1 #include "qemu/osdep.h" 2 #include "qapi/error.h" 3 #include "sysemu/hw_accel.h" 4 #include "sysemu/sysemu.h" 5 #include "qemu/log.h" 6 #include "qemu/error-report.h" 7 #include "cpu.h" 8 #include "exec/exec-all.h" 9 #include "helper_regs.h" 10 #include "hw/ppc/spapr.h" 11 #include "mmu-hash64.h" 12 #include "cpu-models.h" 13 #include "trace.h" 14 #include "kvm_ppc.h" 15 #include "hw/ppc/spapr_ovec.h" 16 #include "qemu/error-report.h" 17 #include "mmu-book3s-v3.h" 18 19 struct SPRSyncState { 20 int spr; 21 target_ulong value; 22 target_ulong mask; 23 }; 24 25 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg) 26 { 27 struct SPRSyncState *s = arg.host_ptr; 28 PowerPCCPU *cpu = POWERPC_CPU(cs); 29 CPUPPCState *env = &cpu->env; 30 31 cpu_synchronize_state(cs); 32 env->spr[s->spr] &= ~s->mask; 33 env->spr[s->spr] |= s->value; 34 } 35 36 static void set_spr(CPUState *cs, int spr, target_ulong value, 37 target_ulong mask) 38 { 39 struct SPRSyncState s = { 40 .spr = spr, 41 .value = value, 42 .mask = mask 43 }; 44 run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s)); 45 } 46 47 static bool has_spr(PowerPCCPU *cpu, int spr) 48 { 49 /* We can test whether the SPR is defined by checking for a valid name */ 50 return cpu->env.spr_cb[spr].name != NULL; 51 } 52 53 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex) 54 { 55 /* 56 * hash value/pteg group index is normalized by HPT mask 57 */ 58 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) { 59 return false; 60 } 61 return true; 62 } 63 64 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr) 65 { 66 MachineState *machine = MACHINE(spapr); 67 MemoryHotplugState *hpms = &spapr->hotplug_memory; 68 69 if (addr < machine->ram_size) { 70 return true; 71 } 72 if ((addr >= hpms->base) 73 && ((addr - hpms->base) < memory_region_size(&hpms->mr))) { 74 return true; 75 } 76 77 return false; 78 } 79 80 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr, 81 target_ulong opcode, target_ulong *args) 82 { 83 target_ulong flags = args[0]; 84 target_ulong ptex = args[1]; 85 target_ulong pteh = args[2]; 86 target_ulong ptel = args[3]; 87 unsigned apshift; 88 target_ulong raddr; 89 target_ulong slot; 90 const ppc_hash_pte64_t *hptes; 91 92 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel); 93 if (!apshift) { 94 /* Bad page size encoding */ 95 return H_PARAMETER; 96 } 97 98 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1); 99 100 if (is_ram_address(spapr, raddr)) { 101 /* Regular RAM - should have WIMG=0010 */ 102 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { 103 return H_PARAMETER; 104 } 105 } else { 106 target_ulong wimg_flags; 107 /* Looks like an IO address */ 108 /* FIXME: What WIMG combinations could be sensible for IO? 109 * For now we allow WIMG=010x, but are there others? */ 110 /* FIXME: Should we check against registered IO addresses? */ 111 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)); 112 113 if (wimg_flags != HPTE64_R_I && 114 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) { 115 return H_PARAMETER; 116 } 117 } 118 119 pteh &= ~0x60ULL; 120 121 if (!valid_ptex(cpu, ptex)) { 122 return H_PARAMETER; 123 } 124 125 slot = ptex & 7ULL; 126 ptex = ptex & ~7ULL; 127 128 if (likely((flags & H_EXACT) == 0)) { 129 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 130 for (slot = 0; slot < 8; slot++) { 131 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) { 132 break; 133 } 134 } 135 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 136 if (slot == 8) { 137 return H_PTEG_FULL; 138 } 139 } else { 140 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1); 141 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) { 142 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1); 143 return H_PTEG_FULL; 144 } 145 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 146 } 147 148 ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel); 149 150 args[0] = ptex + slot; 151 return H_SUCCESS; 152 } 153 154 typedef enum { 155 REMOVE_SUCCESS = 0, 156 REMOVE_NOT_FOUND = 1, 157 REMOVE_PARM = 2, 158 REMOVE_HW = 3, 159 } RemoveResult; 160 161 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex, 162 target_ulong avpn, 163 target_ulong flags, 164 target_ulong *vp, target_ulong *rp) 165 { 166 const ppc_hash_pte64_t *hptes; 167 target_ulong v, r; 168 169 if (!valid_ptex(cpu, ptex)) { 170 return REMOVE_PARM; 171 } 172 173 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 174 v = ppc_hash64_hpte0(cpu, hptes, 0); 175 r = ppc_hash64_hpte1(cpu, hptes, 0); 176 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 177 178 if ((v & HPTE64_V_VALID) == 0 || 179 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || 180 ((flags & H_ANDCOND) && (v & avpn) != 0)) { 181 return REMOVE_NOT_FOUND; 182 } 183 *vp = v; 184 *rp = r; 185 ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0); 186 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 187 return REMOVE_SUCCESS; 188 } 189 190 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr, 191 target_ulong opcode, target_ulong *args) 192 { 193 CPUPPCState *env = &cpu->env; 194 target_ulong flags = args[0]; 195 target_ulong ptex = args[1]; 196 target_ulong avpn = args[2]; 197 RemoveResult ret; 198 199 ret = remove_hpte(cpu, ptex, avpn, flags, 200 &args[0], &args[1]); 201 202 switch (ret) { 203 case REMOVE_SUCCESS: 204 check_tlb_flush(env, true); 205 return H_SUCCESS; 206 207 case REMOVE_NOT_FOUND: 208 return H_NOT_FOUND; 209 210 case REMOVE_PARM: 211 return H_PARAMETER; 212 213 case REMOVE_HW: 214 return H_HARDWARE; 215 } 216 217 g_assert_not_reached(); 218 } 219 220 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL 221 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL 222 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL 223 #define H_BULK_REMOVE_END 0xc000000000000000ULL 224 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL 225 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL 226 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL 227 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL 228 #define H_BULK_REMOVE_HW 0x3000000000000000ULL 229 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL 230 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL 231 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL 232 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL 233 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL 234 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL 235 236 #define H_BULK_REMOVE_MAX_BATCH 4 237 238 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr, 239 target_ulong opcode, target_ulong *args) 240 { 241 CPUPPCState *env = &cpu->env; 242 int i; 243 target_ulong rc = H_SUCCESS; 244 245 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { 246 target_ulong *tsh = &args[i*2]; 247 target_ulong tsl = args[i*2 + 1]; 248 target_ulong v, r, ret; 249 250 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { 251 break; 252 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { 253 return H_PARAMETER; 254 } 255 256 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; 257 *tsh |= H_BULK_REMOVE_RESPONSE; 258 259 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { 260 *tsh |= H_BULK_REMOVE_PARM; 261 return H_PARAMETER; 262 } 263 264 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl, 265 (*tsh & H_BULK_REMOVE_FLAGS) >> 26, 266 &v, &r); 267 268 *tsh |= ret << 60; 269 270 switch (ret) { 271 case REMOVE_SUCCESS: 272 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; 273 break; 274 275 case REMOVE_PARM: 276 rc = H_PARAMETER; 277 goto exit; 278 279 case REMOVE_HW: 280 rc = H_HARDWARE; 281 goto exit; 282 } 283 } 284 exit: 285 check_tlb_flush(env, true); 286 287 return rc; 288 } 289 290 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr, 291 target_ulong opcode, target_ulong *args) 292 { 293 CPUPPCState *env = &cpu->env; 294 target_ulong flags = args[0]; 295 target_ulong ptex = args[1]; 296 target_ulong avpn = args[2]; 297 const ppc_hash_pte64_t *hptes; 298 target_ulong v, r; 299 300 if (!valid_ptex(cpu, ptex)) { 301 return H_PARAMETER; 302 } 303 304 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 305 v = ppc_hash64_hpte0(cpu, hptes, 0); 306 r = ppc_hash64_hpte1(cpu, hptes, 0); 307 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 308 309 if ((v & HPTE64_V_VALID) == 0 || 310 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { 311 return H_NOT_FOUND; 312 } 313 314 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | 315 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); 316 r |= (flags << 55) & HPTE64_R_PP0; 317 r |= (flags << 48) & HPTE64_R_KEY_HI; 318 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); 319 ppc_hash64_store_hpte(cpu, ptex, 320 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); 321 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 322 /* Flush the tlb */ 323 check_tlb_flush(env, true); 324 /* Don't need a memory barrier, due to qemu's global lock */ 325 ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r); 326 return H_SUCCESS; 327 } 328 329 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr, 330 target_ulong opcode, target_ulong *args) 331 { 332 target_ulong flags = args[0]; 333 target_ulong ptex = args[1]; 334 uint8_t *hpte; 335 int i, ridx, n_entries = 1; 336 337 if (!valid_ptex(cpu, ptex)) { 338 return H_PARAMETER; 339 } 340 341 if (flags & H_READ_4) { 342 /* Clear the two low order bits */ 343 ptex &= ~(3ULL); 344 n_entries = 4; 345 } 346 347 hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64); 348 349 for (i = 0, ridx = 0; i < n_entries; i++) { 350 args[ridx++] = ldq_p(hpte); 351 args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2)); 352 hpte += HASH_PTE_SIZE_64; 353 } 354 355 return H_SUCCESS; 356 } 357 358 struct sPAPRPendingHPT { 359 /* These fields are read-only after initialization */ 360 int shift; 361 QemuThread thread; 362 363 /* These fields are protected by the BQL */ 364 bool complete; 365 366 /* These fields are private to the preparation thread if 367 * !complete, otherwise protected by the BQL */ 368 int ret; 369 void *hpt; 370 }; 371 372 static void free_pending_hpt(sPAPRPendingHPT *pending) 373 { 374 if (pending->hpt) { 375 qemu_vfree(pending->hpt); 376 } 377 378 g_free(pending); 379 } 380 381 static void *hpt_prepare_thread(void *opaque) 382 { 383 sPAPRPendingHPT *pending = opaque; 384 size_t size = 1ULL << pending->shift; 385 386 pending->hpt = qemu_memalign(size, size); 387 if (pending->hpt) { 388 memset(pending->hpt, 0, size); 389 pending->ret = H_SUCCESS; 390 } else { 391 pending->ret = H_NO_MEM; 392 } 393 394 qemu_mutex_lock_iothread(); 395 396 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) { 397 /* Ready to go */ 398 pending->complete = true; 399 } else { 400 /* We've been cancelled, clean ourselves up */ 401 free_pending_hpt(pending); 402 } 403 404 qemu_mutex_unlock_iothread(); 405 return NULL; 406 } 407 408 /* Must be called with BQL held */ 409 static void cancel_hpt_prepare(sPAPRMachineState *spapr) 410 { 411 sPAPRPendingHPT *pending = spapr->pending_hpt; 412 413 /* Let the thread know it's cancelled */ 414 spapr->pending_hpt = NULL; 415 416 if (!pending) { 417 /* Nothing to do */ 418 return; 419 } 420 421 if (!pending->complete) { 422 /* thread will clean itself up */ 423 return; 424 } 425 426 free_pending_hpt(pending); 427 } 428 429 /* Convert a return code from the KVM ioctl()s implementing resize HPT 430 * into a PAPR hypercall return code */ 431 static target_ulong resize_hpt_convert_rc(int ret) 432 { 433 if (ret >= 100000) { 434 return H_LONG_BUSY_ORDER_100_SEC; 435 } else if (ret >= 10000) { 436 return H_LONG_BUSY_ORDER_10_SEC; 437 } else if (ret >= 1000) { 438 return H_LONG_BUSY_ORDER_1_SEC; 439 } else if (ret >= 100) { 440 return H_LONG_BUSY_ORDER_100_MSEC; 441 } else if (ret >= 10) { 442 return H_LONG_BUSY_ORDER_10_MSEC; 443 } else if (ret > 0) { 444 return H_LONG_BUSY_ORDER_1_MSEC; 445 } 446 447 switch (ret) { 448 case 0: 449 return H_SUCCESS; 450 case -EPERM: 451 return H_AUTHORITY; 452 case -EINVAL: 453 return H_PARAMETER; 454 case -ENXIO: 455 return H_CLOSED; 456 case -ENOSPC: 457 return H_PTEG_FULL; 458 case -EBUSY: 459 return H_BUSY; 460 case -ENOMEM: 461 return H_NO_MEM; 462 default: 463 return H_HARDWARE; 464 } 465 } 466 467 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, 468 sPAPRMachineState *spapr, 469 target_ulong opcode, 470 target_ulong *args) 471 { 472 target_ulong flags = args[0]; 473 int shift = args[1]; 474 sPAPRPendingHPT *pending = spapr->pending_hpt; 475 uint64_t current_ram_size = MACHINE(spapr)->ram_size; 476 int rc; 477 478 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 479 return H_AUTHORITY; 480 } 481 482 if (!spapr->htab_shift) { 483 /* Radix guest, no HPT */ 484 return H_NOT_AVAILABLE; 485 } 486 487 trace_spapr_h_resize_hpt_prepare(flags, shift); 488 489 if (flags != 0) { 490 return H_PARAMETER; 491 } 492 493 if (shift && ((shift < 18) || (shift > 46))) { 494 return H_PARAMETER; 495 } 496 497 current_ram_size = pc_existing_dimms_capacity(&error_fatal); 498 499 /* We only allow the guest to allocate an HPT one order above what 500 * we'd normally give them (to stop a small guest claiming a huge 501 * chunk of resources in the HPT */ 502 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { 503 return H_RESOURCE; 504 } 505 506 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); 507 if (rc != -ENOSYS) { 508 return resize_hpt_convert_rc(rc); 509 } 510 511 if (pending) { 512 /* something already in progress */ 513 if (pending->shift == shift) { 514 /* and it's suitable */ 515 if (pending->complete) { 516 return pending->ret; 517 } else { 518 return H_LONG_BUSY_ORDER_100_MSEC; 519 } 520 } 521 522 /* not suitable, cancel and replace */ 523 cancel_hpt_prepare(spapr); 524 } 525 526 if (!shift) { 527 /* nothing to do */ 528 return H_SUCCESS; 529 } 530 531 /* start new prepare */ 532 533 pending = g_new0(sPAPRPendingHPT, 1); 534 pending->shift = shift; 535 pending->ret = H_HARDWARE; 536 537 qemu_thread_create(&pending->thread, "sPAPR HPT prepare", 538 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED); 539 540 spapr->pending_hpt = pending; 541 542 /* In theory we could estimate the time more accurately based on 543 * the new size, but there's not much point */ 544 return H_LONG_BUSY_ORDER_100_MSEC; 545 } 546 547 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot) 548 { 549 uint8_t *addr = htab; 550 551 addr += pteg * HASH_PTEG_SIZE_64; 552 addr += slot * HASH_PTE_SIZE_64; 553 return ldq_p(addr); 554 } 555 556 static void new_hpte_store(void *htab, uint64_t pteg, int slot, 557 uint64_t pte0, uint64_t pte1) 558 { 559 uint8_t *addr = htab; 560 561 addr += pteg * HASH_PTEG_SIZE_64; 562 addr += slot * HASH_PTE_SIZE_64; 563 564 stq_p(addr, pte0); 565 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1); 566 } 567 568 static int rehash_hpte(PowerPCCPU *cpu, 569 const ppc_hash_pte64_t *hptes, 570 void *old_hpt, uint64_t oldsize, 571 void *new_hpt, uint64_t newsize, 572 uint64_t pteg, int slot) 573 { 574 uint64_t old_hash_mask = (oldsize >> 7) - 1; 575 uint64_t new_hash_mask = (newsize >> 7) - 1; 576 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot); 577 target_ulong pte1; 578 uint64_t avpn; 579 unsigned base_pg_shift; 580 uint64_t hash, new_pteg, replace_pte0; 581 582 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) { 583 return H_SUCCESS; 584 } 585 586 pte1 = ppc_hash64_hpte1(cpu, hptes, slot); 587 588 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1); 589 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */ 590 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23); 591 592 if (pte0 & HPTE64_V_SECONDARY) { 593 pteg = ~pteg; 594 } 595 596 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) { 597 uint64_t offset, vsid; 598 599 /* We only have 28 - 23 bits of offset in avpn */ 600 offset = (avpn & 0x1f) << 23; 601 vsid = avpn >> 5; 602 /* We can find more bits from the pteg value */ 603 if (base_pg_shift < 23) { 604 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift; 605 } 606 607 hash = vsid ^ (offset >> base_pg_shift); 608 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) { 609 uint64_t offset, vsid; 610 611 /* We only have 40 - 23 bits of seg_off in avpn */ 612 offset = (avpn & 0x1ffff) << 23; 613 vsid = avpn >> 17; 614 if (base_pg_shift < 23) { 615 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) 616 << base_pg_shift; 617 } 618 619 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift); 620 } else { 621 error_report("rehash_pte: Bad segment size in HPTE"); 622 return H_HARDWARE; 623 } 624 625 new_pteg = hash & new_hash_mask; 626 if (pte0 & HPTE64_V_SECONDARY) { 627 assert(~pteg == (hash & old_hash_mask)); 628 new_pteg = ~new_pteg; 629 } else { 630 assert(pteg == (hash & old_hash_mask)); 631 } 632 assert((oldsize != newsize) || (pteg == new_pteg)); 633 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot); 634 /* 635 * Strictly speaking, we don't need all these tests, since we only 636 * ever rehash bolted HPTEs. We might in future handle non-bolted 637 * HPTEs, though so make the logic correct for those cases as 638 * well. 639 */ 640 if (replace_pte0 & HPTE64_V_VALID) { 641 assert(newsize < oldsize); 642 if (replace_pte0 & HPTE64_V_BOLTED) { 643 if (pte0 & HPTE64_V_BOLTED) { 644 /* Bolted collision, nothing we can do */ 645 return H_PTEG_FULL; 646 } else { 647 /* Discard this hpte */ 648 return H_SUCCESS; 649 } 650 } 651 } 652 653 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1); 654 return H_SUCCESS; 655 } 656 657 static int rehash_hpt(PowerPCCPU *cpu, 658 void *old_hpt, uint64_t oldsize, 659 void *new_hpt, uint64_t newsize) 660 { 661 uint64_t n_ptegs = oldsize >> 7; 662 uint64_t pteg; 663 int slot; 664 int rc; 665 666 for (pteg = 0; pteg < n_ptegs; pteg++) { 667 hwaddr ptex = pteg * HPTES_PER_GROUP; 668 const ppc_hash_pte64_t *hptes 669 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 670 671 if (!hptes) { 672 return H_HARDWARE; 673 } 674 675 for (slot = 0; slot < HPTES_PER_GROUP; slot++) { 676 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize, 677 pteg, slot); 678 if (rc != H_SUCCESS) { 679 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 680 return rc; 681 } 682 } 683 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 684 } 685 686 return H_SUCCESS; 687 } 688 689 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, 690 sPAPRMachineState *spapr, 691 target_ulong opcode, 692 target_ulong *args) 693 { 694 target_ulong flags = args[0]; 695 target_ulong shift = args[1]; 696 sPAPRPendingHPT *pending = spapr->pending_hpt; 697 int rc; 698 size_t newsize; 699 700 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 701 return H_AUTHORITY; 702 } 703 704 trace_spapr_h_resize_hpt_commit(flags, shift); 705 706 rc = kvmppc_resize_hpt_commit(cpu, flags, shift); 707 if (rc != -ENOSYS) { 708 return resize_hpt_convert_rc(rc); 709 } 710 711 if (flags != 0) { 712 return H_PARAMETER; 713 } 714 715 if (!pending || (pending->shift != shift)) { 716 /* no matching prepare */ 717 return H_CLOSED; 718 } 719 720 if (!pending->complete) { 721 /* prepare has not completed */ 722 return H_BUSY; 723 } 724 725 /* Shouldn't have got past PREPARE without an HPT */ 726 g_assert(spapr->htab_shift); 727 728 newsize = 1ULL << pending->shift; 729 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr), 730 pending->hpt, newsize); 731 if (rc == H_SUCCESS) { 732 qemu_vfree(spapr->htab); 733 spapr->htab = pending->hpt; 734 spapr->htab_shift = pending->shift; 735 736 if (kvm_enabled()) { 737 /* For KVM PR, update the HPT pointer */ 738 target_ulong sdr1 = (target_ulong)(uintptr_t)spapr->htab 739 | (spapr->htab_shift - 18); 740 kvmppc_update_sdr1(sdr1); 741 } 742 743 pending->hpt = NULL; /* so it's not free()d */ 744 } 745 746 /* Clean up */ 747 spapr->pending_hpt = NULL; 748 free_pending_hpt(pending); 749 750 return rc; 751 } 752 753 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr, 754 target_ulong opcode, target_ulong *args) 755 { 756 cpu_synchronize_state(CPU(cpu)); 757 cpu->env.spr[SPR_SPRG0] = args[0]; 758 759 return H_SUCCESS; 760 } 761 762 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr, 763 target_ulong opcode, target_ulong *args) 764 { 765 if (!has_spr(cpu, SPR_DABR)) { 766 return H_HARDWARE; /* DABR register not available */ 767 } 768 cpu_synchronize_state(CPU(cpu)); 769 770 if (has_spr(cpu, SPR_DABRX)) { 771 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ 772 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ 773 return H_RESERVED_DABR; 774 } 775 776 cpu->env.spr[SPR_DABR] = args[0]; 777 return H_SUCCESS; 778 } 779 780 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr, 781 target_ulong opcode, target_ulong *args) 782 { 783 target_ulong dabrx = args[1]; 784 785 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) { 786 return H_HARDWARE; 787 } 788 789 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 790 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { 791 return H_PARAMETER; 792 } 793 794 cpu_synchronize_state(CPU(cpu)); 795 cpu->env.spr[SPR_DABRX] = dabrx; 796 cpu->env.spr[SPR_DABR] = args[0]; 797 798 return H_SUCCESS; 799 } 800 801 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr, 802 target_ulong opcode, target_ulong *args) 803 { 804 target_ulong flags = args[0]; 805 hwaddr dst = args[1]; 806 hwaddr src = args[2]; 807 hwaddr len = TARGET_PAGE_SIZE; 808 uint8_t *pdst, *psrc; 809 target_long ret = H_SUCCESS; 810 811 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE 812 | H_COPY_PAGE | H_ZERO_PAGE)) { 813 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", 814 flags); 815 return H_PARAMETER; 816 } 817 818 /* Map-in destination */ 819 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { 820 return H_PARAMETER; 821 } 822 pdst = cpu_physical_memory_map(dst, &len, 1); 823 if (!pdst || len != TARGET_PAGE_SIZE) { 824 return H_PARAMETER; 825 } 826 827 if (flags & H_COPY_PAGE) { 828 /* Map-in source, copy to destination, and unmap source again */ 829 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { 830 ret = H_PARAMETER; 831 goto unmap_out; 832 } 833 psrc = cpu_physical_memory_map(src, &len, 0); 834 if (!psrc || len != TARGET_PAGE_SIZE) { 835 ret = H_PARAMETER; 836 goto unmap_out; 837 } 838 memcpy(pdst, psrc, len); 839 cpu_physical_memory_unmap(psrc, len, 0, len); 840 } else if (flags & H_ZERO_PAGE) { 841 memset(pdst, 0, len); /* Just clear the destination page */ 842 } 843 844 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { 845 kvmppc_dcbst_range(cpu, pdst, len); 846 } 847 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { 848 if (kvm_enabled()) { 849 kvmppc_icbi_range(cpu, pdst, len); 850 } else { 851 tb_flush(CPU(cpu)); 852 } 853 } 854 855 unmap_out: 856 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); 857 return ret; 858 } 859 860 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL 861 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL 862 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL 863 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL 864 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL 865 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL 866 867 #define VPA_MIN_SIZE 640 868 #define VPA_SIZE_OFFSET 0x4 869 #define VPA_SHARED_PROC_OFFSET 0x9 870 #define VPA_SHARED_PROC_VAL 0x2 871 872 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa) 873 { 874 CPUState *cs = CPU(ppc_env_get_cpu(env)); 875 uint16_t size; 876 uint8_t tmp; 877 878 if (vpa == 0) { 879 hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); 880 return H_HARDWARE; 881 } 882 883 if (vpa % env->dcache_line_size) { 884 return H_PARAMETER; 885 } 886 /* FIXME: bounds check the address */ 887 888 size = lduw_be_phys(cs->as, vpa + 0x4); 889 890 if (size < VPA_MIN_SIZE) { 891 return H_PARAMETER; 892 } 893 894 /* VPA is not allowed to cross a page boundary */ 895 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { 896 return H_PARAMETER; 897 } 898 899 env->vpa_addr = vpa; 900 901 tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET); 902 tmp |= VPA_SHARED_PROC_VAL; 903 stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); 904 905 return H_SUCCESS; 906 } 907 908 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa) 909 { 910 if (env->slb_shadow_addr) { 911 return H_RESOURCE; 912 } 913 914 if (env->dtl_addr) { 915 return H_RESOURCE; 916 } 917 918 env->vpa_addr = 0; 919 return H_SUCCESS; 920 } 921 922 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr) 923 { 924 CPUState *cs = CPU(ppc_env_get_cpu(env)); 925 uint32_t size; 926 927 if (addr == 0) { 928 hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); 929 return H_HARDWARE; 930 } 931 932 size = ldl_be_phys(cs->as, addr + 0x4); 933 if (size < 0x8) { 934 return H_PARAMETER; 935 } 936 937 if ((addr / 4096) != ((addr + size - 1) / 4096)) { 938 return H_PARAMETER; 939 } 940 941 if (!env->vpa_addr) { 942 return H_RESOURCE; 943 } 944 945 env->slb_shadow_addr = addr; 946 env->slb_shadow_size = size; 947 948 return H_SUCCESS; 949 } 950 951 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr) 952 { 953 env->slb_shadow_addr = 0; 954 env->slb_shadow_size = 0; 955 return H_SUCCESS; 956 } 957 958 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr) 959 { 960 CPUState *cs = CPU(ppc_env_get_cpu(env)); 961 uint32_t size; 962 963 if (addr == 0) { 964 hcall_dprintf("Can't cope with DTL at logical 0\n"); 965 return H_HARDWARE; 966 } 967 968 size = ldl_be_phys(cs->as, addr + 0x4); 969 970 if (size < 48) { 971 return H_PARAMETER; 972 } 973 974 if (!env->vpa_addr) { 975 return H_RESOURCE; 976 } 977 978 env->dtl_addr = addr; 979 env->dtl_size = size; 980 981 return H_SUCCESS; 982 } 983 984 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr) 985 { 986 env->dtl_addr = 0; 987 env->dtl_size = 0; 988 989 return H_SUCCESS; 990 } 991 992 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr, 993 target_ulong opcode, target_ulong *args) 994 { 995 target_ulong flags = args[0]; 996 target_ulong procno = args[1]; 997 target_ulong vpa = args[2]; 998 target_ulong ret = H_PARAMETER; 999 CPUPPCState *tenv; 1000 PowerPCCPU *tcpu; 1001 1002 tcpu = spapr_find_cpu(procno); 1003 if (!tcpu) { 1004 return H_PARAMETER; 1005 } 1006 tenv = &tcpu->env; 1007 1008 switch (flags) { 1009 case FLAGS_REGISTER_VPA: 1010 ret = register_vpa(tenv, vpa); 1011 break; 1012 1013 case FLAGS_DEREGISTER_VPA: 1014 ret = deregister_vpa(tenv, vpa); 1015 break; 1016 1017 case FLAGS_REGISTER_SLBSHADOW: 1018 ret = register_slb_shadow(tenv, vpa); 1019 break; 1020 1021 case FLAGS_DEREGISTER_SLBSHADOW: 1022 ret = deregister_slb_shadow(tenv, vpa); 1023 break; 1024 1025 case FLAGS_REGISTER_DTL: 1026 ret = register_dtl(tenv, vpa); 1027 break; 1028 1029 case FLAGS_DEREGISTER_DTL: 1030 ret = deregister_dtl(tenv, vpa); 1031 break; 1032 } 1033 1034 return ret; 1035 } 1036 1037 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1038 target_ulong opcode, target_ulong *args) 1039 { 1040 CPUPPCState *env = &cpu->env; 1041 CPUState *cs = CPU(cpu); 1042 1043 env->msr |= (1ULL << MSR_EE); 1044 hreg_compute_hflags(env); 1045 if (!cpu_has_work(cs)) { 1046 cs->halted = 1; 1047 cs->exception_index = EXCP_HLT; 1048 cs->exit_request = 1; 1049 } 1050 return H_SUCCESS; 1051 } 1052 1053 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1054 target_ulong opcode, target_ulong *args) 1055 { 1056 target_ulong rtas_r3 = args[0]; 1057 uint32_t token = rtas_ld(rtas_r3, 0); 1058 uint32_t nargs = rtas_ld(rtas_r3, 1); 1059 uint32_t nret = rtas_ld(rtas_r3, 2); 1060 1061 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, 1062 nret, rtas_r3 + 12 + 4*nargs); 1063 } 1064 1065 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1066 target_ulong opcode, target_ulong *args) 1067 { 1068 CPUState *cs = CPU(cpu); 1069 target_ulong size = args[0]; 1070 target_ulong addr = args[1]; 1071 1072 switch (size) { 1073 case 1: 1074 args[0] = ldub_phys(cs->as, addr); 1075 return H_SUCCESS; 1076 case 2: 1077 args[0] = lduw_phys(cs->as, addr); 1078 return H_SUCCESS; 1079 case 4: 1080 args[0] = ldl_phys(cs->as, addr); 1081 return H_SUCCESS; 1082 case 8: 1083 args[0] = ldq_phys(cs->as, addr); 1084 return H_SUCCESS; 1085 } 1086 return H_PARAMETER; 1087 } 1088 1089 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1090 target_ulong opcode, target_ulong *args) 1091 { 1092 CPUState *cs = CPU(cpu); 1093 1094 target_ulong size = args[0]; 1095 target_ulong addr = args[1]; 1096 target_ulong val = args[2]; 1097 1098 switch (size) { 1099 case 1: 1100 stb_phys(cs->as, addr, val); 1101 return H_SUCCESS; 1102 case 2: 1103 stw_phys(cs->as, addr, val); 1104 return H_SUCCESS; 1105 case 4: 1106 stl_phys(cs->as, addr, val); 1107 return H_SUCCESS; 1108 case 8: 1109 stq_phys(cs->as, addr, val); 1110 return H_SUCCESS; 1111 } 1112 return H_PARAMETER; 1113 } 1114 1115 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1116 target_ulong opcode, target_ulong *args) 1117 { 1118 CPUState *cs = CPU(cpu); 1119 1120 target_ulong dst = args[0]; /* Destination address */ 1121 target_ulong src = args[1]; /* Source address */ 1122 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ 1123 target_ulong count = args[3]; /* Element count */ 1124 target_ulong op = args[4]; /* 0 = copy, 1 = invert */ 1125 uint64_t tmp; 1126 unsigned int mask = (1 << esize) - 1; 1127 int step = 1 << esize; 1128 1129 if (count > 0x80000000) { 1130 return H_PARAMETER; 1131 } 1132 1133 if ((dst & mask) || (src & mask) || (op > 1)) { 1134 return H_PARAMETER; 1135 } 1136 1137 if (dst >= src && dst < (src + (count << esize))) { 1138 dst = dst + ((count - 1) << esize); 1139 src = src + ((count - 1) << esize); 1140 step = -step; 1141 } 1142 1143 while (count--) { 1144 switch (esize) { 1145 case 0: 1146 tmp = ldub_phys(cs->as, src); 1147 break; 1148 case 1: 1149 tmp = lduw_phys(cs->as, src); 1150 break; 1151 case 2: 1152 tmp = ldl_phys(cs->as, src); 1153 break; 1154 case 3: 1155 tmp = ldq_phys(cs->as, src); 1156 break; 1157 default: 1158 return H_PARAMETER; 1159 } 1160 if (op == 1) { 1161 tmp = ~tmp; 1162 } 1163 switch (esize) { 1164 case 0: 1165 stb_phys(cs->as, dst, tmp); 1166 break; 1167 case 1: 1168 stw_phys(cs->as, dst, tmp); 1169 break; 1170 case 2: 1171 stl_phys(cs->as, dst, tmp); 1172 break; 1173 case 3: 1174 stq_phys(cs->as, dst, tmp); 1175 break; 1176 } 1177 dst = dst + step; 1178 src = src + step; 1179 } 1180 1181 return H_SUCCESS; 1182 } 1183 1184 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1185 target_ulong opcode, target_ulong *args) 1186 { 1187 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1188 return H_SUCCESS; 1189 } 1190 1191 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1192 target_ulong opcode, target_ulong *args) 1193 { 1194 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1195 return H_SUCCESS; 1196 } 1197 1198 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, 1199 target_ulong mflags, 1200 target_ulong value1, 1201 target_ulong value2) 1202 { 1203 CPUState *cs; 1204 1205 if (value1) { 1206 return H_P3; 1207 } 1208 if (value2) { 1209 return H_P4; 1210 } 1211 1212 switch (mflags) { 1213 case H_SET_MODE_ENDIAN_BIG: 1214 CPU_FOREACH(cs) { 1215 set_spr(cs, SPR_LPCR, 0, LPCR_ILE); 1216 } 1217 spapr_pci_switch_vga(true); 1218 return H_SUCCESS; 1219 1220 case H_SET_MODE_ENDIAN_LITTLE: 1221 CPU_FOREACH(cs) { 1222 set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE); 1223 } 1224 spapr_pci_switch_vga(false); 1225 return H_SUCCESS; 1226 } 1227 1228 return H_UNSUPPORTED_FLAG; 1229 } 1230 1231 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, 1232 target_ulong mflags, 1233 target_ulong value1, 1234 target_ulong value2) 1235 { 1236 CPUState *cs; 1237 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 1238 1239 if (!(pcc->insns_flags2 & PPC2_ISA207S)) { 1240 return H_P2; 1241 } 1242 if (value1) { 1243 return H_P3; 1244 } 1245 if (value2) { 1246 return H_P4; 1247 } 1248 1249 if (mflags == AIL_RESERVED) { 1250 return H_UNSUPPORTED_FLAG; 1251 } 1252 1253 CPU_FOREACH(cs) { 1254 set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL); 1255 } 1256 1257 return H_SUCCESS; 1258 } 1259 1260 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1261 target_ulong opcode, target_ulong *args) 1262 { 1263 target_ulong resource = args[1]; 1264 target_ulong ret = H_P2; 1265 1266 switch (resource) { 1267 case H_SET_MODE_RESOURCE_LE: 1268 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]); 1269 break; 1270 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 1271 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], 1272 args[2], args[3]); 1273 break; 1274 } 1275 1276 return ret; 1277 } 1278 1279 static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1280 target_ulong opcode, target_ulong *args) 1281 { 1282 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1283 opcode, " (H_CLEAN_SLB)"); 1284 return H_FUNCTION; 1285 } 1286 1287 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1288 target_ulong opcode, target_ulong *args) 1289 { 1290 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1291 opcode, " (H_INVALIDATE_PID)"); 1292 return H_FUNCTION; 1293 } 1294 1295 static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr, 1296 uint64_t patbe_old, uint64_t patbe_new) 1297 { 1298 /* 1299 * We have 4 Options: 1300 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing 1301 * HASH->RADIX : Free HPT 1302 * RADIX->HASH : Allocate HPT 1303 * NOTHING->HASH : Allocate HPT 1304 * Note: NOTHING implies the case where we said the guest could choose 1305 * later and so assumed radix and now it's called H_REG_PROC_TBL 1306 */ 1307 1308 if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) { 1309 /* We assume RADIX, so this catches all the "Do Nothing" cases */ 1310 } else if (!(patbe_old & PATBE1_GR)) { 1311 /* HASH->RADIX : Free HPT */ 1312 spapr_free_hpt(spapr); 1313 } else if (!(patbe_new & PATBE1_GR)) { 1314 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ 1315 spapr_setup_hpt_and_vrma(spapr); 1316 } 1317 return; 1318 } 1319 1320 #define FLAGS_MASK 0x01FULL 1321 #define FLAG_MODIFY 0x10 1322 #define FLAG_REGISTER 0x08 1323 #define FLAG_RADIX 0x04 1324 #define FLAG_HASH_PROC_TBL 0x02 1325 #define FLAG_GTSE 0x01 1326 1327 static target_ulong h_register_process_table(PowerPCCPU *cpu, 1328 sPAPRMachineState *spapr, 1329 target_ulong opcode, 1330 target_ulong *args) 1331 { 1332 CPUState *cs; 1333 target_ulong flags = args[0]; 1334 target_ulong proc_tbl = args[1]; 1335 target_ulong page_size = args[2]; 1336 target_ulong table_size = args[3]; 1337 uint64_t cproc; 1338 1339 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ 1340 return H_PARAMETER; 1341 } 1342 if (flags & FLAG_MODIFY) { 1343 if (flags & FLAG_REGISTER) { 1344 if (flags & FLAG_RADIX) { /* Register new RADIX process table */ 1345 if (proc_tbl & 0xfff || proc_tbl >> 60) { 1346 return H_P2; 1347 } else if (page_size) { 1348 return H_P3; 1349 } else if (table_size > 24) { 1350 return H_P4; 1351 } 1352 cproc = PATBE1_GR | proc_tbl | table_size; 1353 } else { /* Register new HPT process table */ 1354 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ 1355 /* TODO - Not Supported */ 1356 /* Technically caused by flag bits => H_PARAMETER */ 1357 return H_PARAMETER; 1358 } else { /* Hash with SLB */ 1359 if (proc_tbl >> 38) { 1360 return H_P2; 1361 } else if (page_size & ~0x7) { 1362 return H_P3; 1363 } else if (table_size > 24) { 1364 return H_P4; 1365 } 1366 } 1367 cproc = (proc_tbl << 25) | page_size << 5 | table_size; 1368 } 1369 1370 } else { /* Deregister current process table */ 1371 /* Set to benign value: (current GR) | 0. This allows 1372 * deregistration in KVM to succeed even if the radix bit in flags 1373 * doesn't match the radix bit in the old PATB. */ 1374 cproc = spapr->patb_entry & PATBE1_GR; 1375 } 1376 } else { /* Maintain current registration */ 1377 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) { 1378 /* Technically caused by flag bits => H_PARAMETER */ 1379 return H_PARAMETER; /* Existing Process Table Mismatch */ 1380 } 1381 cproc = spapr->patb_entry; 1382 } 1383 1384 /* Check if we need to setup OR free the hpt */ 1385 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); 1386 1387 spapr->patb_entry = cproc; /* Save new process table */ 1388 1389 /* Update the UPRT and GTSE bits in the LPCR for all cpus */ 1390 CPU_FOREACH(cs) { 1391 set_spr(cs, SPR_LPCR, 1392 ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) | 1393 ((flags & FLAG_GTSE) ? LPCR_GTSE : 0), 1394 LPCR_UPRT | LPCR_GTSE); 1395 } 1396 1397 if (kvm_enabled()) { 1398 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, 1399 flags & FLAG_GTSE, cproc); 1400 } 1401 return H_SUCCESS; 1402 } 1403 1404 #define H_SIGNAL_SYS_RESET_ALL -1 1405 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 1406 1407 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, 1408 sPAPRMachineState *spapr, 1409 target_ulong opcode, target_ulong *args) 1410 { 1411 target_long target = args[0]; 1412 CPUState *cs; 1413 1414 if (target < 0) { 1415 /* Broadcast */ 1416 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1417 return H_PARAMETER; 1418 } 1419 1420 CPU_FOREACH(cs) { 1421 PowerPCCPU *c = POWERPC_CPU(cs); 1422 1423 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1424 if (c == cpu) { 1425 continue; 1426 } 1427 } 1428 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1429 } 1430 return H_SUCCESS; 1431 1432 } else { 1433 /* Unicast */ 1434 cs = CPU(spapr_find_cpu(target)); 1435 if (cs) { 1436 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1437 return H_SUCCESS; 1438 } 1439 return H_PARAMETER; 1440 } 1441 } 1442 1443 static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu, 1444 target_ulong *addr, bool *raw_mode_supported, 1445 Error **errp) 1446 { 1447 bool explicit_match = false; /* Matched the CPU's real PVR */ 1448 uint32_t max_compat = spapr->max_compat_pvr; 1449 uint32_t best_compat = 0; 1450 int i; 1451 1452 /* 1453 * We scan the supplied table of PVRs looking for two things 1454 * 1. Is our real CPU PVR in the list? 1455 * 2. What's the "best" listed logical PVR 1456 */ 1457 for (i = 0; i < 512; ++i) { 1458 uint32_t pvr, pvr_mask; 1459 1460 pvr_mask = ldl_be_phys(&address_space_memory, *addr); 1461 pvr = ldl_be_phys(&address_space_memory, *addr + 4); 1462 *addr += 8; 1463 1464 if (~pvr_mask & pvr) { 1465 break; /* Terminator record */ 1466 } 1467 1468 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { 1469 explicit_match = true; 1470 } else { 1471 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { 1472 best_compat = pvr; 1473 } 1474 } 1475 } 1476 1477 if ((best_compat == 0) && (!explicit_match || max_compat)) { 1478 /* We couldn't find a suitable compatibility mode, and either 1479 * the guest doesn't support "raw" mode for this CPU, or raw 1480 * mode is disabled because a maximum compat mode is set */ 1481 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS"); 1482 return 0; 1483 } 1484 1485 *raw_mode_supported = explicit_match; 1486 1487 /* Parsing finished */ 1488 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); 1489 1490 return best_compat; 1491 } 1492 1493 static target_ulong h_client_architecture_support(PowerPCCPU *cpu, 1494 sPAPRMachineState *spapr, 1495 target_ulong opcode, 1496 target_ulong *args) 1497 { 1498 /* Working address in data buffer */ 1499 target_ulong addr = ppc64_phys_to_real(args[0]); 1500 target_ulong ov_table; 1501 uint32_t cas_pvr; 1502 sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates; 1503 bool guest_radix; 1504 Error *local_err = NULL; 1505 bool raw_mode_supported = false; 1506 1507 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err); 1508 if (local_err) { 1509 error_report_err(local_err); 1510 return H_HARDWARE; 1511 } 1512 1513 /* Update CPUs */ 1514 if (cpu->compat_pvr != cas_pvr) { 1515 ppc_set_compat_all(cas_pvr, &local_err); 1516 if (local_err) { 1517 /* We fail to set compat mode (likely because running with KVM PR), 1518 * but maybe we can fallback to raw mode if the guest supports it. 1519 */ 1520 if (!raw_mode_supported) { 1521 error_report_err(local_err); 1522 return H_HARDWARE; 1523 } 1524 local_err = NULL; 1525 } 1526 } 1527 1528 /* For the future use: here @ov_table points to the first option vector */ 1529 ov_table = addr; 1530 1531 ov1_guest = spapr_ovec_parse_vector(ov_table, 1); 1532 ov5_guest = spapr_ovec_parse_vector(ov_table, 5); 1533 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { 1534 error_report("guest requested hash and radix MMU, which is invalid."); 1535 exit(EXIT_FAILURE); 1536 } 1537 /* The radix/hash bit in byte 24 requires special handling: */ 1538 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); 1539 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300); 1540 1541 /* 1542 * HPT resizing is a bit of a special case, because when enabled 1543 * we assume an HPT guest will support it until it says it 1544 * doesn't, instead of assuming it won't support it until it says 1545 * it does. Strictly speaking that approach could break for 1546 * guests which don't make a CAS call, but those are so old we 1547 * don't care about them. Without that assumption we'd have to 1548 * make at least a temporary allocation of an HPT sized for max 1549 * memory, which could be impossibly difficult under KVM HV if 1550 * maxram is large. 1551 */ 1552 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { 1553 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1554 1555 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { 1556 error_report( 1557 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); 1558 exit(1); 1559 } 1560 1561 if (spapr->htab_shift < maxshift) { 1562 CPUState *cs; 1563 1564 /* Guest doesn't know about HPT resizing, so we 1565 * pre-emptively resize for the maximum permitted RAM. At 1566 * the point this is called, nothing should have been 1567 * entered into the existing HPT */ 1568 spapr_reallocate_hpt(spapr, maxshift, &error_fatal); 1569 CPU_FOREACH(cs) { 1570 if (kvm_enabled()) { 1571 /* For KVM PR, update the HPT pointer */ 1572 target_ulong sdr1 = (target_ulong)(uintptr_t)spapr->htab 1573 | (spapr->htab_shift - 18); 1574 kvmppc_update_sdr1(sdr1); 1575 } 1576 } 1577 } 1578 } 1579 1580 /* NOTE: there are actually a number of ov5 bits where input from the 1581 * guest is always zero, and the platform/QEMU enables them independently 1582 * of guest input. To model these properly we'd want some sort of mask, 1583 * but since they only currently apply to memory migration as defined 1584 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need 1585 * to worry about this for now. 1586 */ 1587 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); 1588 /* full range of negotiated ov5 capabilities */ 1589 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); 1590 spapr_ovec_cleanup(ov5_guest); 1591 /* capabilities that have been added since CAS-generated guest reset. 1592 * if capabilities have since been removed, generate another reset 1593 */ 1594 ov5_updates = spapr_ovec_new(); 1595 spapr->cas_reboot = spapr_ovec_diff(ov5_updates, 1596 ov5_cas_old, spapr->ov5_cas); 1597 /* Now that processing is finished, set the radix/hash bit for the 1598 * guest if it requested a valid mode; otherwise terminate the boot. */ 1599 if (guest_radix) { 1600 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1601 error_report("Guest requested unavailable MMU mode (radix)."); 1602 exit(EXIT_FAILURE); 1603 } 1604 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300); 1605 } else { 1606 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1607 && !kvmppc_has_cap_mmu_hash_v3()) { 1608 error_report("Guest requested unavailable MMU mode (hash)."); 1609 exit(EXIT_FAILURE); 1610 } 1611 } 1612 spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest, 1613 OV1_PPC_3_00); 1614 if (!spapr->cas_reboot) { 1615 spapr->cas_reboot = 1616 (spapr_h_cas_compose_response(spapr, args[1], args[2], 1617 ov5_updates) != 0); 1618 } 1619 spapr_ovec_cleanup(ov5_updates); 1620 1621 if (spapr->cas_reboot) { 1622 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 1623 } else { 1624 /* If ppc_spapr_reset() did not set up a HPT but one is necessary 1625 * (because the guest isn't going to use radix) then set it up here. */ 1626 if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) { 1627 /* legacy hash or new hash: */ 1628 spapr_setup_hpt_and_vrma(spapr); 1629 } 1630 } 1631 1632 return H_SUCCESS; 1633 } 1634 1635 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; 1636 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; 1637 1638 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) 1639 { 1640 spapr_hcall_fn *slot; 1641 1642 if (opcode <= MAX_HCALL_OPCODE) { 1643 assert((opcode & 0x3) == 0); 1644 1645 slot = &papr_hypercall_table[opcode / 4]; 1646 } else { 1647 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); 1648 1649 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1650 } 1651 1652 assert(!(*slot)); 1653 *slot = fn; 1654 } 1655 1656 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, 1657 target_ulong *args) 1658 { 1659 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1660 1661 if ((opcode <= MAX_HCALL_OPCODE) 1662 && ((opcode & 0x3) == 0)) { 1663 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; 1664 1665 if (fn) { 1666 return fn(cpu, spapr, opcode, args); 1667 } 1668 } else if ((opcode >= KVMPPC_HCALL_BASE) && 1669 (opcode <= KVMPPC_HCALL_MAX)) { 1670 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1671 1672 if (fn) { 1673 return fn(cpu, spapr, opcode, args); 1674 } 1675 } 1676 1677 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", 1678 opcode); 1679 return H_FUNCTION; 1680 } 1681 1682 static void hypercall_register_types(void) 1683 { 1684 /* hcall-pft */ 1685 spapr_register_hypercall(H_ENTER, h_enter); 1686 spapr_register_hypercall(H_REMOVE, h_remove); 1687 spapr_register_hypercall(H_PROTECT, h_protect); 1688 spapr_register_hypercall(H_READ, h_read); 1689 1690 /* hcall-bulk */ 1691 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); 1692 1693 /* hcall-hpt-resize */ 1694 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); 1695 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); 1696 1697 /* hcall-splpar */ 1698 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); 1699 spapr_register_hypercall(H_CEDE, h_cede); 1700 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); 1701 1702 /* processor register resource access h-calls */ 1703 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); 1704 spapr_register_hypercall(H_SET_DABR, h_set_dabr); 1705 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); 1706 spapr_register_hypercall(H_PAGE_INIT, h_page_init); 1707 spapr_register_hypercall(H_SET_MODE, h_set_mode); 1708 1709 /* In Memory Table MMU h-calls */ 1710 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); 1711 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); 1712 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); 1713 1714 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate 1715 * here between the "CI" and the "CACHE" variants, they will use whatever 1716 * mapping attributes qemu is using. When using KVM, the kernel will 1717 * enforce the attributes more strongly 1718 */ 1719 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); 1720 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); 1721 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); 1722 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); 1723 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); 1724 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); 1725 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); 1726 1727 /* qemu/KVM-PPC specific hcalls */ 1728 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); 1729 1730 /* ibm,client-architecture-support support */ 1731 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); 1732 } 1733 1734 type_init(hypercall_register_types) 1735