1 #include "qemu/osdep.h" 2 #include "qemu/cutils.h" 3 #include "qapi/error.h" 4 #include "sysemu/hw_accel.h" 5 #include "sysemu/runstate.h" 6 #include "qemu/log.h" 7 #include "qemu/main-loop.h" 8 #include "qemu/module.h" 9 #include "qemu/error-report.h" 10 #include "cpu.h" 11 #include "exec/exec-all.h" 12 #include "helper_regs.h" 13 #include "hw/ppc/spapr.h" 14 #include "hw/ppc/spapr_cpu_core.h" 15 #include "mmu-hash64.h" 16 #include "cpu-models.h" 17 #include "trace.h" 18 #include "kvm_ppc.h" 19 #include "hw/ppc/fdt.h" 20 #include "hw/ppc/spapr_ovec.h" 21 #include "mmu-book3s-v3.h" 22 #include "hw/mem/memory-device.h" 23 24 static bool has_spr(PowerPCCPU *cpu, int spr) 25 { 26 /* We can test whether the SPR is defined by checking for a valid name */ 27 return cpu->env.spr_cb[spr].name != NULL; 28 } 29 30 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex) 31 { 32 /* 33 * hash value/pteg group index is normalized by HPT mask 34 */ 35 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) { 36 return false; 37 } 38 return true; 39 } 40 41 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) 42 { 43 MachineState *machine = MACHINE(spapr); 44 DeviceMemoryState *dms = machine->device_memory; 45 46 if (addr < machine->ram_size) { 47 return true; 48 } 49 if ((addr >= dms->base) 50 && ((addr - dms->base) < memory_region_size(&dms->mr))) { 51 return true; 52 } 53 54 return false; 55 } 56 57 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr, 58 target_ulong opcode, target_ulong *args) 59 { 60 target_ulong flags = args[0]; 61 target_ulong ptex = args[1]; 62 target_ulong pteh = args[2]; 63 target_ulong ptel = args[3]; 64 unsigned apshift; 65 target_ulong raddr; 66 target_ulong slot; 67 const ppc_hash_pte64_t *hptes; 68 69 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel); 70 if (!apshift) { 71 /* Bad page size encoding */ 72 return H_PARAMETER; 73 } 74 75 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1); 76 77 if (is_ram_address(spapr, raddr)) { 78 /* Regular RAM - should have WIMG=0010 */ 79 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { 80 return H_PARAMETER; 81 } 82 } else { 83 target_ulong wimg_flags; 84 /* Looks like an IO address */ 85 /* FIXME: What WIMG combinations could be sensible for IO? 86 * For now we allow WIMG=010x, but are there others? */ 87 /* FIXME: Should we check against registered IO addresses? */ 88 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)); 89 90 if (wimg_flags != HPTE64_R_I && 91 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) { 92 return H_PARAMETER; 93 } 94 } 95 96 pteh &= ~0x60ULL; 97 98 if (!valid_ptex(cpu, ptex)) { 99 return H_PARAMETER; 100 } 101 102 slot = ptex & 7ULL; 103 ptex = ptex & ~7ULL; 104 105 if (likely((flags & H_EXACT) == 0)) { 106 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 107 for (slot = 0; slot < 8; slot++) { 108 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) { 109 break; 110 } 111 } 112 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 113 if (slot == 8) { 114 return H_PTEG_FULL; 115 } 116 } else { 117 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1); 118 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) { 119 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1); 120 return H_PTEG_FULL; 121 } 122 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 123 } 124 125 spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel); 126 127 args[0] = ptex + slot; 128 return H_SUCCESS; 129 } 130 131 typedef enum { 132 REMOVE_SUCCESS = 0, 133 REMOVE_NOT_FOUND = 1, 134 REMOVE_PARM = 2, 135 REMOVE_HW = 3, 136 } RemoveResult; 137 138 static RemoveResult remove_hpte(PowerPCCPU *cpu 139 , target_ulong ptex, 140 target_ulong avpn, 141 target_ulong flags, 142 target_ulong *vp, target_ulong *rp) 143 { 144 const ppc_hash_pte64_t *hptes; 145 target_ulong v, r; 146 147 if (!valid_ptex(cpu, ptex)) { 148 return REMOVE_PARM; 149 } 150 151 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 152 v = ppc_hash64_hpte0(cpu, hptes, 0); 153 r = ppc_hash64_hpte1(cpu, hptes, 0); 154 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 155 156 if ((v & HPTE64_V_VALID) == 0 || 157 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || 158 ((flags & H_ANDCOND) && (v & avpn) != 0)) { 159 return REMOVE_NOT_FOUND; 160 } 161 *vp = v; 162 *rp = r; 163 spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0); 164 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 165 return REMOVE_SUCCESS; 166 } 167 168 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, 169 target_ulong opcode, target_ulong *args) 170 { 171 CPUPPCState *env = &cpu->env; 172 target_ulong flags = args[0]; 173 target_ulong ptex = args[1]; 174 target_ulong avpn = args[2]; 175 RemoveResult ret; 176 177 ret = remove_hpte(cpu, ptex, avpn, flags, 178 &args[0], &args[1]); 179 180 switch (ret) { 181 case REMOVE_SUCCESS: 182 check_tlb_flush(env, true); 183 return H_SUCCESS; 184 185 case REMOVE_NOT_FOUND: 186 return H_NOT_FOUND; 187 188 case REMOVE_PARM: 189 return H_PARAMETER; 190 191 case REMOVE_HW: 192 return H_HARDWARE; 193 } 194 195 g_assert_not_reached(); 196 } 197 198 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL 199 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL 200 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL 201 #define H_BULK_REMOVE_END 0xc000000000000000ULL 202 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL 203 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL 204 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL 205 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL 206 #define H_BULK_REMOVE_HW 0x3000000000000000ULL 207 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL 208 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL 209 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL 210 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL 211 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL 212 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL 213 214 #define H_BULK_REMOVE_MAX_BATCH 4 215 216 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, 217 target_ulong opcode, target_ulong *args) 218 { 219 CPUPPCState *env = &cpu->env; 220 int i; 221 target_ulong rc = H_SUCCESS; 222 223 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { 224 target_ulong *tsh = &args[i*2]; 225 target_ulong tsl = args[i*2 + 1]; 226 target_ulong v, r, ret; 227 228 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { 229 break; 230 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { 231 return H_PARAMETER; 232 } 233 234 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; 235 *tsh |= H_BULK_REMOVE_RESPONSE; 236 237 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { 238 *tsh |= H_BULK_REMOVE_PARM; 239 return H_PARAMETER; 240 } 241 242 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl, 243 (*tsh & H_BULK_REMOVE_FLAGS) >> 26, 244 &v, &r); 245 246 *tsh |= ret << 60; 247 248 switch (ret) { 249 case REMOVE_SUCCESS: 250 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; 251 break; 252 253 case REMOVE_PARM: 254 rc = H_PARAMETER; 255 goto exit; 256 257 case REMOVE_HW: 258 rc = H_HARDWARE; 259 goto exit; 260 } 261 } 262 exit: 263 check_tlb_flush(env, true); 264 265 return rc; 266 } 267 268 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr, 269 target_ulong opcode, target_ulong *args) 270 { 271 CPUPPCState *env = &cpu->env; 272 target_ulong flags = args[0]; 273 target_ulong ptex = args[1]; 274 target_ulong avpn = args[2]; 275 const ppc_hash_pte64_t *hptes; 276 target_ulong v, r; 277 278 if (!valid_ptex(cpu, ptex)) { 279 return H_PARAMETER; 280 } 281 282 hptes = ppc_hash64_map_hptes(cpu, ptex, 1); 283 v = ppc_hash64_hpte0(cpu, hptes, 0); 284 r = ppc_hash64_hpte1(cpu, hptes, 0); 285 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); 286 287 if ((v & HPTE64_V_VALID) == 0 || 288 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { 289 return H_NOT_FOUND; 290 } 291 292 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | 293 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); 294 r |= (flags << 55) & HPTE64_R_PP0; 295 r |= (flags << 48) & HPTE64_R_KEY_HI; 296 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); 297 spapr_store_hpte(cpu, ptex, 298 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); 299 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 300 /* Flush the tlb */ 301 check_tlb_flush(env, true); 302 /* Don't need a memory barrier, due to qemu's global lock */ 303 spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r); 304 return H_SUCCESS; 305 } 306 307 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr, 308 target_ulong opcode, target_ulong *args) 309 { 310 target_ulong flags = args[0]; 311 target_ulong ptex = args[1]; 312 int i, ridx, n_entries = 1; 313 const ppc_hash_pte64_t *hptes; 314 315 if (!valid_ptex(cpu, ptex)) { 316 return H_PARAMETER; 317 } 318 319 if (flags & H_READ_4) { 320 /* Clear the two low order bits */ 321 ptex &= ~(3ULL); 322 n_entries = 4; 323 } 324 325 hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries); 326 for (i = 0, ridx = 0; i < n_entries; i++) { 327 args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i); 328 args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i); 329 } 330 ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries); 331 332 return H_SUCCESS; 333 } 334 335 struct SpaprPendingHpt { 336 /* These fields are read-only after initialization */ 337 int shift; 338 QemuThread thread; 339 340 /* These fields are protected by the BQL */ 341 bool complete; 342 343 /* These fields are private to the preparation thread if 344 * !complete, otherwise protected by the BQL */ 345 int ret; 346 void *hpt; 347 }; 348 349 static void free_pending_hpt(SpaprPendingHpt *pending) 350 { 351 if (pending->hpt) { 352 qemu_vfree(pending->hpt); 353 } 354 355 g_free(pending); 356 } 357 358 static void *hpt_prepare_thread(void *opaque) 359 { 360 SpaprPendingHpt *pending = opaque; 361 size_t size = 1ULL << pending->shift; 362 363 pending->hpt = qemu_memalign(size, size); 364 if (pending->hpt) { 365 memset(pending->hpt, 0, size); 366 pending->ret = H_SUCCESS; 367 } else { 368 pending->ret = H_NO_MEM; 369 } 370 371 qemu_mutex_lock_iothread(); 372 373 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) { 374 /* Ready to go */ 375 pending->complete = true; 376 } else { 377 /* We've been cancelled, clean ourselves up */ 378 free_pending_hpt(pending); 379 } 380 381 qemu_mutex_unlock_iothread(); 382 return NULL; 383 } 384 385 /* Must be called with BQL held */ 386 static void cancel_hpt_prepare(SpaprMachineState *spapr) 387 { 388 SpaprPendingHpt *pending = spapr->pending_hpt; 389 390 /* Let the thread know it's cancelled */ 391 spapr->pending_hpt = NULL; 392 393 if (!pending) { 394 /* Nothing to do */ 395 return; 396 } 397 398 if (!pending->complete) { 399 /* thread will clean itself up */ 400 return; 401 } 402 403 free_pending_hpt(pending); 404 } 405 406 /* Convert a return code from the KVM ioctl()s implementing resize HPT 407 * into a PAPR hypercall return code */ 408 static target_ulong resize_hpt_convert_rc(int ret) 409 { 410 if (ret >= 100000) { 411 return H_LONG_BUSY_ORDER_100_SEC; 412 } else if (ret >= 10000) { 413 return H_LONG_BUSY_ORDER_10_SEC; 414 } else if (ret >= 1000) { 415 return H_LONG_BUSY_ORDER_1_SEC; 416 } else if (ret >= 100) { 417 return H_LONG_BUSY_ORDER_100_MSEC; 418 } else if (ret >= 10) { 419 return H_LONG_BUSY_ORDER_10_MSEC; 420 } else if (ret > 0) { 421 return H_LONG_BUSY_ORDER_1_MSEC; 422 } 423 424 switch (ret) { 425 case 0: 426 return H_SUCCESS; 427 case -EPERM: 428 return H_AUTHORITY; 429 case -EINVAL: 430 return H_PARAMETER; 431 case -ENXIO: 432 return H_CLOSED; 433 case -ENOSPC: 434 return H_PTEG_FULL; 435 case -EBUSY: 436 return H_BUSY; 437 case -ENOMEM: 438 return H_NO_MEM; 439 default: 440 return H_HARDWARE; 441 } 442 } 443 444 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, 445 SpaprMachineState *spapr, 446 target_ulong opcode, 447 target_ulong *args) 448 { 449 target_ulong flags = args[0]; 450 int shift = args[1]; 451 SpaprPendingHpt *pending = spapr->pending_hpt; 452 uint64_t current_ram_size; 453 int rc; 454 455 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 456 return H_AUTHORITY; 457 } 458 459 if (!spapr->htab_shift) { 460 /* Radix guest, no HPT */ 461 return H_NOT_AVAILABLE; 462 } 463 464 trace_spapr_h_resize_hpt_prepare(flags, shift); 465 466 if (flags != 0) { 467 return H_PARAMETER; 468 } 469 470 if (shift && ((shift < 18) || (shift > 46))) { 471 return H_PARAMETER; 472 } 473 474 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 475 476 /* We only allow the guest to allocate an HPT one order above what 477 * we'd normally give them (to stop a small guest claiming a huge 478 * chunk of resources in the HPT */ 479 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { 480 return H_RESOURCE; 481 } 482 483 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); 484 if (rc != -ENOSYS) { 485 return resize_hpt_convert_rc(rc); 486 } 487 488 if (pending) { 489 /* something already in progress */ 490 if (pending->shift == shift) { 491 /* and it's suitable */ 492 if (pending->complete) { 493 return pending->ret; 494 } else { 495 return H_LONG_BUSY_ORDER_100_MSEC; 496 } 497 } 498 499 /* not suitable, cancel and replace */ 500 cancel_hpt_prepare(spapr); 501 } 502 503 if (!shift) { 504 /* nothing to do */ 505 return H_SUCCESS; 506 } 507 508 /* start new prepare */ 509 510 pending = g_new0(SpaprPendingHpt, 1); 511 pending->shift = shift; 512 pending->ret = H_HARDWARE; 513 514 qemu_thread_create(&pending->thread, "sPAPR HPT prepare", 515 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED); 516 517 spapr->pending_hpt = pending; 518 519 /* In theory we could estimate the time more accurately based on 520 * the new size, but there's not much point */ 521 return H_LONG_BUSY_ORDER_100_MSEC; 522 } 523 524 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot) 525 { 526 uint8_t *addr = htab; 527 528 addr += pteg * HASH_PTEG_SIZE_64; 529 addr += slot * HASH_PTE_SIZE_64; 530 return ldq_p(addr); 531 } 532 533 static void new_hpte_store(void *htab, uint64_t pteg, int slot, 534 uint64_t pte0, uint64_t pte1) 535 { 536 uint8_t *addr = htab; 537 538 addr += pteg * HASH_PTEG_SIZE_64; 539 addr += slot * HASH_PTE_SIZE_64; 540 541 stq_p(addr, pte0); 542 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1); 543 } 544 545 static int rehash_hpte(PowerPCCPU *cpu, 546 const ppc_hash_pte64_t *hptes, 547 void *old_hpt, uint64_t oldsize, 548 void *new_hpt, uint64_t newsize, 549 uint64_t pteg, int slot) 550 { 551 uint64_t old_hash_mask = (oldsize >> 7) - 1; 552 uint64_t new_hash_mask = (newsize >> 7) - 1; 553 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot); 554 target_ulong pte1; 555 uint64_t avpn; 556 unsigned base_pg_shift; 557 uint64_t hash, new_pteg, replace_pte0; 558 559 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) { 560 return H_SUCCESS; 561 } 562 563 pte1 = ppc_hash64_hpte1(cpu, hptes, slot); 564 565 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1); 566 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */ 567 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23); 568 569 if (pte0 & HPTE64_V_SECONDARY) { 570 pteg = ~pteg; 571 } 572 573 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) { 574 uint64_t offset, vsid; 575 576 /* We only have 28 - 23 bits of offset in avpn */ 577 offset = (avpn & 0x1f) << 23; 578 vsid = avpn >> 5; 579 /* We can find more bits from the pteg value */ 580 if (base_pg_shift < 23) { 581 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift; 582 } 583 584 hash = vsid ^ (offset >> base_pg_shift); 585 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) { 586 uint64_t offset, vsid; 587 588 /* We only have 40 - 23 bits of seg_off in avpn */ 589 offset = (avpn & 0x1ffff) << 23; 590 vsid = avpn >> 17; 591 if (base_pg_shift < 23) { 592 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) 593 << base_pg_shift; 594 } 595 596 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift); 597 } else { 598 error_report("rehash_pte: Bad segment size in HPTE"); 599 return H_HARDWARE; 600 } 601 602 new_pteg = hash & new_hash_mask; 603 if (pte0 & HPTE64_V_SECONDARY) { 604 assert(~pteg == (hash & old_hash_mask)); 605 new_pteg = ~new_pteg; 606 } else { 607 assert(pteg == (hash & old_hash_mask)); 608 } 609 assert((oldsize != newsize) || (pteg == new_pteg)); 610 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot); 611 /* 612 * Strictly speaking, we don't need all these tests, since we only 613 * ever rehash bolted HPTEs. We might in future handle non-bolted 614 * HPTEs, though so make the logic correct for those cases as 615 * well. 616 */ 617 if (replace_pte0 & HPTE64_V_VALID) { 618 assert(newsize < oldsize); 619 if (replace_pte0 & HPTE64_V_BOLTED) { 620 if (pte0 & HPTE64_V_BOLTED) { 621 /* Bolted collision, nothing we can do */ 622 return H_PTEG_FULL; 623 } else { 624 /* Discard this hpte */ 625 return H_SUCCESS; 626 } 627 } 628 } 629 630 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1); 631 return H_SUCCESS; 632 } 633 634 static int rehash_hpt(PowerPCCPU *cpu, 635 void *old_hpt, uint64_t oldsize, 636 void *new_hpt, uint64_t newsize) 637 { 638 uint64_t n_ptegs = oldsize >> 7; 639 uint64_t pteg; 640 int slot; 641 int rc; 642 643 for (pteg = 0; pteg < n_ptegs; pteg++) { 644 hwaddr ptex = pteg * HPTES_PER_GROUP; 645 const ppc_hash_pte64_t *hptes 646 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); 647 648 if (!hptes) { 649 return H_HARDWARE; 650 } 651 652 for (slot = 0; slot < HPTES_PER_GROUP; slot++) { 653 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize, 654 pteg, slot); 655 if (rc != H_SUCCESS) { 656 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 657 return rc; 658 } 659 } 660 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); 661 } 662 663 return H_SUCCESS; 664 } 665 666 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) 667 { 668 int ret; 669 670 cpu_synchronize_state(cs); 671 672 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); 673 if (ret < 0) { 674 error_report("failed to push sregs to KVM: %s", strerror(-ret)); 675 exit(1); 676 } 677 } 678 679 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr) 680 { 681 CPUState *cs; 682 683 /* 684 * This is a hack for the benefit of KVM PR - it abuses the SDR1 685 * slot in kvm_sregs to communicate the userspace address of the 686 * HPT 687 */ 688 if (!kvm_enabled() || !spapr->htab) { 689 return; 690 } 691 692 CPU_FOREACH(cs) { 693 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); 694 } 695 } 696 697 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, 698 SpaprMachineState *spapr, 699 target_ulong opcode, 700 target_ulong *args) 701 { 702 target_ulong flags = args[0]; 703 target_ulong shift = args[1]; 704 SpaprPendingHpt *pending = spapr->pending_hpt; 705 int rc; 706 size_t newsize; 707 708 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 709 return H_AUTHORITY; 710 } 711 712 if (!spapr->htab_shift) { 713 /* Radix guest, no HPT */ 714 return H_NOT_AVAILABLE; 715 } 716 717 trace_spapr_h_resize_hpt_commit(flags, shift); 718 719 rc = kvmppc_resize_hpt_commit(cpu, flags, shift); 720 if (rc != -ENOSYS) { 721 rc = resize_hpt_convert_rc(rc); 722 if (rc == H_SUCCESS) { 723 /* Need to set the new htab_shift in the machine state */ 724 spapr->htab_shift = shift; 725 } 726 return rc; 727 } 728 729 if (flags != 0) { 730 return H_PARAMETER; 731 } 732 733 if (!pending || (pending->shift != shift)) { 734 /* no matching prepare */ 735 return H_CLOSED; 736 } 737 738 if (!pending->complete) { 739 /* prepare has not completed */ 740 return H_BUSY; 741 } 742 743 /* Shouldn't have got past PREPARE without an HPT */ 744 g_assert(spapr->htab_shift); 745 746 newsize = 1ULL << pending->shift; 747 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr), 748 pending->hpt, newsize); 749 if (rc == H_SUCCESS) { 750 qemu_vfree(spapr->htab); 751 spapr->htab = pending->hpt; 752 spapr->htab_shift = pending->shift; 753 754 push_sregs_to_kvm_pr(spapr); 755 756 pending->hpt = NULL; /* so it's not free()d */ 757 } 758 759 /* Clean up */ 760 spapr->pending_hpt = NULL; 761 free_pending_hpt(pending); 762 763 return rc; 764 } 765 766 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, 767 target_ulong opcode, target_ulong *args) 768 { 769 cpu_synchronize_state(CPU(cpu)); 770 cpu->env.spr[SPR_SPRG0] = args[0]; 771 772 return H_SUCCESS; 773 } 774 775 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 776 target_ulong opcode, target_ulong *args) 777 { 778 if (!has_spr(cpu, SPR_DABR)) { 779 return H_HARDWARE; /* DABR register not available */ 780 } 781 cpu_synchronize_state(CPU(cpu)); 782 783 if (has_spr(cpu, SPR_DABRX)) { 784 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ 785 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ 786 return H_RESERVED_DABR; 787 } 788 789 cpu->env.spr[SPR_DABR] = args[0]; 790 return H_SUCCESS; 791 } 792 793 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 794 target_ulong opcode, target_ulong *args) 795 { 796 target_ulong dabrx = args[1]; 797 798 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) { 799 return H_HARDWARE; 800 } 801 802 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 803 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { 804 return H_PARAMETER; 805 } 806 807 cpu_synchronize_state(CPU(cpu)); 808 cpu->env.spr[SPR_DABRX] = dabrx; 809 cpu->env.spr[SPR_DABR] = args[0]; 810 811 return H_SUCCESS; 812 } 813 814 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, 815 target_ulong opcode, target_ulong *args) 816 { 817 target_ulong flags = args[0]; 818 hwaddr dst = args[1]; 819 hwaddr src = args[2]; 820 hwaddr len = TARGET_PAGE_SIZE; 821 uint8_t *pdst, *psrc; 822 target_long ret = H_SUCCESS; 823 824 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE 825 | H_COPY_PAGE | H_ZERO_PAGE)) { 826 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", 827 flags); 828 return H_PARAMETER; 829 } 830 831 /* Map-in destination */ 832 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { 833 return H_PARAMETER; 834 } 835 pdst = cpu_physical_memory_map(dst, &len, 1); 836 if (!pdst || len != TARGET_PAGE_SIZE) { 837 return H_PARAMETER; 838 } 839 840 if (flags & H_COPY_PAGE) { 841 /* Map-in source, copy to destination, and unmap source again */ 842 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { 843 ret = H_PARAMETER; 844 goto unmap_out; 845 } 846 psrc = cpu_physical_memory_map(src, &len, 0); 847 if (!psrc || len != TARGET_PAGE_SIZE) { 848 ret = H_PARAMETER; 849 goto unmap_out; 850 } 851 memcpy(pdst, psrc, len); 852 cpu_physical_memory_unmap(psrc, len, 0, len); 853 } else if (flags & H_ZERO_PAGE) { 854 memset(pdst, 0, len); /* Just clear the destination page */ 855 } 856 857 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { 858 kvmppc_dcbst_range(cpu, pdst, len); 859 } 860 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { 861 if (kvm_enabled()) { 862 kvmppc_icbi_range(cpu, pdst, len); 863 } else { 864 tb_flush(CPU(cpu)); 865 } 866 } 867 868 unmap_out: 869 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); 870 return ret; 871 } 872 873 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL 874 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL 875 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL 876 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL 877 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL 878 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL 879 880 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) 881 { 882 CPUState *cs = CPU(cpu); 883 CPUPPCState *env = &cpu->env; 884 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 885 uint16_t size; 886 uint8_t tmp; 887 888 if (vpa == 0) { 889 hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); 890 return H_HARDWARE; 891 } 892 893 if (vpa % env->dcache_line_size) { 894 return H_PARAMETER; 895 } 896 /* FIXME: bounds check the address */ 897 898 size = lduw_be_phys(cs->as, vpa + 0x4); 899 900 if (size < VPA_MIN_SIZE) { 901 return H_PARAMETER; 902 } 903 904 /* VPA is not allowed to cross a page boundary */ 905 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { 906 return H_PARAMETER; 907 } 908 909 spapr_cpu->vpa_addr = vpa; 910 911 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); 912 tmp |= VPA_SHARED_PROC_VAL; 913 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); 914 915 return H_SUCCESS; 916 } 917 918 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) 919 { 920 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 921 922 if (spapr_cpu->slb_shadow_addr) { 923 return H_RESOURCE; 924 } 925 926 if (spapr_cpu->dtl_addr) { 927 return H_RESOURCE; 928 } 929 930 spapr_cpu->vpa_addr = 0; 931 return H_SUCCESS; 932 } 933 934 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 935 { 936 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 937 uint32_t size; 938 939 if (addr == 0) { 940 hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); 941 return H_HARDWARE; 942 } 943 944 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 945 if (size < 0x8) { 946 return H_PARAMETER; 947 } 948 949 if ((addr / 4096) != ((addr + size - 1) / 4096)) { 950 return H_PARAMETER; 951 } 952 953 if (!spapr_cpu->vpa_addr) { 954 return H_RESOURCE; 955 } 956 957 spapr_cpu->slb_shadow_addr = addr; 958 spapr_cpu->slb_shadow_size = size; 959 960 return H_SUCCESS; 961 } 962 963 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 964 { 965 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 966 967 spapr_cpu->slb_shadow_addr = 0; 968 spapr_cpu->slb_shadow_size = 0; 969 return H_SUCCESS; 970 } 971 972 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) 973 { 974 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 975 uint32_t size; 976 977 if (addr == 0) { 978 hcall_dprintf("Can't cope with DTL at logical 0\n"); 979 return H_HARDWARE; 980 } 981 982 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 983 984 if (size < 48) { 985 return H_PARAMETER; 986 } 987 988 if (!spapr_cpu->vpa_addr) { 989 return H_RESOURCE; 990 } 991 992 spapr_cpu->dtl_addr = addr; 993 spapr_cpu->dtl_size = size; 994 995 return H_SUCCESS; 996 } 997 998 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) 999 { 1000 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1001 1002 spapr_cpu->dtl_addr = 0; 1003 spapr_cpu->dtl_size = 0; 1004 1005 return H_SUCCESS; 1006 } 1007 1008 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, 1009 target_ulong opcode, target_ulong *args) 1010 { 1011 target_ulong flags = args[0]; 1012 target_ulong procno = args[1]; 1013 target_ulong vpa = args[2]; 1014 target_ulong ret = H_PARAMETER; 1015 PowerPCCPU *tcpu; 1016 1017 tcpu = spapr_find_cpu(procno); 1018 if (!tcpu) { 1019 return H_PARAMETER; 1020 } 1021 1022 switch (flags) { 1023 case FLAGS_REGISTER_VPA: 1024 ret = register_vpa(tcpu, vpa); 1025 break; 1026 1027 case FLAGS_DEREGISTER_VPA: 1028 ret = deregister_vpa(tcpu, vpa); 1029 break; 1030 1031 case FLAGS_REGISTER_SLBSHADOW: 1032 ret = register_slb_shadow(tcpu, vpa); 1033 break; 1034 1035 case FLAGS_DEREGISTER_SLBSHADOW: 1036 ret = deregister_slb_shadow(tcpu, vpa); 1037 break; 1038 1039 case FLAGS_REGISTER_DTL: 1040 ret = register_dtl(tcpu, vpa); 1041 break; 1042 1043 case FLAGS_DEREGISTER_DTL: 1044 ret = deregister_dtl(tcpu, vpa); 1045 break; 1046 } 1047 1048 return ret; 1049 } 1050 1051 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, 1052 target_ulong opcode, target_ulong *args) 1053 { 1054 CPUPPCState *env = &cpu->env; 1055 CPUState *cs = CPU(cpu); 1056 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1057 1058 env->msr |= (1ULL << MSR_EE); 1059 hreg_compute_hflags(env); 1060 1061 if (spapr_cpu->prod) { 1062 spapr_cpu->prod = false; 1063 return H_SUCCESS; 1064 } 1065 1066 if (!cpu_has_work(cs)) { 1067 cs->halted = 1; 1068 cs->exception_index = EXCP_HLT; 1069 cs->exit_request = 1; 1070 } 1071 1072 return H_SUCCESS; 1073 } 1074 1075 /* 1076 * Confer to self, aka join. Cede could use the same pattern as well, if 1077 * EXCP_HLT can be changed to ECXP_HALTED. 1078 */ 1079 static target_ulong h_confer_self(PowerPCCPU *cpu) 1080 { 1081 CPUState *cs = CPU(cpu); 1082 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1083 1084 if (spapr_cpu->prod) { 1085 spapr_cpu->prod = false; 1086 return H_SUCCESS; 1087 } 1088 cs->halted = 1; 1089 cs->exception_index = EXCP_HALTED; 1090 cs->exit_request = 1; 1091 1092 return H_SUCCESS; 1093 } 1094 1095 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, 1096 target_ulong opcode, target_ulong *args) 1097 { 1098 CPUPPCState *env = &cpu->env; 1099 CPUState *cs; 1100 bool last_unjoined = true; 1101 1102 if (env->msr & (1ULL << MSR_EE)) { 1103 return H_BAD_MODE; 1104 } 1105 1106 /* 1107 * Must not join the last CPU running. Interestingly, no such restriction 1108 * for H_CONFER-to-self, but that is probably not intended to be used 1109 * when H_JOIN is available. 1110 */ 1111 CPU_FOREACH(cs) { 1112 PowerPCCPU *c = POWERPC_CPU(cs); 1113 CPUPPCState *e = &c->env; 1114 if (c == cpu) { 1115 continue; 1116 } 1117 1118 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ 1119 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { 1120 last_unjoined = false; 1121 break; 1122 } 1123 } 1124 if (last_unjoined) { 1125 return H_CONTINUE; 1126 } 1127 1128 return h_confer_self(cpu); 1129 } 1130 1131 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, 1132 target_ulong opcode, target_ulong *args) 1133 { 1134 target_long target = args[0]; 1135 uint32_t dispatch = args[1]; 1136 CPUState *cs = CPU(cpu); 1137 SpaprCpuState *spapr_cpu; 1138 1139 /* 1140 * -1 means confer to all other CPUs without dispatch counter check, 1141 * otherwise it's a targeted confer. 1142 */ 1143 if (target != -1) { 1144 PowerPCCPU *target_cpu = spapr_find_cpu(target); 1145 uint32_t target_dispatch; 1146 1147 if (!target_cpu) { 1148 return H_PARAMETER; 1149 } 1150 1151 /* 1152 * target == self is a special case, we wait until prodded, without 1153 * dispatch counter check. 1154 */ 1155 if (cpu == target_cpu) { 1156 return h_confer_self(cpu); 1157 } 1158 1159 spapr_cpu = spapr_cpu_state(target_cpu); 1160 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { 1161 return H_SUCCESS; 1162 } 1163 1164 target_dispatch = ldl_be_phys(cs->as, 1165 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 1166 if (target_dispatch != dispatch) { 1167 return H_SUCCESS; 1168 } 1169 1170 /* 1171 * The targeted confer does not do anything special beyond yielding 1172 * the current vCPU, but even this should be better than nothing. 1173 * At least for single-threaded tcg, it gives the target a chance to 1174 * run before we run again. Multi-threaded tcg does not really do 1175 * anything with EXCP_YIELD yet. 1176 */ 1177 } 1178 1179 cs->exception_index = EXCP_YIELD; 1180 cs->exit_request = 1; 1181 cpu_loop_exit(cs); 1182 1183 return H_SUCCESS; 1184 } 1185 1186 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, 1187 target_ulong opcode, target_ulong *args) 1188 { 1189 target_long target = args[0]; 1190 PowerPCCPU *tcpu; 1191 CPUState *cs; 1192 SpaprCpuState *spapr_cpu; 1193 1194 tcpu = spapr_find_cpu(target); 1195 cs = CPU(tcpu); 1196 if (!cs) { 1197 return H_PARAMETER; 1198 } 1199 1200 spapr_cpu = spapr_cpu_state(tcpu); 1201 spapr_cpu->prod = true; 1202 cs->halted = 0; 1203 qemu_cpu_kick(cs); 1204 1205 return H_SUCCESS; 1206 } 1207 1208 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, 1209 target_ulong opcode, target_ulong *args) 1210 { 1211 target_ulong rtas_r3 = args[0]; 1212 uint32_t token = rtas_ld(rtas_r3, 0); 1213 uint32_t nargs = rtas_ld(rtas_r3, 1); 1214 uint32_t nret = rtas_ld(rtas_r3, 2); 1215 1216 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, 1217 nret, rtas_r3 + 12 + 4*nargs); 1218 } 1219 1220 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, 1221 target_ulong opcode, target_ulong *args) 1222 { 1223 CPUState *cs = CPU(cpu); 1224 target_ulong size = args[0]; 1225 target_ulong addr = args[1]; 1226 1227 switch (size) { 1228 case 1: 1229 args[0] = ldub_phys(cs->as, addr); 1230 return H_SUCCESS; 1231 case 2: 1232 args[0] = lduw_phys(cs->as, addr); 1233 return H_SUCCESS; 1234 case 4: 1235 args[0] = ldl_phys(cs->as, addr); 1236 return H_SUCCESS; 1237 case 8: 1238 args[0] = ldq_phys(cs->as, addr); 1239 return H_SUCCESS; 1240 } 1241 return H_PARAMETER; 1242 } 1243 1244 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, 1245 target_ulong opcode, target_ulong *args) 1246 { 1247 CPUState *cs = CPU(cpu); 1248 1249 target_ulong size = args[0]; 1250 target_ulong addr = args[1]; 1251 target_ulong val = args[2]; 1252 1253 switch (size) { 1254 case 1: 1255 stb_phys(cs->as, addr, val); 1256 return H_SUCCESS; 1257 case 2: 1258 stw_phys(cs->as, addr, val); 1259 return H_SUCCESS; 1260 case 4: 1261 stl_phys(cs->as, addr, val); 1262 return H_SUCCESS; 1263 case 8: 1264 stq_phys(cs->as, addr, val); 1265 return H_SUCCESS; 1266 } 1267 return H_PARAMETER; 1268 } 1269 1270 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, 1271 target_ulong opcode, target_ulong *args) 1272 { 1273 CPUState *cs = CPU(cpu); 1274 1275 target_ulong dst = args[0]; /* Destination address */ 1276 target_ulong src = args[1]; /* Source address */ 1277 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ 1278 target_ulong count = args[3]; /* Element count */ 1279 target_ulong op = args[4]; /* 0 = copy, 1 = invert */ 1280 uint64_t tmp; 1281 unsigned int mask = (1 << esize) - 1; 1282 int step = 1 << esize; 1283 1284 if (count > 0x80000000) { 1285 return H_PARAMETER; 1286 } 1287 1288 if ((dst & mask) || (src & mask) || (op > 1)) { 1289 return H_PARAMETER; 1290 } 1291 1292 if (dst >= src && dst < (src + (count << esize))) { 1293 dst = dst + ((count - 1) << esize); 1294 src = src + ((count - 1) << esize); 1295 step = -step; 1296 } 1297 1298 while (count--) { 1299 switch (esize) { 1300 case 0: 1301 tmp = ldub_phys(cs->as, src); 1302 break; 1303 case 1: 1304 tmp = lduw_phys(cs->as, src); 1305 break; 1306 case 2: 1307 tmp = ldl_phys(cs->as, src); 1308 break; 1309 case 3: 1310 tmp = ldq_phys(cs->as, src); 1311 break; 1312 default: 1313 return H_PARAMETER; 1314 } 1315 if (op == 1) { 1316 tmp = ~tmp; 1317 } 1318 switch (esize) { 1319 case 0: 1320 stb_phys(cs->as, dst, tmp); 1321 break; 1322 case 1: 1323 stw_phys(cs->as, dst, tmp); 1324 break; 1325 case 2: 1326 stl_phys(cs->as, dst, tmp); 1327 break; 1328 case 3: 1329 stq_phys(cs->as, dst, tmp); 1330 break; 1331 } 1332 dst = dst + step; 1333 src = src + step; 1334 } 1335 1336 return H_SUCCESS; 1337 } 1338 1339 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, 1340 target_ulong opcode, target_ulong *args) 1341 { 1342 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1343 return H_SUCCESS; 1344 } 1345 1346 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, 1347 target_ulong opcode, target_ulong *args) 1348 { 1349 /* Nothing to do on emulation, KVM will trap this in the kernel */ 1350 return H_SUCCESS; 1351 } 1352 1353 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, 1354 target_ulong mflags, 1355 target_ulong value1, 1356 target_ulong value2) 1357 { 1358 if (value1) { 1359 return H_P3; 1360 } 1361 if (value2) { 1362 return H_P4; 1363 } 1364 1365 switch (mflags) { 1366 case H_SET_MODE_ENDIAN_BIG: 1367 spapr_set_all_lpcrs(0, LPCR_ILE); 1368 spapr_pci_switch_vga(true); 1369 return H_SUCCESS; 1370 1371 case H_SET_MODE_ENDIAN_LITTLE: 1372 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); 1373 spapr_pci_switch_vga(false); 1374 return H_SUCCESS; 1375 } 1376 1377 return H_UNSUPPORTED_FLAG; 1378 } 1379 1380 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, 1381 target_ulong mflags, 1382 target_ulong value1, 1383 target_ulong value2) 1384 { 1385 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 1386 1387 if (!(pcc->insns_flags2 & PPC2_ISA207S)) { 1388 return H_P2; 1389 } 1390 if (value1) { 1391 return H_P3; 1392 } 1393 if (value2) { 1394 return H_P4; 1395 } 1396 1397 if (mflags == AIL_RESERVED) { 1398 return H_UNSUPPORTED_FLAG; 1399 } 1400 1401 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); 1402 1403 return H_SUCCESS; 1404 } 1405 1406 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, 1407 target_ulong opcode, target_ulong *args) 1408 { 1409 target_ulong resource = args[1]; 1410 target_ulong ret = H_P2; 1411 1412 switch (resource) { 1413 case H_SET_MODE_RESOURCE_LE: 1414 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]); 1415 break; 1416 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 1417 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], 1418 args[2], args[3]); 1419 break; 1420 } 1421 1422 return ret; 1423 } 1424 1425 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, 1426 target_ulong opcode, target_ulong *args) 1427 { 1428 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1429 opcode, " (H_CLEAN_SLB)"); 1430 return H_FUNCTION; 1431 } 1432 1433 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, 1434 target_ulong opcode, target_ulong *args) 1435 { 1436 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 1437 opcode, " (H_INVALIDATE_PID)"); 1438 return H_FUNCTION; 1439 } 1440 1441 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, 1442 uint64_t patbe_old, uint64_t patbe_new) 1443 { 1444 /* 1445 * We have 4 Options: 1446 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing 1447 * HASH->RADIX : Free HPT 1448 * RADIX->HASH : Allocate HPT 1449 * NOTHING->HASH : Allocate HPT 1450 * Note: NOTHING implies the case where we said the guest could choose 1451 * later and so assumed radix and now it's called H_REG_PROC_TBL 1452 */ 1453 1454 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { 1455 /* We assume RADIX, so this catches all the "Do Nothing" cases */ 1456 } else if (!(patbe_old & PATE1_GR)) { 1457 /* HASH->RADIX : Free HPT */ 1458 spapr_free_hpt(spapr); 1459 } else if (!(patbe_new & PATE1_GR)) { 1460 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ 1461 spapr_setup_hpt_and_vrma(spapr); 1462 } 1463 return; 1464 } 1465 1466 #define FLAGS_MASK 0x01FULL 1467 #define FLAG_MODIFY 0x10 1468 #define FLAG_REGISTER 0x08 1469 #define FLAG_RADIX 0x04 1470 #define FLAG_HASH_PROC_TBL 0x02 1471 #define FLAG_GTSE 0x01 1472 1473 static target_ulong h_register_process_table(PowerPCCPU *cpu, 1474 SpaprMachineState *spapr, 1475 target_ulong opcode, 1476 target_ulong *args) 1477 { 1478 target_ulong flags = args[0]; 1479 target_ulong proc_tbl = args[1]; 1480 target_ulong page_size = args[2]; 1481 target_ulong table_size = args[3]; 1482 target_ulong update_lpcr = 0; 1483 uint64_t cproc; 1484 1485 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ 1486 return H_PARAMETER; 1487 } 1488 if (flags & FLAG_MODIFY) { 1489 if (flags & FLAG_REGISTER) { 1490 if (flags & FLAG_RADIX) { /* Register new RADIX process table */ 1491 if (proc_tbl & 0xfff || proc_tbl >> 60) { 1492 return H_P2; 1493 } else if (page_size) { 1494 return H_P3; 1495 } else if (table_size > 24) { 1496 return H_P4; 1497 } 1498 cproc = PATE1_GR | proc_tbl | table_size; 1499 } else { /* Register new HPT process table */ 1500 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ 1501 /* TODO - Not Supported */ 1502 /* Technically caused by flag bits => H_PARAMETER */ 1503 return H_PARAMETER; 1504 } else { /* Hash with SLB */ 1505 if (proc_tbl >> 38) { 1506 return H_P2; 1507 } else if (page_size & ~0x7) { 1508 return H_P3; 1509 } else if (table_size > 24) { 1510 return H_P4; 1511 } 1512 } 1513 cproc = (proc_tbl << 25) | page_size << 5 | table_size; 1514 } 1515 1516 } else { /* Deregister current process table */ 1517 /* 1518 * Set to benign value: (current GR) | 0. This allows 1519 * deregistration in KVM to succeed even if the radix bit 1520 * in flags doesn't match the radix bit in the old PATE. 1521 */ 1522 cproc = spapr->patb_entry & PATE1_GR; 1523 } 1524 } else { /* Maintain current registration */ 1525 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { 1526 /* Technically caused by flag bits => H_PARAMETER */ 1527 return H_PARAMETER; /* Existing Process Table Mismatch */ 1528 } 1529 cproc = spapr->patb_entry; 1530 } 1531 1532 /* Check if we need to setup OR free the hpt */ 1533 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); 1534 1535 spapr->patb_entry = cproc; /* Save new process table */ 1536 1537 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ 1538 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ 1539 update_lpcr |= (LPCR_UPRT | LPCR_HR); 1540 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ 1541 update_lpcr |= LPCR_UPRT; 1542 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ 1543 update_lpcr |= LPCR_GTSE; 1544 1545 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); 1546 1547 if (kvm_enabled()) { 1548 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, 1549 flags & FLAG_GTSE, cproc); 1550 } 1551 return H_SUCCESS; 1552 } 1553 1554 #define H_SIGNAL_SYS_RESET_ALL -1 1555 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 1556 1557 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, 1558 SpaprMachineState *spapr, 1559 target_ulong opcode, target_ulong *args) 1560 { 1561 target_long target = args[0]; 1562 CPUState *cs; 1563 1564 if (target < 0) { 1565 /* Broadcast */ 1566 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1567 return H_PARAMETER; 1568 } 1569 1570 CPU_FOREACH(cs) { 1571 PowerPCCPU *c = POWERPC_CPU(cs); 1572 1573 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1574 if (c == cpu) { 1575 continue; 1576 } 1577 } 1578 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1579 } 1580 return H_SUCCESS; 1581 1582 } else { 1583 /* Unicast */ 1584 cs = CPU(spapr_find_cpu(target)); 1585 if (cs) { 1586 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1587 return H_SUCCESS; 1588 } 1589 return H_PARAMETER; 1590 } 1591 } 1592 1593 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu, 1594 target_ulong *addr, bool *raw_mode_supported, 1595 Error **errp) 1596 { 1597 bool explicit_match = false; /* Matched the CPU's real PVR */ 1598 uint32_t max_compat = spapr->max_compat_pvr; 1599 uint32_t best_compat = 0; 1600 int i; 1601 1602 /* 1603 * We scan the supplied table of PVRs looking for two things 1604 * 1. Is our real CPU PVR in the list? 1605 * 2. What's the "best" listed logical PVR 1606 */ 1607 for (i = 0; i < 512; ++i) { 1608 uint32_t pvr, pvr_mask; 1609 1610 pvr_mask = ldl_be_phys(&address_space_memory, *addr); 1611 pvr = ldl_be_phys(&address_space_memory, *addr + 4); 1612 *addr += 8; 1613 1614 if (~pvr_mask & pvr) { 1615 break; /* Terminator record */ 1616 } 1617 1618 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { 1619 explicit_match = true; 1620 } else { 1621 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { 1622 best_compat = pvr; 1623 } 1624 } 1625 } 1626 1627 if ((best_compat == 0) && (!explicit_match || max_compat)) { 1628 /* We couldn't find a suitable compatibility mode, and either 1629 * the guest doesn't support "raw" mode for this CPU, or raw 1630 * mode is disabled because a maximum compat mode is set */ 1631 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS"); 1632 return 0; 1633 } 1634 1635 *raw_mode_supported = explicit_match; 1636 1637 /* Parsing finished */ 1638 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); 1639 1640 return best_compat; 1641 } 1642 1643 static bool spapr_hotplugged_dev_before_cas(void) 1644 { 1645 Object *drc_container, *obj; 1646 ObjectProperty *prop; 1647 ObjectPropertyIterator iter; 1648 1649 drc_container = container_get(object_get_root(), "/dr-connector"); 1650 object_property_iter_init(&iter, drc_container); 1651 while ((prop = object_property_iter_next(&iter))) { 1652 if (!strstart(prop->type, "link<", NULL)) { 1653 continue; 1654 } 1655 obj = object_property_get_link(drc_container, prop->name, NULL); 1656 if (spapr_drc_needed(obj)) { 1657 return true; 1658 } 1659 } 1660 return false; 1661 } 1662 1663 static target_ulong h_client_architecture_support(PowerPCCPU *cpu, 1664 SpaprMachineState *spapr, 1665 target_ulong opcode, 1666 target_ulong *args) 1667 { 1668 /* Working address in data buffer */ 1669 target_ulong addr = ppc64_phys_to_real(args[0]); 1670 target_ulong fdt_buf = args[1]; 1671 target_ulong fdt_bufsize = args[2]; 1672 target_ulong ov_table; 1673 uint32_t cas_pvr; 1674 SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old; 1675 bool guest_radix; 1676 Error *local_err = NULL; 1677 bool raw_mode_supported = false; 1678 bool guest_xive; 1679 CPUState *cs; 1680 1681 /* CAS is supposed to be called early when only the boot vCPU is active. */ 1682 CPU_FOREACH(cs) { 1683 if (cs == CPU(cpu)) { 1684 continue; 1685 } 1686 if (!cs->halted) { 1687 warn_report("guest has multiple active vCPUs at CAS, which is not allowed"); 1688 return H_MULTI_THREADS_ACTIVE; 1689 } 1690 } 1691 1692 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err); 1693 if (local_err) { 1694 error_report_err(local_err); 1695 return H_HARDWARE; 1696 } 1697 1698 /* Update CPUs */ 1699 if (cpu->compat_pvr != cas_pvr) { 1700 ppc_set_compat_all(cas_pvr, &local_err); 1701 if (local_err) { 1702 /* We fail to set compat mode (likely because running with KVM PR), 1703 * but maybe we can fallback to raw mode if the guest supports it. 1704 */ 1705 if (!raw_mode_supported) { 1706 error_report_err(local_err); 1707 return H_HARDWARE; 1708 } 1709 error_free(local_err); 1710 local_err = NULL; 1711 } 1712 } 1713 1714 /* For the future use: here @ov_table points to the first option vector */ 1715 ov_table = addr; 1716 1717 ov1_guest = spapr_ovec_parse_vector(ov_table, 1); 1718 if (!ov1_guest) { 1719 warn_report("guest didn't provide option vector 1"); 1720 return H_PARAMETER; 1721 } 1722 ov5_guest = spapr_ovec_parse_vector(ov_table, 5); 1723 if (!ov5_guest) { 1724 warn_report("guest didn't provide option vector 5"); 1725 return H_PARAMETER; 1726 } 1727 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { 1728 error_report("guest requested hash and radix MMU, which is invalid."); 1729 exit(EXIT_FAILURE); 1730 } 1731 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { 1732 error_report("guest requested an invalid interrupt mode"); 1733 exit(EXIT_FAILURE); 1734 } 1735 1736 /* The radix/hash bit in byte 24 requires special handling: */ 1737 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); 1738 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300); 1739 1740 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); 1741 1742 /* 1743 * HPT resizing is a bit of a special case, because when enabled 1744 * we assume an HPT guest will support it until it says it 1745 * doesn't, instead of assuming it won't support it until it says 1746 * it does. Strictly speaking that approach could break for 1747 * guests which don't make a CAS call, but those are so old we 1748 * don't care about them. Without that assumption we'd have to 1749 * make at least a temporary allocation of an HPT sized for max 1750 * memory, which could be impossibly difficult under KVM HV if 1751 * maxram is large. 1752 */ 1753 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { 1754 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1755 1756 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { 1757 error_report( 1758 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); 1759 exit(1); 1760 } 1761 1762 if (spapr->htab_shift < maxshift) { 1763 /* Guest doesn't know about HPT resizing, so we 1764 * pre-emptively resize for the maximum permitted RAM. At 1765 * the point this is called, nothing should have been 1766 * entered into the existing HPT */ 1767 spapr_reallocate_hpt(spapr, maxshift, &error_fatal); 1768 push_sregs_to_kvm_pr(spapr); 1769 } 1770 } 1771 1772 /* NOTE: there are actually a number of ov5 bits where input from the 1773 * guest is always zero, and the platform/QEMU enables them independently 1774 * of guest input. To model these properly we'd want some sort of mask, 1775 * but since they only currently apply to memory migration as defined 1776 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need 1777 * to worry about this for now. 1778 */ 1779 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); 1780 1781 /* also clear the radix/hash bit from the current ov5_cas bits to 1782 * be in sync with the newly ov5 bits. Else the radix bit will be 1783 * seen as being removed and this will generate a reset loop 1784 */ 1785 spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300); 1786 1787 /* full range of negotiated ov5 capabilities */ 1788 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); 1789 spapr_ovec_cleanup(ov5_guest); 1790 /* capabilities that have been added since CAS-generated guest reset. 1791 * if capabilities have since been removed, generate another reset 1792 */ 1793 spapr->cas_reboot = !spapr_ovec_subset(ov5_cas_old, spapr->ov5_cas); 1794 spapr_ovec_cleanup(ov5_cas_old); 1795 /* Now that processing is finished, set the radix/hash bit for the 1796 * guest if it requested a valid mode; otherwise terminate the boot. */ 1797 if (guest_radix) { 1798 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1799 error_report("Guest requested unavailable MMU mode (radix)."); 1800 exit(EXIT_FAILURE); 1801 } 1802 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300); 1803 } else { 1804 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1805 && !kvmppc_has_cap_mmu_hash_v3()) { 1806 error_report("Guest requested unavailable MMU mode (hash)."); 1807 exit(EXIT_FAILURE); 1808 } 1809 } 1810 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00); 1811 spapr_ovec_cleanup(ov1_guest); 1812 1813 /* 1814 * Ensure the guest asks for an interrupt mode we support; 1815 * otherwise terminate the boot. 1816 */ 1817 if (guest_xive) { 1818 if (!spapr->irq->xive) { 1819 error_report( 1820 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); 1821 exit(EXIT_FAILURE); 1822 } 1823 } else { 1824 if (!spapr->irq->xics) { 1825 error_report( 1826 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); 1827 exit(EXIT_FAILURE); 1828 } 1829 } 1830 1831 spapr_irq_update_active_intc(spapr); 1832 1833 if (spapr_hotplugged_dev_before_cas()) { 1834 spapr->cas_reboot = true; 1835 } 1836 1837 if (!spapr->cas_reboot) { 1838 void *fdt; 1839 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 1840 1841 /* If spapr_machine_reset() did not set up a HPT but one is necessary 1842 * (because the guest isn't going to use radix) then set it up here. */ 1843 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { 1844 /* legacy hash or new hash: */ 1845 spapr_setup_hpt_and_vrma(spapr); 1846 } 1847 1848 if (fdt_bufsize < sizeof(hdr)) { 1849 error_report("SLOF provided insufficient CAS buffer " 1850 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr)); 1851 exit(EXIT_FAILURE); 1852 } 1853 1854 fdt_bufsize -= sizeof(hdr); 1855 1856 fdt = spapr_build_fdt(spapr, false, fdt_bufsize); 1857 _FDT((fdt_pack(fdt))); 1858 1859 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr)); 1860 cpu_physical_memory_write(fdt_buf + sizeof(hdr), fdt, 1861 fdt_totalsize(fdt)); 1862 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1863 1864 g_free(spapr->fdt_blob); 1865 spapr->fdt_size = fdt_totalsize(fdt); 1866 spapr->fdt_initial_size = spapr->fdt_size; 1867 spapr->fdt_blob = fdt; 1868 } 1869 1870 if (spapr->cas_reboot) { 1871 qemu_system_reset_request(SHUTDOWN_CAUSE_SUBSYSTEM_RESET); 1872 } 1873 1874 return H_SUCCESS; 1875 } 1876 1877 static target_ulong h_home_node_associativity(PowerPCCPU *cpu, 1878 SpaprMachineState *spapr, 1879 target_ulong opcode, 1880 target_ulong *args) 1881 { 1882 target_ulong flags = args[0]; 1883 target_ulong procno = args[1]; 1884 PowerPCCPU *tcpu; 1885 int idx; 1886 1887 /* only support procno from H_REGISTER_VPA */ 1888 if (flags != 0x1) { 1889 return H_FUNCTION; 1890 } 1891 1892 tcpu = spapr_find_cpu(procno); 1893 if (tcpu == NULL) { 1894 return H_P2; 1895 } 1896 1897 /* sequence is the same as in the "ibm,associativity" property */ 1898 1899 idx = 0; 1900 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ 1901 ((uint64_t)(b) & 0xffffffff)) 1902 args[idx++] = ASSOCIATIVITY(0, 0); 1903 args[idx++] = ASSOCIATIVITY(0, tcpu->node_id); 1904 args[idx++] = ASSOCIATIVITY(procno, -1); 1905 for ( ; idx < 6; idx++) { 1906 args[idx] = -1; 1907 } 1908 #undef ASSOCIATIVITY 1909 1910 return H_SUCCESS; 1911 } 1912 1913 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, 1914 SpaprMachineState *spapr, 1915 target_ulong opcode, 1916 target_ulong *args) 1917 { 1918 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & 1919 ~H_CPU_CHAR_THR_RECONF_TRIG; 1920 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; 1921 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); 1922 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); 1923 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); 1924 uint8_t count_cache_flush_assist = spapr_get_cap(spapr, 1925 SPAPR_CAP_CCF_ASSIST); 1926 1927 switch (safe_cache) { 1928 case SPAPR_CAP_WORKAROUND: 1929 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; 1930 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; 1931 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; 1932 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1933 break; 1934 case SPAPR_CAP_FIXED: 1935 break; 1936 default: /* broken */ 1937 assert(safe_cache == SPAPR_CAP_BROKEN); 1938 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1939 break; 1940 } 1941 1942 switch (safe_bounds_check) { 1943 case SPAPR_CAP_WORKAROUND: 1944 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; 1945 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1946 break; 1947 case SPAPR_CAP_FIXED: 1948 break; 1949 default: /* broken */ 1950 assert(safe_bounds_check == SPAPR_CAP_BROKEN); 1951 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1952 break; 1953 } 1954 1955 switch (safe_indirect_branch) { 1956 case SPAPR_CAP_FIXED_NA: 1957 break; 1958 case SPAPR_CAP_FIXED_CCD: 1959 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; 1960 break; 1961 case SPAPR_CAP_FIXED_IBS: 1962 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; 1963 break; 1964 case SPAPR_CAP_WORKAROUND: 1965 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; 1966 if (count_cache_flush_assist) { 1967 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; 1968 } 1969 break; 1970 default: /* broken */ 1971 assert(safe_indirect_branch == SPAPR_CAP_BROKEN); 1972 break; 1973 } 1974 1975 args[0] = characteristics; 1976 args[1] = behaviour; 1977 return H_SUCCESS; 1978 } 1979 1980 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, 1981 target_ulong opcode, target_ulong *args) 1982 { 1983 target_ulong dt = ppc64_phys_to_real(args[0]); 1984 struct fdt_header hdr = { 0 }; 1985 unsigned cb; 1986 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1987 void *fdt; 1988 1989 cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); 1990 cb = fdt32_to_cpu(hdr.totalsize); 1991 1992 if (!smc->update_dt_enabled) { 1993 return H_SUCCESS; 1994 } 1995 1996 /* Check that the fdt did not grow out of proportion */ 1997 if (cb > spapr->fdt_initial_size * 2) { 1998 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, 1999 fdt32_to_cpu(hdr.magic)); 2000 return H_PARAMETER; 2001 } 2002 2003 fdt = g_malloc0(cb); 2004 cpu_physical_memory_read(dt, fdt, cb); 2005 2006 /* Check the fdt consistency */ 2007 if (fdt_check_full(fdt, cb)) { 2008 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, 2009 fdt32_to_cpu(hdr.magic)); 2010 return H_PARAMETER; 2011 } 2012 2013 g_free(spapr->fdt_blob); 2014 spapr->fdt_size = cb; 2015 spapr->fdt_blob = fdt; 2016 trace_spapr_update_dt(cb); 2017 2018 return H_SUCCESS; 2019 } 2020 2021 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; 2022 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; 2023 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; 2024 2025 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) 2026 { 2027 spapr_hcall_fn *slot; 2028 2029 if (opcode <= MAX_HCALL_OPCODE) { 2030 assert((opcode & 0x3) == 0); 2031 2032 slot = &papr_hypercall_table[opcode / 4]; 2033 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { 2034 /* we only have SVM-related hcall numbers assigned in multiples of 4 */ 2035 assert((opcode & 0x3) == 0); 2036 2037 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 2038 } else { 2039 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); 2040 2041 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 2042 } 2043 2044 assert(!(*slot)); 2045 *slot = fn; 2046 } 2047 2048 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, 2049 target_ulong *args) 2050 { 2051 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 2052 2053 if ((opcode <= MAX_HCALL_OPCODE) 2054 && ((opcode & 0x3) == 0)) { 2055 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; 2056 2057 if (fn) { 2058 return fn(cpu, spapr, opcode, args); 2059 } 2060 } else if ((opcode >= SVM_HCALL_BASE) && 2061 (opcode <= SVM_HCALL_MAX)) { 2062 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 2063 2064 if (fn) { 2065 return fn(cpu, spapr, opcode, args); 2066 } 2067 } else if ((opcode >= KVMPPC_HCALL_BASE) && 2068 (opcode <= KVMPPC_HCALL_MAX)) { 2069 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 2070 2071 if (fn) { 2072 return fn(cpu, spapr, opcode, args); 2073 } 2074 } 2075 2076 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", 2077 opcode); 2078 return H_FUNCTION; 2079 } 2080 2081 static void hypercall_register_types(void) 2082 { 2083 /* hcall-pft */ 2084 spapr_register_hypercall(H_ENTER, h_enter); 2085 spapr_register_hypercall(H_REMOVE, h_remove); 2086 spapr_register_hypercall(H_PROTECT, h_protect); 2087 spapr_register_hypercall(H_READ, h_read); 2088 2089 /* hcall-bulk */ 2090 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); 2091 2092 /* hcall-hpt-resize */ 2093 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); 2094 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); 2095 2096 /* hcall-splpar */ 2097 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); 2098 spapr_register_hypercall(H_CEDE, h_cede); 2099 spapr_register_hypercall(H_CONFER, h_confer); 2100 spapr_register_hypercall(H_PROD, h_prod); 2101 2102 /* hcall-join */ 2103 spapr_register_hypercall(H_JOIN, h_join); 2104 2105 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); 2106 2107 /* processor register resource access h-calls */ 2108 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); 2109 spapr_register_hypercall(H_SET_DABR, h_set_dabr); 2110 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); 2111 spapr_register_hypercall(H_PAGE_INIT, h_page_init); 2112 spapr_register_hypercall(H_SET_MODE, h_set_mode); 2113 2114 /* In Memory Table MMU h-calls */ 2115 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); 2116 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); 2117 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); 2118 2119 /* hcall-get-cpu-characteristics */ 2120 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, 2121 h_get_cpu_characteristics); 2122 2123 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate 2124 * here between the "CI" and the "CACHE" variants, they will use whatever 2125 * mapping attributes qemu is using. When using KVM, the kernel will 2126 * enforce the attributes more strongly 2127 */ 2128 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); 2129 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); 2130 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); 2131 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); 2132 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); 2133 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); 2134 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); 2135 2136 /* qemu/KVM-PPC specific hcalls */ 2137 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); 2138 2139 /* ibm,client-architecture-support support */ 2140 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); 2141 2142 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); 2143 2144 /* Virtual Processor Home Node */ 2145 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, 2146 h_home_node_associativity); 2147 } 2148 2149 type_init(hypercall_register_types) 2150