1 #include "qemu/osdep.h" 2 #include "qapi/error.h" 3 #include "sysemu/hw_accel.h" 4 #include "sysemu/sysemu.h" 5 #include "qemu/log.h" 6 #include "cpu.h" 7 #include "exec/exec-all.h" 8 #include "helper_regs.h" 9 #include "hw/ppc/spapr.h" 10 #include "mmu-hash64.h" 11 #include "cpu-models.h" 12 #include "trace.h" 13 #include "kvm_ppc.h" 14 #include "hw/ppc/spapr_ovec.h" 15 16 struct SPRSyncState { 17 int spr; 18 target_ulong value; 19 target_ulong mask; 20 }; 21 22 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg) 23 { 24 struct SPRSyncState *s = arg.host_ptr; 25 PowerPCCPU *cpu = POWERPC_CPU(cs); 26 CPUPPCState *env = &cpu->env; 27 28 cpu_synchronize_state(cs); 29 env->spr[s->spr] &= ~s->mask; 30 env->spr[s->spr] |= s->value; 31 } 32 33 static void set_spr(CPUState *cs, int spr, target_ulong value, 34 target_ulong mask) 35 { 36 struct SPRSyncState s = { 37 .spr = spr, 38 .value = value, 39 .mask = mask 40 }; 41 run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s)); 42 } 43 44 static bool has_spr(PowerPCCPU *cpu, int spr) 45 { 46 /* We can test whether the SPR is defined by checking for a valid name */ 47 return cpu->env.spr_cb[spr].name != NULL; 48 } 49 50 static inline bool valid_pte_index(CPUPPCState *env, target_ulong pte_index) 51 { 52 /* 53 * hash value/pteg group index is normalized by htab_mask 54 */ 55 if (((pte_index & ~7ULL) / HPTES_PER_GROUP) & ~env->htab_mask) { 56 return false; 57 } 58 return true; 59 } 60 61 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr) 62 { 63 MachineState *machine = MACHINE(spapr); 64 MemoryHotplugState *hpms = &spapr->hotplug_memory; 65 66 if (addr < machine->ram_size) { 67 return true; 68 } 69 if ((addr >= hpms->base) 70 && ((addr - hpms->base) < memory_region_size(&hpms->mr))) { 71 return true; 72 } 73 74 return false; 75 } 76 77 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr, 78 target_ulong opcode, target_ulong *args) 79 { 80 CPUPPCState *env = &cpu->env; 81 target_ulong flags = args[0]; 82 target_ulong pte_index = args[1]; 83 target_ulong pteh = args[2]; 84 target_ulong ptel = args[3]; 85 unsigned apshift; 86 target_ulong raddr; 87 target_ulong index; 88 uint64_t token; 89 90 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel); 91 if (!apshift) { 92 /* Bad page size encoding */ 93 return H_PARAMETER; 94 } 95 96 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1); 97 98 if (is_ram_address(spapr, raddr)) { 99 /* Regular RAM - should have WIMG=0010 */ 100 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { 101 return H_PARAMETER; 102 } 103 } else { 104 target_ulong wimg_flags; 105 /* Looks like an IO address */ 106 /* FIXME: What WIMG combinations could be sensible for IO? 107 * For now we allow WIMG=010x, but are there others? */ 108 /* FIXME: Should we check against registered IO addresses? */ 109 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)); 110 111 if (wimg_flags != HPTE64_R_I && 112 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) { 113 return H_PARAMETER; 114 } 115 } 116 117 pteh &= ~0x60ULL; 118 119 if (!valid_pte_index(env, pte_index)) { 120 return H_PARAMETER; 121 } 122 123 index = 0; 124 if (likely((flags & H_EXACT) == 0)) { 125 pte_index &= ~7ULL; 126 token = ppc_hash64_start_access(cpu, pte_index); 127 for (; index < 8; index++) { 128 if (!(ppc_hash64_load_hpte0(cpu, token, index) & HPTE64_V_VALID)) { 129 break; 130 } 131 } 132 ppc_hash64_stop_access(cpu, token); 133 if (index == 8) { 134 return H_PTEG_FULL; 135 } 136 } else { 137 token = ppc_hash64_start_access(cpu, pte_index); 138 if (ppc_hash64_load_hpte0(cpu, token, 0) & HPTE64_V_VALID) { 139 ppc_hash64_stop_access(cpu, token); 140 return H_PTEG_FULL; 141 } 142 ppc_hash64_stop_access(cpu, token); 143 } 144 145 ppc_hash64_store_hpte(cpu, pte_index + index, 146 pteh | HPTE64_V_HPTE_DIRTY, ptel); 147 148 args[0] = pte_index + index; 149 return H_SUCCESS; 150 } 151 152 typedef enum { 153 REMOVE_SUCCESS = 0, 154 REMOVE_NOT_FOUND = 1, 155 REMOVE_PARM = 2, 156 REMOVE_HW = 3, 157 } RemoveResult; 158 159 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex, 160 target_ulong avpn, 161 target_ulong flags, 162 target_ulong *vp, target_ulong *rp) 163 { 164 CPUPPCState *env = &cpu->env; 165 uint64_t token; 166 target_ulong v, r; 167 168 if (!valid_pte_index(env, ptex)) { 169 return REMOVE_PARM; 170 } 171 172 token = ppc_hash64_start_access(cpu, ptex); 173 v = ppc_hash64_load_hpte0(cpu, token, 0); 174 r = ppc_hash64_load_hpte1(cpu, token, 0); 175 ppc_hash64_stop_access(cpu, token); 176 177 if ((v & HPTE64_V_VALID) == 0 || 178 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || 179 ((flags & H_ANDCOND) && (v & avpn) != 0)) { 180 return REMOVE_NOT_FOUND; 181 } 182 *vp = v; 183 *rp = r; 184 ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0); 185 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); 186 return REMOVE_SUCCESS; 187 } 188 189 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr, 190 target_ulong opcode, target_ulong *args) 191 { 192 CPUPPCState *env = &cpu->env; 193 target_ulong flags = args[0]; 194 target_ulong pte_index = args[1]; 195 target_ulong avpn = args[2]; 196 RemoveResult ret; 197 198 ret = remove_hpte(cpu, pte_index, avpn, flags, 199 &args[0], &args[1]); 200 201 switch (ret) { 202 case REMOVE_SUCCESS: 203 check_tlb_flush(env, true); 204 return H_SUCCESS; 205 206 case REMOVE_NOT_FOUND: 207 return H_NOT_FOUND; 208 209 case REMOVE_PARM: 210 return H_PARAMETER; 211 212 case REMOVE_HW: 213 return H_HARDWARE; 214 } 215 216 g_assert_not_reached(); 217 } 218 219 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL 220 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL 221 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL 222 #define H_BULK_REMOVE_END 0xc000000000000000ULL 223 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL 224 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL 225 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL 226 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL 227 #define H_BULK_REMOVE_HW 0x3000000000000000ULL 228 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL 229 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL 230 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL 231 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL 232 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL 233 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL 234 235 #define H_BULK_REMOVE_MAX_BATCH 4 236 237 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr, 238 target_ulong opcode, target_ulong *args) 239 { 240 CPUPPCState *env = &cpu->env; 241 int i; 242 target_ulong rc = H_SUCCESS; 243 244 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { 245 target_ulong *tsh = &args[i*2]; 246 target_ulong tsl = args[i*2 + 1]; 247 target_ulong v, r, ret; 248 249 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { 250 break; 251 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { 252 return H_PARAMETER; 253 } 254 255 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; 256 *tsh |= H_BULK_REMOVE_RESPONSE; 257 258 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { 259 *tsh |= H_BULK_REMOVE_PARM; 260 return H_PARAMETER; 261 } 262 263 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl, 264 (*tsh & H_BULK_REMOVE_FLAGS) >> 26, 265 &v, &r); 266 267 *tsh |= ret << 60; 268 269 switch (ret) { 270 case REMOVE_SUCCESS: 271 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; 272 break; 273 274 case REMOVE_PARM: 275 rc = H_PARAMETER; 276 goto exit; 277 278 case REMOVE_HW: 279 rc = H_HARDWARE; 280 goto exit; 281 } 282 } 283 exit: 284 check_tlb_flush(env, true); 285 286 return rc; 287 } 288 289 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr, 290 target_ulong opcode, target_ulong *args) 291 { 292 CPUPPCState *env = &cpu->env; 293 target_ulong flags = args[0]; 294 target_ulong pte_index = args[1]; 295 target_ulong avpn = args[2]; 296 uint64_t token; 297 target_ulong v, r; 298 299 if (!valid_pte_index(env, pte_index)) { 300 return H_PARAMETER; 301 } 302 303 token = ppc_hash64_start_access(cpu, pte_index); 304 v = ppc_hash64_load_hpte0(cpu, token, 0); 305 r = ppc_hash64_load_hpte1(cpu, token, 0); 306 ppc_hash64_stop_access(cpu, token); 307 308 if ((v & HPTE64_V_VALID) == 0 || 309 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { 310 return H_NOT_FOUND; 311 } 312 313 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | 314 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); 315 r |= (flags << 55) & HPTE64_R_PP0; 316 r |= (flags << 48) & HPTE64_R_KEY_HI; 317 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); 318 ppc_hash64_store_hpte(cpu, pte_index, 319 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); 320 ppc_hash64_tlb_flush_hpte(cpu, pte_index, v, r); 321 /* Flush the tlb */ 322 check_tlb_flush(env, true); 323 /* Don't need a memory barrier, due to qemu's global lock */ 324 ppc_hash64_store_hpte(cpu, pte_index, v | HPTE64_V_HPTE_DIRTY, r); 325 return H_SUCCESS; 326 } 327 328 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr, 329 target_ulong opcode, target_ulong *args) 330 { 331 CPUPPCState *env = &cpu->env; 332 target_ulong flags = args[0]; 333 target_ulong pte_index = args[1]; 334 uint8_t *hpte; 335 int i, ridx, n_entries = 1; 336 337 if (!valid_pte_index(env, pte_index)) { 338 return H_PARAMETER; 339 } 340 341 if (flags & H_READ_4) { 342 /* Clear the two low order bits */ 343 pte_index &= ~(3ULL); 344 n_entries = 4; 345 } 346 347 hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64); 348 349 for (i = 0, ridx = 0; i < n_entries; i++) { 350 args[ridx++] = ldq_p(hpte); 351 args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2)); 352 hpte += HASH_PTE_SIZE_64; 353 } 354 355 return H_SUCCESS; 356 } 357 358 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr, 359 target_ulong opcode, target_ulong *args) 360 { 361 cpu_synchronize_state(CPU(cpu)); 362 cpu->env.spr[SPR_SPRG0] = args[0]; 363 364 return H_SUCCESS; 365 } 366 367 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr, 368 target_ulong opcode, target_ulong *args) 369 { 370 if (!has_spr(cpu, SPR_DABR)) { 371 return H_HARDWARE; /* DABR register not available */ 372 } 373 cpu_synchronize_state(CPU(cpu)); 374 375 if (has_spr(cpu, SPR_DABRX)) { 376 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ 377 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ 378 return H_RESERVED_DABR; 379 } 380 381 cpu->env.spr[SPR_DABR] = args[0]; 382 return H_SUCCESS; 383 } 384 385 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr, 386 target_ulong opcode, target_ulong *args) 387 { 388 target_ulong dabrx = args[1]; 389 390 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) { 391 return H_HARDWARE; 392 } 393 394 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 395 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { 396 return H_PARAMETER; 397 } 398 399 cpu_synchronize_state(CPU(cpu)); 400 cpu->env.spr[SPR_DABRX] = dabrx; 401 cpu->env.spr[SPR_DABR] = args[0]; 402 403 return H_SUCCESS; 404 } 405 406 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr, 407 target_ulong opcode, target_ulong *args) 408 { 409 target_ulong flags = args[0]; 410 hwaddr dst = args[1]; 411 hwaddr src = args[2]; 412 hwaddr len = TARGET_PAGE_SIZE; 413 uint8_t *pdst, *psrc; 414 target_long ret = H_SUCCESS; 415 416 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE 417 | H_COPY_PAGE | H_ZERO_PAGE)) { 418 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", 419 flags); 420 return H_PARAMETER; 421 } 422 423 /* Map-in destination */ 424 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { 425 return H_PARAMETER; 426 } 427 pdst = cpu_physical_memory_map(dst, &len, 1); 428 if (!pdst || len != TARGET_PAGE_SIZE) { 429 return H_PARAMETER; 430 } 431 432 if (flags & H_COPY_PAGE) { 433 /* Map-in source, copy to destination, and unmap source again */ 434 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { 435 ret = H_PARAMETER; 436 goto unmap_out; 437 } 438 psrc = cpu_physical_memory_map(src, &len, 0); 439 if (!psrc || len != TARGET_PAGE_SIZE) { 440 ret = H_PARAMETER; 441 goto unmap_out; 442 } 443 memcpy(pdst, psrc, len); 444 cpu_physical_memory_unmap(psrc, len, 0, len); 445 } else if (flags & H_ZERO_PAGE) { 446 memset(pdst, 0, len); /* Just clear the destination page */ 447 } 448 449 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { 450 kvmppc_dcbst_range(cpu, pdst, len); 451 } 452 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { 453 if (kvm_enabled()) { 454 kvmppc_icbi_range(cpu, pdst, len); 455 } else { 456 tb_flush(CPU(cpu)); 457 } 458 } 459 460 unmap_out: 461 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); 462 return ret; 463 } 464 465 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL 466 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL 467 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL 468 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL 469 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL 470 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL 471 472 #define VPA_MIN_SIZE 640 473 #define VPA_SIZE_OFFSET 0x4 474 #define VPA_SHARED_PROC_OFFSET 0x9 475 #define VPA_SHARED_PROC_VAL 0x2 476 477 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa) 478 { 479 CPUState *cs = CPU(ppc_env_get_cpu(env)); 480 uint16_t size; 481 uint8_t tmp; 482 483 if (vpa == 0) { 484 hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); 485 return H_HARDWARE; 486 } 487 488 if (vpa % env->dcache_line_size) { 489 return H_PARAMETER; 490 } 491 /* FIXME: bounds check the address */ 492 493 size = lduw_be_phys(cs->as, vpa + 0x4); 494 495 if (size < VPA_MIN_SIZE) { 496 return H_PARAMETER; 497 } 498 499 /* VPA is not allowed to cross a page boundary */ 500 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { 501 return H_PARAMETER; 502 } 503 504 env->vpa_addr = vpa; 505 506 tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET); 507 tmp |= VPA_SHARED_PROC_VAL; 508 stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); 509 510 return H_SUCCESS; 511 } 512 513 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa) 514 { 515 if (env->slb_shadow_addr) { 516 return H_RESOURCE; 517 } 518 519 if (env->dtl_addr) { 520 return H_RESOURCE; 521 } 522 523 env->vpa_addr = 0; 524 return H_SUCCESS; 525 } 526 527 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr) 528 { 529 CPUState *cs = CPU(ppc_env_get_cpu(env)); 530 uint32_t size; 531 532 if (addr == 0) { 533 hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); 534 return H_HARDWARE; 535 } 536 537 size = ldl_be_phys(cs->as, addr + 0x4); 538 if (size < 0x8) { 539 return H_PARAMETER; 540 } 541 542 if ((addr / 4096) != ((addr + size - 1) / 4096)) { 543 return H_PARAMETER; 544 } 545 546 if (!env->vpa_addr) { 547 return H_RESOURCE; 548 } 549 550 env->slb_shadow_addr = addr; 551 env->slb_shadow_size = size; 552 553 return H_SUCCESS; 554 } 555 556 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr) 557 { 558 env->slb_shadow_addr = 0; 559 env->slb_shadow_size = 0; 560 return H_SUCCESS; 561 } 562 563 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr) 564 { 565 CPUState *cs = CPU(ppc_env_get_cpu(env)); 566 uint32_t size; 567 568 if (addr == 0) { 569 hcall_dprintf("Can't cope with DTL at logical 0\n"); 570 return H_HARDWARE; 571 } 572 573 size = ldl_be_phys(cs->as, addr + 0x4); 574 575 if (size < 48) { 576 return H_PARAMETER; 577 } 578 579 if (!env->vpa_addr) { 580 return H_RESOURCE; 581 } 582 583 env->dtl_addr = addr; 584 env->dtl_size = size; 585 586 return H_SUCCESS; 587 } 588 589 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr) 590 { 591 env->dtl_addr = 0; 592 env->dtl_size = 0; 593 594 return H_SUCCESS; 595 } 596 597 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr, 598 target_ulong opcode, target_ulong *args) 599 { 600 target_ulong flags = args[0]; 601 target_ulong procno = args[1]; 602 target_ulong vpa = args[2]; 603 target_ulong ret = H_PARAMETER; 604 CPUPPCState *tenv; 605 PowerPCCPU *tcpu; 606 607 tcpu = ppc_get_vcpu_by_dt_id(procno); 608 if (!tcpu) { 609 return H_PARAMETER; 610 } 611 tenv = &tcpu->env; 612 613 switch (flags) { 614 case FLAGS_REGISTER_VPA: 615 ret = register_vpa(tenv, vpa); 616 break; 617 618 case FLAGS_DEREGISTER_VPA: 619 ret = deregister_vpa(tenv, vpa); 620 break; 621 622 case FLAGS_REGISTER_SLBSHADOW: 623 ret = register_slb_shadow(tenv, vpa); 624 break; 625 626 case FLAGS_DEREGISTER_SLBSHADOW: 627 ret = deregister_slb_shadow(tenv, vpa); 628 break; 629 630 case FLAGS_REGISTER_DTL: 631 ret = register_dtl(tenv, vpa); 632 break; 633 634 case FLAGS_DEREGISTER_DTL: 635 ret = deregister_dtl(tenv, vpa); 636 break; 637 } 638 639 return ret; 640 } 641 642 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr, 643 target_ulong opcode, target_ulong *args) 644 { 645 CPUPPCState *env = &cpu->env; 646 CPUState *cs = CPU(cpu); 647 648 env->msr |= (1ULL << MSR_EE); 649 hreg_compute_hflags(env); 650 if (!cpu_has_work(cs)) { 651 cs->halted = 1; 652 cs->exception_index = EXCP_HLT; 653 cs->exit_request = 1; 654 } 655 return H_SUCCESS; 656 } 657 658 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr, 659 target_ulong opcode, target_ulong *args) 660 { 661 target_ulong rtas_r3 = args[0]; 662 uint32_t token = rtas_ld(rtas_r3, 0); 663 uint32_t nargs = rtas_ld(rtas_r3, 1); 664 uint32_t nret = rtas_ld(rtas_r3, 2); 665 666 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, 667 nret, rtas_r3 + 12 + 4*nargs); 668 } 669 670 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr, 671 target_ulong opcode, target_ulong *args) 672 { 673 CPUState *cs = CPU(cpu); 674 target_ulong size = args[0]; 675 target_ulong addr = args[1]; 676 677 switch (size) { 678 case 1: 679 args[0] = ldub_phys(cs->as, addr); 680 return H_SUCCESS; 681 case 2: 682 args[0] = lduw_phys(cs->as, addr); 683 return H_SUCCESS; 684 case 4: 685 args[0] = ldl_phys(cs->as, addr); 686 return H_SUCCESS; 687 case 8: 688 args[0] = ldq_phys(cs->as, addr); 689 return H_SUCCESS; 690 } 691 return H_PARAMETER; 692 } 693 694 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr, 695 target_ulong opcode, target_ulong *args) 696 { 697 CPUState *cs = CPU(cpu); 698 699 target_ulong size = args[0]; 700 target_ulong addr = args[1]; 701 target_ulong val = args[2]; 702 703 switch (size) { 704 case 1: 705 stb_phys(cs->as, addr, val); 706 return H_SUCCESS; 707 case 2: 708 stw_phys(cs->as, addr, val); 709 return H_SUCCESS; 710 case 4: 711 stl_phys(cs->as, addr, val); 712 return H_SUCCESS; 713 case 8: 714 stq_phys(cs->as, addr, val); 715 return H_SUCCESS; 716 } 717 return H_PARAMETER; 718 } 719 720 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr, 721 target_ulong opcode, target_ulong *args) 722 { 723 CPUState *cs = CPU(cpu); 724 725 target_ulong dst = args[0]; /* Destination address */ 726 target_ulong src = args[1]; /* Source address */ 727 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ 728 target_ulong count = args[3]; /* Element count */ 729 target_ulong op = args[4]; /* 0 = copy, 1 = invert */ 730 uint64_t tmp; 731 unsigned int mask = (1 << esize) - 1; 732 int step = 1 << esize; 733 734 if (count > 0x80000000) { 735 return H_PARAMETER; 736 } 737 738 if ((dst & mask) || (src & mask) || (op > 1)) { 739 return H_PARAMETER; 740 } 741 742 if (dst >= src && dst < (src + (count << esize))) { 743 dst = dst + ((count - 1) << esize); 744 src = src + ((count - 1) << esize); 745 step = -step; 746 } 747 748 while (count--) { 749 switch (esize) { 750 case 0: 751 tmp = ldub_phys(cs->as, src); 752 break; 753 case 1: 754 tmp = lduw_phys(cs->as, src); 755 break; 756 case 2: 757 tmp = ldl_phys(cs->as, src); 758 break; 759 case 3: 760 tmp = ldq_phys(cs->as, src); 761 break; 762 default: 763 return H_PARAMETER; 764 } 765 if (op == 1) { 766 tmp = ~tmp; 767 } 768 switch (esize) { 769 case 0: 770 stb_phys(cs->as, dst, tmp); 771 break; 772 case 1: 773 stw_phys(cs->as, dst, tmp); 774 break; 775 case 2: 776 stl_phys(cs->as, dst, tmp); 777 break; 778 case 3: 779 stq_phys(cs->as, dst, tmp); 780 break; 781 } 782 dst = dst + step; 783 src = src + step; 784 } 785 786 return H_SUCCESS; 787 } 788 789 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr, 790 target_ulong opcode, target_ulong *args) 791 { 792 /* Nothing to do on emulation, KVM will trap this in the kernel */ 793 return H_SUCCESS; 794 } 795 796 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr, 797 target_ulong opcode, target_ulong *args) 798 { 799 /* Nothing to do on emulation, KVM will trap this in the kernel */ 800 return H_SUCCESS; 801 } 802 803 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, 804 target_ulong mflags, 805 target_ulong value1, 806 target_ulong value2) 807 { 808 CPUState *cs; 809 810 if (value1) { 811 return H_P3; 812 } 813 if (value2) { 814 return H_P4; 815 } 816 817 switch (mflags) { 818 case H_SET_MODE_ENDIAN_BIG: 819 CPU_FOREACH(cs) { 820 set_spr(cs, SPR_LPCR, 0, LPCR_ILE); 821 } 822 spapr_pci_switch_vga(true); 823 return H_SUCCESS; 824 825 case H_SET_MODE_ENDIAN_LITTLE: 826 CPU_FOREACH(cs) { 827 set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE); 828 } 829 spapr_pci_switch_vga(false); 830 return H_SUCCESS; 831 } 832 833 return H_UNSUPPORTED_FLAG; 834 } 835 836 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, 837 target_ulong mflags, 838 target_ulong value1, 839 target_ulong value2) 840 { 841 CPUState *cs; 842 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 843 844 if (!(pcc->insns_flags2 & PPC2_ISA207S)) { 845 return H_P2; 846 } 847 if (value1) { 848 return H_P3; 849 } 850 if (value2) { 851 return H_P4; 852 } 853 854 if (mflags == AIL_RESERVED) { 855 return H_UNSUPPORTED_FLAG; 856 } 857 858 CPU_FOREACH(cs) { 859 set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL); 860 } 861 862 return H_SUCCESS; 863 } 864 865 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr, 866 target_ulong opcode, target_ulong *args) 867 { 868 target_ulong resource = args[1]; 869 target_ulong ret = H_P2; 870 871 switch (resource) { 872 case H_SET_MODE_RESOURCE_LE: 873 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]); 874 break; 875 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 876 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], 877 args[2], args[3]); 878 break; 879 } 880 881 return ret; 882 } 883 884 typedef struct { 885 uint32_t cpu_version; 886 Error *err; 887 } SetCompatState; 888 889 static void do_set_compat(CPUState *cs, run_on_cpu_data arg) 890 { 891 PowerPCCPU *cpu = POWERPC_CPU(cs); 892 SetCompatState *s = arg.host_ptr; 893 894 cpu_synchronize_state(cs); 895 ppc_set_compat(cpu, s->cpu_version, &s->err); 896 } 897 898 #define get_compat_level(cpuver) ( \ 899 ((cpuver) == CPU_POWERPC_LOGICAL_2_05) ? 2050 : \ 900 ((cpuver) == CPU_POWERPC_LOGICAL_2_06) ? 2060 : \ 901 ((cpuver) == CPU_POWERPC_LOGICAL_2_06_PLUS) ? 2061 : \ 902 ((cpuver) == CPU_POWERPC_LOGICAL_2_07) ? 2070 : 0) 903 904 static void cas_handle_compat_cpu(PowerPCCPUClass *pcc, uint32_t pvr, 905 unsigned max_lvl, unsigned *compat_lvl, 906 unsigned *cpu_version) 907 { 908 unsigned lvl = get_compat_level(pvr); 909 bool is205, is206, is207; 910 911 if (!lvl) { 912 return; 913 } 914 915 /* If it is a logical PVR, try to determine the highest level */ 916 is205 = (pcc->pcr_supported & PCR_COMPAT_2_05) && 917 (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_05)); 918 is206 = (pcc->pcr_supported & PCR_COMPAT_2_06) && 919 ((lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06)) || 920 (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06_PLUS))); 921 is207 = (pcc->pcr_supported & PCR_COMPAT_2_07) && 922 (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_07)); 923 924 if (is205 || is206 || is207) { 925 if (!max_lvl) { 926 /* User did not set the level, choose the highest */ 927 if (*compat_lvl <= lvl) { 928 *compat_lvl = lvl; 929 *cpu_version = pvr; 930 } 931 } else if (max_lvl >= lvl) { 932 /* User chose the level, don't set higher than this */ 933 *compat_lvl = lvl; 934 *cpu_version = pvr; 935 } 936 } 937 } 938 939 static target_ulong h_client_architecture_support(PowerPCCPU *cpu_, 940 sPAPRMachineState *spapr, 941 target_ulong opcode, 942 target_ulong *args) 943 { 944 target_ulong list = ppc64_phys_to_real(args[0]); 945 target_ulong ov_table; 946 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu_); 947 CPUState *cs; 948 bool cpu_match = false, cpu_update = true; 949 unsigned old_cpu_version = cpu_->cpu_version; 950 unsigned compat_lvl = 0, cpu_version = 0; 951 unsigned max_lvl = get_compat_level(cpu_->max_compat); 952 int counter; 953 sPAPROptionVector *ov5_guest, *ov5_cas_old, *ov5_updates; 954 955 /* Parse PVR list */ 956 for (counter = 0; counter < 512; ++counter) { 957 uint32_t pvr, pvr_mask; 958 959 pvr_mask = ldl_be_phys(&address_space_memory, list); 960 list += 4; 961 pvr = ldl_be_phys(&address_space_memory, list); 962 list += 4; 963 964 trace_spapr_cas_pvr_try(pvr); 965 if (!max_lvl && 966 ((cpu_->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask))) { 967 cpu_match = true; 968 cpu_version = 0; 969 } else if (pvr == cpu_->cpu_version) { 970 cpu_match = true; 971 cpu_version = cpu_->cpu_version; 972 } else if (!cpu_match) { 973 cas_handle_compat_cpu(pcc, pvr, max_lvl, &compat_lvl, &cpu_version); 974 } 975 /* Terminator record */ 976 if (~pvr_mask & pvr) { 977 break; 978 } 979 } 980 981 /* Parsing finished */ 982 trace_spapr_cas_pvr(cpu_->cpu_version, cpu_match, 983 cpu_version, pcc->pcr_mask); 984 985 /* Update CPUs */ 986 if (old_cpu_version != cpu_version) { 987 CPU_FOREACH(cs) { 988 SetCompatState s = { 989 .cpu_version = cpu_version, 990 .err = NULL, 991 }; 992 993 run_on_cpu(cs, do_set_compat, RUN_ON_CPU_HOST_PTR(&s)); 994 995 if (s.err) { 996 error_report_err(s.err); 997 return H_HARDWARE; 998 } 999 } 1000 } 1001 1002 if (!cpu_version) { 1003 cpu_update = false; 1004 } 1005 1006 /* For the future use: here @ov_table points to the first option vector */ 1007 ov_table = list; 1008 1009 ov5_guest = spapr_ovec_parse_vector(ov_table, 5); 1010 1011 /* NOTE: there are actually a number of ov5 bits where input from the 1012 * guest is always zero, and the platform/QEMU enables them independently 1013 * of guest input. To model these properly we'd want some sort of mask, 1014 * but since they only currently apply to memory migration as defined 1015 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need 1016 * to worry about this for now. 1017 */ 1018 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); 1019 /* full range of negotiated ov5 capabilities */ 1020 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); 1021 spapr_ovec_cleanup(ov5_guest); 1022 /* capabilities that have been added since CAS-generated guest reset. 1023 * if capabilities have since been removed, generate another reset 1024 */ 1025 ov5_updates = spapr_ovec_new(); 1026 spapr->cas_reboot = spapr_ovec_diff(ov5_updates, 1027 ov5_cas_old, spapr->ov5_cas); 1028 1029 if (!spapr->cas_reboot) { 1030 spapr->cas_reboot = 1031 (spapr_h_cas_compose_response(spapr, args[1], args[2], cpu_update, 1032 ov5_updates) != 0); 1033 } 1034 spapr_ovec_cleanup(ov5_updates); 1035 1036 if (spapr->cas_reboot) { 1037 qemu_system_reset_request(); 1038 } 1039 1040 return H_SUCCESS; 1041 } 1042 1043 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; 1044 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; 1045 1046 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) 1047 { 1048 spapr_hcall_fn *slot; 1049 1050 if (opcode <= MAX_HCALL_OPCODE) { 1051 assert((opcode & 0x3) == 0); 1052 1053 slot = &papr_hypercall_table[opcode / 4]; 1054 } else { 1055 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); 1056 1057 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1058 } 1059 1060 assert(!(*slot)); 1061 *slot = fn; 1062 } 1063 1064 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, 1065 target_ulong *args) 1066 { 1067 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1068 1069 if ((opcode <= MAX_HCALL_OPCODE) 1070 && ((opcode & 0x3) == 0)) { 1071 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; 1072 1073 if (fn) { 1074 return fn(cpu, spapr, opcode, args); 1075 } 1076 } else if ((opcode >= KVMPPC_HCALL_BASE) && 1077 (opcode <= KVMPPC_HCALL_MAX)) { 1078 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1079 1080 if (fn) { 1081 return fn(cpu, spapr, opcode, args); 1082 } 1083 } 1084 1085 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", 1086 opcode); 1087 return H_FUNCTION; 1088 } 1089 1090 static void hypercall_register_types(void) 1091 { 1092 /* hcall-pft */ 1093 spapr_register_hypercall(H_ENTER, h_enter); 1094 spapr_register_hypercall(H_REMOVE, h_remove); 1095 spapr_register_hypercall(H_PROTECT, h_protect); 1096 spapr_register_hypercall(H_READ, h_read); 1097 1098 /* hcall-bulk */ 1099 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); 1100 1101 /* hcall-splpar */ 1102 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); 1103 spapr_register_hypercall(H_CEDE, h_cede); 1104 1105 /* processor register resource access h-calls */ 1106 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); 1107 spapr_register_hypercall(H_SET_DABR, h_set_dabr); 1108 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); 1109 spapr_register_hypercall(H_PAGE_INIT, h_page_init); 1110 spapr_register_hypercall(H_SET_MODE, h_set_mode); 1111 1112 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate 1113 * here between the "CI" and the "CACHE" variants, they will use whatever 1114 * mapping attributes qemu is using. When using KVM, the kernel will 1115 * enforce the attributes more strongly 1116 */ 1117 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); 1118 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); 1119 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); 1120 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); 1121 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); 1122 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); 1123 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); 1124 1125 /* qemu/KVM-PPC specific hcalls */ 1126 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); 1127 1128 /* ibm,client-architecture-support support */ 1129 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); 1130 } 1131 1132 type_init(hypercall_register_types) 1133