     if (!pending || (pending->shift != shift)) {
716         /* no matching prepare */
717         return H_CLOSED;
718     }
719 
720     if (!pending->complete) {
721         /* prepare has not completed */
722         return H_BUSY;
723     }
724 
725     /* Shouldn't have got past PREPARE without an HPT */
726     g_assert(spapr->htab_shift);
727 
728     newsize = 1ULL << pending->shift;
729     rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
730                     pending->hpt, newsize);
731     if (rc == H_SUCCESS) {
732         qemu_vfree(spapr->htab);
733         spapr->htab = pending->hpt;
734         spapr->htab_shift = pending->shift;
735 
736         if (kvm_enabled()) {
737             /* For KVM PR, update the HPT pointer */
738             target_ulong sdr1 = (target_ulong)(uintptr_t)spapr->htab
739                 | (spapr->htab_shift - 18);
740             kvmppc_update_sdr1(sdr1);
741         }
742 
743         pending->hpt = NULL; /* so it's not free()d */
744     }
745 
746     /* Clean up */
747     spapr->pending_hpt = NULL;
748     free_pending_hpt(pending);
749 
750     return rc;
751 }
752 
753 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
754                                 target_ulong opcode, target_ulong *args)
755 {
756     cpu_synchronize_state(CPU(cpu));
757     cpu->env.spr[SPR_SPRG0] = args[0];
758 
759     return H_SUCCESS;
760 }
761 
762 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
763                                target_ulong opcode, target_ulong *args)
764 {
765     if (!has_spr(cpu, SPR_DABR)) {
766         return H_HARDWARE;              /* DABR register not available */
767     }
768     cpu_synchronize_state(CPU(cpu));
769 
770     if (has_spr(cpu, SPR_DABRX)) {
771         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
772     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
773         return H_RESERVED_DABR;
774     }
775 
776     cpu->env.spr[SPR_DABR] = args[0];
777     return H_SUCCESS;
778 }
779 
780 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
781                                 target_ulong opcode, target_ulong *args)
782 {
783     target_ulong dabrx = args[1];
784 
785     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
786         return H_HARDWARE;
787     }
788 
789     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
790         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
791         return H_PARAMETER;
792     }
793 
794     cpu_synchronize_state(CPU(cpu));
795     cpu->env.spr[SPR_DABRX] = dabrx;
796     cpu->env.spr[SPR_DABR] = args[0];
797 
798     return H_SUCCESS;
799 }
800 
801 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
802                                 target_ulong opcode, target_ulong *args)
803 {
804     target_ulong flags = args[0];
805     hwaddr dst = args[1];
806     hwaddr src = args[2];
807     hwaddr len = TARGET_PAGE_SIZE;
808     uint8_t *pdst, *psrc;
809     target_long ret = H_SUCCESS;
810 
811     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
812                   | H_COPY_PAGE | H_ZERO_PAGE)) {
813         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
814                       flags);
815         return H_PARAMETER;
816     }
817 
818     /* Map-in destination */
819     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
820         return H_PARAMETER;
821     }
822     pdst = cpu_physical_memory_map(dst, &len, 1);
823     if (!pdst || len != TARGET_PAGE_SIZE) {
824         return H_PARAMETER;
825     }
826 
827     if (flags & H_COPY_PAGE) {
828         /* Map-in source, copy to destination, and unmap source again */
829         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
830             ret = H_PARAMETER;
831             goto unmap_out;
832         }
833         psrc = cpu_physical_memory_map(src, &len, 0);
834         if (!psrc || len != TARGET_PAGE_SIZE) {
835             ret = H_PARAMETER;
836             goto unmap_out;
837         }
838         memcpy(pdst, psrc, len);
839         cpu_physical_memory_unmap(psrc, len, 0, len);
840     } else if (flags & H_ZERO_PAGE) {
841         memset(pdst, 0, len);          /* Just clear the destination page */
842     }
843 
844     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
845         kvmppc_dcbst_range(cpu, pdst, len);
846     }
847     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
848         if (kvm_enabled()) {
849             kvmppc_icbi_range(cpu, pdst, len);
850         } else {
851             tb_flush(CPU(cpu));
852         }
853     }
854 
855 unmap_out:
856     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
857     return ret;
858 }
859 
860 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
861 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
862 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
863 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
864 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
865 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
866 
867 #define VPA_MIN_SIZE           640
868 #define VPA_SIZE_OFFSET        0x4
869 #define VPA_SHARED_PROC_OFFSET 0x9
870 #define VPA_SHARED_PROC_VAL    0x2
871 
872 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
873 {
874     CPUState *cs = CPU(ppc_env_get_cpu(env));
875     uint16_t size;
876     uint8_t tmp;
877 
878     if (vpa == 0) {
879         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
880         return H_HARDWARE;
881     }
882 
883     if (vpa % env->dcache_line_size) {
884         return H_PARAMETER;
885     }
886     /* FIXME: bounds check the address */
887 
888     size = lduw_be_phys(cs->as, vpa + 0x4);
889 
890     if (size < VPA_MIN_SIZE) {
891         return H_PARAMETER;
892     }
893 
894     /* VPA is not allowed to cross a page boundary */
895     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
896         return H_PARAMETER;
897     }
898 
899     env->vpa_addr = vpa;
900 
901     tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
902     tmp |= VPA_SHARED_PROC_VAL;
903     stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
904 
905     return H_SUCCESS;
906 }
907 
908 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
909 {
910     if (env->slb_shadow_addr) {
911         return H_RESOURCE;
912     }
913 
914     if (env->dtl_addr) {
915         return H_RESOURCE;
916     }
917 
918     env->vpa_addr = 0;
919     return H_SUCCESS;
920 }
921 
922 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
923 {
924     CPUState *cs = CPU(ppc_env_get_cpu(env));
925     uint32_t size;
926 
927     if (addr == 0) {
928         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
929         return H_HARDWARE;
930     }
931 
932     size = ldl_be_phys(cs->as, addr + 0x4);
933     if (size < 0x8) {
934         return H_PARAMETER;
935     }
936 
937     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
938         return H_PARAMETER;
939     }
940 
941     if (!env->vpa_addr) {
942         return H_RESOURCE;
943     }
944 
945     env->slb_shadow_addr = addr;
946     env->slb_shadow_size = size;
947 
948     return H_SUCCESS;
949 }
950 
951 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
952 {
953     env->slb_shadow_addr = 0;
954     env->slb_shadow_size = 0;
955     return H_SUCCESS;
956 }
957 
958 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
959 {
960     CPUState *cs = CPU(ppc_env_get_cpu(env));
961     uint32_t size;
962 
963     if (addr == 0) {
964         hcall_dprintf("Can't cope with DTL at logical 0\n");
965         return H_HARDWARE;
966     }
967 
968     size = ldl_be_phys(cs->as, addr + 0x4);
969 
970     if (size < 48) {
971         return H_PARAMETER;
972     }
973 
974     if (!env->vpa_addr) {
975         return H_RESOURCE;
976     }
977 
978     env->dtl_addr = addr;
979     env->dtl_size = size;
980 
981     return H_SUCCESS;
982 }
983 
984 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
985 {
986     env->dtl_addr = 0;
987     env->dtl_size = 0;
988 
989     return H_SUCCESS;
990 }
991 
992 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
993                                    target_ulong opcode, target_ulong *args)
994 {
995     target_ulong flags = args[0];
996     target_ulong procno = args[1];
997     target_ulong vpa = args[2];
998     target_ulong ret = H_PARAMETER;
999     CPUPPCState *tenv;
1000     PowerPCCPU *tcpu;
1001 
1002     tcpu = spapr_find_cpu(procno);
1003     if (!tcpu) {
1004         return H_PARAMETER;
1005     }
1006     tenv = &tcpu->env;
1007 
1008     switch (flags) {
1009     case FLAGS_REGISTER_VPA:
1010         ret = register_vpa(tenv, vpa);
1011         break;
1012 
1013     case FLAGS_DEREGISTER_VPA:
1014         ret = deregister_vpa(tenv, vpa);
1015         break;
1016 
1017     case FLAGS_REGISTER_SLBSHADOW:
1018         ret = register_slb_shadow(tenv, vpa);
1019         break;
1020 
1021     case FLAGS_DEREGISTER_SLBSHADOW:
1022         ret = deregister_slb_shadow(tenv, vpa);
1023         break;
1024 
1025     case FLAGS_REGISTER_DTL:
1026         ret = register_dtl(tenv, vpa);
1027         break;
1028 
1029     case FLAGS_DEREGISTER_DTL:
1030         ret = deregister_dtl(tenv, vpa);
1031         break;
1032     }
1033 
1034     return ret;
1035 }
1036 
1037 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1038                            target_ulong opcode, target_ulong *args)
1039 {
1040     CPUPPCState *env = &cpu->env;
1041     CPUState *cs = CPU(cpu);
1042 
1043     env->msr |= (1ULL << MSR_EE);
1044     hreg_compute_hflags(env);
1045     if (!cpu_has_work(cs)) {
1046         cs->halted = 1;
1047         cs->exception_index = EXCP_HLT;
1048         cs->exit_request = 1;
1049     }
1050     return H_SUCCESS;
1051 }
1052 
1053 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1054                            target_ulong opcode, target_ulong *args)
1055 {
1056     target_ulong rtas_r3 = args[0];
1057     uint32_t token = rtas_ld(rtas_r3, 0);
1058     uint32_t nargs = rtas_ld(rtas_r3, 1);
1059     uint32_t nret = rtas_ld(rtas_r3, 2);
1060 
1061     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1062                            nret, rtas_r3 + 12 + 4*nargs);
1063 }
1064 
1065 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1066                                    target_ulong opcode, target_ulong *args)
1067 {
1068     CPUState *cs = CPU(cpu);
1069     target_ulong size = args[0];
1070     target_ulong addr = args[1];
1071 
1072     switch (size) {
1073     case 1:
1074         args[0] = ldub_phys(cs->as, addr);
1075         return H_SUCCESS;
1076     case 2:
1077         args[0] = lduw_phys(cs->as, addr);
1078         return H_SUCCESS;
1079     case 4:
1080         args[0] = ldl_phys(cs->as, addr);
1081         return H_SUCCESS;
1082     case 8:
1083         args[0] = ldq_phys(cs->as, addr);
1084         return H_SUCCESS;
1085     }
1086     return H_PARAMETER;
1087 }
1088 
1089 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1090                                     target_ulong opcode, target_ulong *args)
1091 {
1092     CPUState *cs = CPU(cpu);
1093 
1094     target_ulong size = args[0];
1095     target_ulong addr = args[1];
1096     target_ulong val  = args[2];
1097 
1098     switch (size) {
1099     case 1:
1100         stb_phys(cs->as, addr, val);
1101         return H_SUCCESS;
1102     case 2:
1103         stw_phys(cs->as, addr, val);
1104         return H_SUCCESS;
1105     case 4:
1106         stl_phys(cs->as, addr, val);
1107         return H_SUCCESS;
1108     case 8:
1109         stq_phys(cs->as, addr, val);
1110         return H_SUCCESS;
1111     }
1112     return H_PARAMETER;
1113 }
1114 
1115 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1116                                     target_ulong opcode, target_ulong *args)
1117 {
1118     CPUState *cs = CPU(cpu);
1119 
1120     target_ulong dst   = args[0]; /* Destination address */
1121     target_ulong src   = args[1]; /* Source address */
1122     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1123     target_ulong count = args[3]; /* Element count */
1124     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1125     uint64_t tmp;
1126     unsigned int mask = (1 << esize) - 1;
1127     int step = 1 << esize;
1128 
1129     if (count > 0x80000000) {
1130         return H_PARAMETER;
1131     }
1132 
1133     if ((dst & mask) || (src & mask) || (op > 1)) {
1134         return H_PARAMETER;
1135     }
1136 
1137     if (dst >= src && dst < (src + (count << esize))) {
1138             dst = dst + ((count - 1) << esize);
1139             src = src + ((count - 1) << esize);
1140             step = -step;
1141     }
1142 
1143     while (count--) {
1144         switch (esize) {
1145         case 0:
1146             tmp = ldub_phys(cs->as, src);
1147             break;
1148         case 1:
1149             tmp = lduw_phys(cs->as, src);
1150             break;
1151         case 2:
1152             tmp = ldl_phys(cs->as, src);
1153             break;
1154         case 3:
1155             tmp = ldq_phys(cs->as, src);
1156             break;
1157         default:
1158             return H_PARAMETER;
1159         }
1160         if (op == 1) {
1161             tmp = ~tmp;
1162         }
1163         switch (esize) {
1164         case 0:
1165             stb_phys(cs->as, dst, tmp);
1166             break;
1167         case 1:
1168             stw_phys(cs->as, dst, tmp);
1169             break;
1170         case 2:
1171             stl_phys(cs->as, dst, tmp);
1172             break;
1173         case 3:
1174             stq_phys(cs->as, dst, tmp);
1175             break;
1176         }
1177         dst = dst + step;
1178         src = src + step;
1179     }
1180 
1181     return H_SUCCESS;
1182 }
1183 
1184 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1185                                    target_ulong opcode, target_ulong *args)
1186 {
1187     /* Nothing to do on emulation, KVM will trap this in the kernel */
1188     return H_SUCCESS;
1189 }
1190 
1191 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1192                                    target_ulong opcode, target_ulong *args)
1193 {
1194     /* Nothing to do on emulation, KVM will trap this in the kernel */
1195     return H_SUCCESS;
1196 }
1197 
1198 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1199                                            target_ulong mflags,
1200                                            target_ulong value1,
1201                                            target_ulong value2)
1202 {
1203     CPUState *cs;
1204 
1205     if (value1) {
1206         return H_P3;
1207     }
1208     if (value2) {
1209         return H_P4;
1210     }
1211 
1212     switch (mflags) {
1213     case H_SET_MODE_ENDIAN_BIG:
1214         CPU_FOREACH(cs) {
1215             set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
1216         }
1217         spapr_pci_switch_vga(true);
1218         return H_SUCCESS;
1219 
1220     case H_SET_MODE_ENDIAN_LITTLE:
1221         CPU_FOREACH(cs) {
1222             set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
1223         }
1224         spapr_pci_switch_vga(false);
1225         return H_SUCCESS;
1226     }
1227 
1228     return H_UNSUPPORTED_FLAG;
1229 }
1230 
1231 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1232                                                         target_ulong mflags,
1233                                                         target_ulong value1,
1234                                                         target_ulong value2)
1235 {
1236     CPUState *cs;
1237     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1238 
1239     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1240         return H_P2;
1241     }
1242     if (value1) {
1243         return H_P3;
1244     }
1245     if (value2) {
1246         return H_P4;
1247     }
1248 
1249     if (mflags == AIL_RESERVED) {
1250         return H_UNSUPPORTED_FLAG;
1251     }
1252 
1253     CPU_FOREACH(cs) {
1254         set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1255     }
1256 
1257     return H_SUCCESS;
1258 }
1259 
1260 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1261                                target_ulong opcode, target_ulong *args)
1262 {
1263     target_ulong resource = args[1];
1264     target_ulong ret = H_P2;
1265 
1266     switch (resource) {
1267     case H_SET_MODE_RESOURCE_LE:
1268         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1269         break;
1270     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1271         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1272                                                   args[2], args[3]);
1273         break;
1274     }
1275 
1276     return ret;
1277 }
1278 
1279 static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1280                                 target_ulong opcode, target_ulong *args)
1281 {
1282     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1283                   opcode, " (H_CLEAN_SLB)");
1284     return H_FUNCTION;
1285 }
1286 
1287 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1288                                      target_ulong opcode, target_ulong *args)
1289 {
1290     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1291                   opcode, " (H_INVALIDATE_PID)");
1292     return H_FUNCTION;
1293 }
1294 
1295 static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
1296                                        uint64_t patbe_old, uint64_t patbe_new)
1297 {
1298     /*
1299      * We have 4 Options:
1300      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1301      * HASH->RADIX                                  : Free HPT
1302      * RADIX->HASH                                  : Allocate HPT
1303      * NOTHING->HASH                                : Allocate HPT
1304      * Note: NOTHING implies the case where we said the guest could choose
1305      *       later and so assumed radix and now it's called H_REG_PROC_TBL
1306      */
1307 
1308     if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
1309         /* We assume RADIX, so this catches all the "Do Nothing" cases */
1310     } else if (!(patbe_old & PATBE1_GR)) {
1311         /* HASH->RADIX : Free HPT */
1312         spapr_free_hpt(spapr);
1313     } else if (!(patbe_new & PATBE1_GR)) {
1314         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1315         spapr_setup_hpt_and_vrma(spapr);
1316     }
1317     return;
1318 }
1319 
1320 #define FLAGS_MASK              0x01FULL
1321 #define FLAG_MODIFY             0x10
1322 #define FLAG_REGISTER           0x08
1323 #define FLAG_RADIX              0x04
1324 #define FLAG_HASH_PROC_TBL      0x02
1325 #define FLAG_GTSE               0x01
1326 
1327 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1328                                              sPAPRMachineState *spapr,
1329                                              target_ulong opcode,
1330                                              target_ulong *args)
1331 {
1332     CPUState *cs;
1333     target_ulong flags = args[0];
1334     target_ulong proc_tbl = args[1];
1335     target_ulong page_size = args[2];
1336     target_ulong table_size = args[3];
1337     uint64_t cproc;
1338 
1339     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1340         return H_PARAMETER;
1341     }
1342     if (flags & FLAG_MODIFY) {
1343         if (flags & FLAG_REGISTER) {
1344             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1345                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1346                     return H_P2;
1347                 } else if (page_size) {
1348                     return H_P3;
1349                 } else if (table_size > 24) {
1350                     return H_P4;
1351                 }
1352                 cproc = PATBE1_GR | proc_tbl | table_size;
1353             } else { /* Register new HPT process table */
1354                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1355                     /* TODO - Not Supported */
1356                     /* Technically caused by flag bits => H_PARAMETER */
1357                     return H_PARAMETER;
1358                 } else { /* Hash with SLB */
1359                     if (proc_tbl >> 38) {
1360                         return H_P2;
1361                     } else if (page_size & ~0x7) {
1362                         return H_P3;
1363                     } else if (table_size > 24) {
1364                         return H_P4;
1365                     }
1366                 }
1367                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1368             }
1369 
1370         } else { /* Deregister current process table */
1371             /* Set to benign value: (current GR) | 0. This allows
1372              * deregistration in KVM to succeed even if the radix bit in flags
1373              * doesn't match the radix bit in the old PATB. */
1374             cproc = spapr->patb_entry & PATBE1_GR;
1375         }
1376     } else { /* Maintain current registration */
1377         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
1378             /* Technically caused by flag bits => H_PARAMETER */
1379             return H_PARAMETER; /* Existing Process Table Mismatch */
1380         }
1381         cproc = spapr->patb_entry;
1382     }
1383 
1384     /* Check if we need to setup OR free the hpt */
1385     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1386 
1387     spapr->patb_entry = cproc; /* Save new process table */
1388 
1389     /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1390     CPU_FOREACH(cs) {
1391         set_spr(cs, SPR_LPCR,
1392                 ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
1393                 ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
1394                 LPCR_UPRT | LPCR_GTSE);
1395     }
1396 
1397     if (kvm_enabled()) {
1398         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1399                                        flags & FLAG_GTSE, cproc);
1400     }
1401     return H_SUCCESS;
1402 }
1403 
1404 #define H_SIGNAL_SYS_RESET_ALL         -1
1405 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1406 
1407 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1408                                        sPAPRMachineState *spapr,
1409                                        target_ulong opcode, target_ulong *args)
1410 {
1411     target_long target = args[0];
1412     CPUState *cs;
1413 
1414     if (target < 0) {
1415         /* Broadcast */
1416         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1417             return H_PARAMETER;
1418         }
1419 
1420         CPU_FOREACH(cs) {
1421             PowerPCCPU *c = POWERPC_CPU(cs);
1422 
1423             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1424                 if (c == cpu) {
1425                     continue;
1426                 }
1427             }
1428             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1429         }
1430         return H_SUCCESS;
1431 
1432     } else {
1433         /* Unicast */
1434         cs = CPU(spapr_find_cpu(target));
1435         if (cs) {
1436             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1437             return H_SUCCESS;
1438         }
1439         return H_PARAMETER;
1440     }
1441 }
1442 
1443 static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1444                               target_ulong *addr, bool *raw_mode_supported,
1445                               Error **errp)
1446 {
1447     bool explicit_match = false; /* Matched the CPU's real PVR */
1448     uint32_t max_compat = spapr->max_compat_pvr;
1449     uint32_t best_compat = 0;
1450     int i;
1451 
1452     /*
1453      * We scan the supplied table of PVRs looking for two things
1454      *   1. Is our real CPU PVR in the list?
1455      *   2. What's the "best" listed logical PVR
1456      */
1457     for (i = 0; i < 512; ++i) {
1458         uint32_t pvr, pvr_mask;
1459 
1460         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1461         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1462         *addr += 8;
1463 
1464         if (~pvr_mask & pvr) {
1465             break; /* Terminator record */
1466         }
1467 
1468         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1469             explicit_match = true;
1470         } else {
1471             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1472                 best_compat = pvr;
1473             }
1474         }
1475     }
1476 
1477     if ((best_compat == 0) && (!explicit_match || max_compat)) {
1478         /* We couldn't find a suitable compatibility mode, and either
1479          * the guest doesn't support "raw" mode for this CPU, or raw
1480          * mode is disabled because a maximum compat mode is set */
1481         error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1482         return 0;
1483     }
1484 
1485     *raw_mode_supported = explicit_match;
1486 
1487     /* Parsing finished */
1488     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1489 
1490     return best_compat;
1491 }
1492 
1493 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1494                                                   sPAPRMachineState *spapr,
1495                                                   target_ulong opcode,
1496                                                   target_ulong *args)
1497 {
1498     /* Working address in data buffer */
1499     target_ulong addr = ppc64_phys_to_real(args[0]);
1500     target_ulong ov_table;
1501     uint32_t cas_pvr;
1502     sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1503     bool guest_radix;
1504     Error *local_err = NULL;
1505     bool raw_mode_supported = false;
1506 
1507     cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1508     if (local_err) {
1509         error_report_err(local_err);
1510         return H_HARDWARE;
1511     }
1512 
1513     /* Update CPUs */
1514     if (cpu->compat_pvr != cas_pvr) {
1515         ppc_set_compat_all(cas_pvr, &local_err);
1516         if (local_err) {
1517             /* We fail to set compat mode (likely because running with KVM PR),
1518              * but maybe we can fallback to raw mode if the guest supports it.
1519              */
1520             if (!raw_mode_supported) {
1521                 error_report_err(local_err);
1522                 return H_HARDWARE;
1523             }
1524             local_err = NULL;
1525         }
1526     }
1527 
1528     /* For the future use: here @ov_table points to the first option vector */
1529     ov_table = addr;
1530 
1531     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1532     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1533     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1534         error_report("guest requested hash and radix MMU, which is invalid.");
1535         exit(EXIT_FAILURE);
1536     }
1537     /* The radix/hash bit in byte 24 requires special handling: */
1538     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1539     spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1540 
1541     /*
1542      * HPT resizing is a bit of a special case, because when enabled
1543      * we assume an HPT guest will support it until it says it
1544      * doesn't, instead of assuming it won't support it until it says
1545      * it does.  Strictly speaking that approach could break for
1546      * guests which don't make a CAS call, but those are so old we
1547      * don't care about them.  Without that assumption we'd have to
1548      * make at least a temporary allocation of an HPT sized for max
1549      * memory, which could be impossibly difficult under KVM HV if
1550      * maxram is large.
1551      */
1552     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1553         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1554 
1555         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1556             error_report(
1557                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1558             exit(1);
1559         }
1560 
1561         if (spapr->htab_shift < maxshift) {
1562             CPUState *cs;
1563 
1564             /* Guest doesn't know about HPT resizing, so we
1565              * pre-emptively resize for the maximum permitted RAM.  At
1566              * the point this is called, nothing should have been
1567              * entered into the existing HPT */
1568             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1569             CPU_FOREACH(cs) {
1570                 if (kvm_enabled()) {
1571                     /* For KVM PR, update the HPT pointer */
1572                     target_ulong sdr1 = (target_ulong)(uintptr_t)spapr->htab
1573                         | (spapr->htab_shift - 18);
1574                     kvmppc_update_sdr1(sdr1);
1575                 }
1576             }
1577         }
1578     }
1579 
1580     /* NOTE: there are actually a number of ov5 bits where input from the
1581      * guest is always zero, and the platform/QEMU enables them independently
1582      * of guest input. To model these properly we'd want some sort of mask,
1583      * but since they only currently apply to memory migration as defined
1584      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1585      * to worry about this for now.
1586      */
1587     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1588     /* full range of negotiated ov5 capabilities */
1589     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1590     spapr_ovec_cleanup(ov5_guest);
1591     /* capabilities that have been added since CAS-generated guest reset.
1592      * if capabilities have since been removed, generate another reset
1593      */
1594     ov5_updates = spapr_ovec_new();
1595     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1596                                         ov5_cas_old, spapr->ov5_cas);
1597     /* Now that processing is finished, set the radix/hash bit for the
1598      * guest if it requested a valid mode; otherwise terminate the boot. */
1599     if (guest_radix) {
1600         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1601             error_report("Guest requested unavailable MMU mode (radix).");
1602             exit(EXIT_FAILURE);
1603         }
1604         spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1605     } else {
1606         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1607             && !kvmppc_has_cap_mmu_hash_v3()) {
1608             error_report("Guest requested unavailable MMU mode (hash).");
1609             exit(EXIT_FAILURE);
1610         }
1611     }
1612     spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1613                                                           OV1_PPC_3_00);
1614     if (!spapr->cas_reboot) {
1615         spapr->cas_reboot =
1616             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1617                                           ov5_updates) != 0);
1618     }
1619     spapr_ovec_cleanup(ov5_updates);
1620 
1621     if (spapr->cas_reboot) {
1622         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1623     } else {
1624         /* If ppc_spapr_reset() did not set up a HPT but one is necessary
1625          * (because the guest isn't going to use radix) then set it up here. */
1626         if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
1627             /* legacy hash or new hash: */
1628             spapr_setup_hpt_and_vrma(spapr);
1629         }
1630     }
1631 
1632     return H_SUCCESS;
1633 }
1634 
1635 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1636 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1637 
1638 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1639 {
1640     spapr_hcall_fn *slot;
1641 
1642     if (opcode <= MAX_HCALL_OPCODE) {
1643         assert((opcode & 0x3) == 0);
1644 
1645         slot = &papr_hypercall_table[opcode / 4];
1646     } else {
1647         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1648 
1649         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1650     }
1651 
1652     assert(!(*slot));
1653     *slot = fn;
1654 }
1655 
1656 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1657                              target_ulong *args)
1658 {
1659     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1660 
1661     if ((opcode <= MAX_HCALL_OPCODE)
1662         && ((opcode & 0x3) == 0)) {
1663         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1664 
1665         if (fn) {
1666             return fn(cpu, spapr, opcode, args);
1667         }
1668     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1669                (opcode <= KVMPPC_HCALL_MAX)) {
1670         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1671 
1672         if (fn) {
1673             return fn(cpu, spapr, opcode, args);
1674         }
1675     }
1676 
1677     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1678                   opcode);
1679     return H_FUNCTION;
1680 }
1681 
1682 static void hypercall_register_types(void)
1683 {
1684     /* hcall-pft */
1685     spapr_register_hypercall(H_ENTER, h_enter);
1686     spapr_register_hypercall(H_REMOVE, h_remove);
1687     spapr_register_hypercall(H_PROTECT, h_protect);
1688     spapr_register_hypercall(H_READ, h_read);
1689 
1690     /* hcall-bulk */
1691     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1692 
1693     /* hcall-hpt-resize */
1694     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1695     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1696 
1697     /* hcall-splpar */
1698     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1699     spapr_register_hypercall(H_CEDE, h_cede);
1700     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1701 
1702     /* processor register resource access h-calls */
1703     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1704     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1705     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1706     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1707     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1708 
1709     /* In Memory Table MMU h-calls */
1710     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1711     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1712     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1713 
1714     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1715      * here between the "CI" and the "CACHE" variants, they will use whatever
1716      * mapping attributes qemu is using. When using KVM, the kernel will
1717      * enforce the attributes more strongly
1718      */
1719     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1720     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1721     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1722     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1723     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1724     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1725     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1726 
1727     /* qemu/KVM-PPC specific hcalls */
1728     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1729 
1730     /* ibm,client-architecture-support support */
1731     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1732 }
1733 
1734 type_init(hypercall_register_types)
1735