xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision 7f709ce7)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/error-report.h"
7 #include "cpu.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "mmu-hash64.h"
12 #include "cpu-models.h"
13 #include "trace.h"
14 #include "kvm_ppc.h"
15 #include "hw/ppc/spapr_ovec.h"
16 #include "qemu/error-report.h"
17 #include "mmu-book3s-v3.h"
18 
19 struct SPRSyncState {
20     int spr;
21     target_ulong value;
22     target_ulong mask;
23 };
24 
25 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
26 {
27     struct SPRSyncState *s = arg.host_ptr;
28     PowerPCCPU *cpu = POWERPC_CPU(cs);
29     CPUPPCState *env = &cpu->env;
30 
31     cpu_synchronize_state(cs);
32     env->spr[s->spr] &= ~s->mask;
33     env->spr[s->spr] |= s->value;
34 }
35 
36 static void set_spr(CPUState *cs, int spr, target_ulong value,
37                     target_ulong mask)
38 {
39     struct SPRSyncState s = {
40         .spr = spr,
41         .value = value,
42         .mask = mask
43     };
44     run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
45 }
46 
47 static bool has_spr(PowerPCCPU *cpu, int spr)
48 {
49     /* We can test whether the SPR is defined by checking for a valid name */
50     return cpu->env.spr_cb[spr].name != NULL;
51 }
52 
53 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
54 {
55     /*
56      * hash value/pteg group index is normalized by HPT mask
57      */
58     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
59         return false;
60     }
61     return true;
62 }
63 
64 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
65 {
66     MachineState *machine = MACHINE(spapr);
67     MemoryHotplugState *hpms = &spapr->hotplug_memory;
68 
69     if (addr < machine->ram_size) {
70         return true;
71     }
72     if ((addr >= hpms->base)
73         && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
74         return true;
75     }
76 
77     return false;
78 }
79 
80 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
81                             target_ulong opcode, target_ulong *args)
82 {
83     target_ulong flags = args[0];
84     target_ulong ptex = args[1];
85     target_ulong pteh = args[2];
86     target_ulong ptel = args[3];
87     unsigned apshift;
88     target_ulong raddr;
89     target_ulong slot;
90     const ppc_hash_pte64_t *hptes;
91 
92     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
93     if (!apshift) {
94         /* Bad page size encoding */
95         return H_PARAMETER;
96     }
97 
98     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
99 
100     if (is_ram_address(spapr, raddr)) {
101         /* Regular RAM - should have WIMG=0010 */
102         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
103             return H_PARAMETER;
104         }
105     } else {
106         target_ulong wimg_flags;
107         /* Looks like an IO address */
108         /* FIXME: What WIMG combinations could be sensible for IO?
109          * For now we allow WIMG=010x, but are there others? */
110         /* FIXME: Should we check against registered IO addresses? */
111         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
112 
113         if (wimg_flags != HPTE64_R_I &&
114             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
115             return H_PARAMETER;
116         }
117     }
118 
119     pteh &= ~0x60ULL;
120 
121     if (!valid_ptex(cpu, ptex)) {
122         return H_PARAMETER;
123     }
124 
125     slot = ptex & 7ULL;
126     ptex = ptex & ~7ULL;
127 
128     if (likely((flags & H_EXACT) == 0)) {
129         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
130         for (slot = 0; slot < 8; slot++) {
131             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
132                 break;
133             }
134         }
135         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
136         if (slot == 8) {
137             return H_PTEG_FULL;
138         }
139     } else {
140         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
141         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
142             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
143             return H_PTEG_FULL;
144         }
145         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
146     }
147 
148     ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
149 
150     args[0] = ptex + slot;
151     return H_SUCCESS;
152 }
153 
154 typedef enum {
155     REMOVE_SUCCESS = 0,
156     REMOVE_NOT_FOUND = 1,
157     REMOVE_PARM = 2,
158     REMOVE_HW = 3,
159 } RemoveResult;
160 
161 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
162                                 target_ulong avpn,
163                                 target_ulong flags,
164                                 target_ulong *vp, target_ulong *rp)
165 {
166     const ppc_hash_pte64_t *hptes;
167     target_ulong v, r;
168 
169     if (!valid_ptex(cpu, ptex)) {
170         return REMOVE_PARM;
171     }
172 
173     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
174     v = ppc_hash64_hpte0(cpu, hptes, 0);
175     r = ppc_hash64_hpte1(cpu, hptes, 0);
176     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
177 
178     if ((v & HPTE64_V_VALID) == 0 ||
179         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
180         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
181         return REMOVE_NOT_FOUND;
182     }
183     *vp = v;
184     *rp = r;
185     ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
186     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
187     return REMOVE_SUCCESS;
188 }
189 
190 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
191                              target_ulong opcode, target_ulong *args)
192 {
193     CPUPPCState *env = &cpu->env;
194     target_ulong flags = args[0];
195     target_ulong ptex = args[1];
196     target_ulong avpn = args[2];
197     RemoveResult ret;
198 
199     ret = remove_hpte(cpu, ptex, avpn, flags,
200                       &args[0], &args[1]);
201 
202     switch (ret) {
203     case REMOVE_SUCCESS:
204         check_tlb_flush(env, true);
205         return H_SUCCESS;
206 
207     case REMOVE_NOT_FOUND:
208         return H_NOT_FOUND;
209 
210     case REMOVE_PARM:
211         return H_PARAMETER;
212 
213     case REMOVE_HW:
214         return H_HARDWARE;
215     }
216 
217     g_assert_not_reached();
218 }
219 
220 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
221 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
222 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
223 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
224 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
225 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
226 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
227 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
228 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
229 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
230 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
231 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
232 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
233 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
234 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
235 
236 #define H_BULK_REMOVE_MAX_BATCH        4
237 
238 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
239                                   target_ulong opcode, target_ulong *args)
240 {
241     CPUPPCState *env = &cpu->env;
242     int i;
243     target_ulong rc = H_SUCCESS;
244 
245     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
246         target_ulong *tsh = &args[i*2];
247         target_ulong tsl = args[i*2 + 1];
248         target_ulong v, r, ret;
249 
250         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
251             break;
252         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
253             return H_PARAMETER;
254         }
255 
256         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
257         *tsh |= H_BULK_REMOVE_RESPONSE;
258 
259         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
260             *tsh |= H_BULK_REMOVE_PARM;
261             return H_PARAMETER;
262         }
263 
264         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
265                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
266                           &v, &r);
267 
268         *tsh |= ret << 60;
269 
270         switch (ret) {
271         case REMOVE_SUCCESS:
272             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
273             break;
274 
275         case REMOVE_PARM:
276             rc = H_PARAMETER;
277             goto exit;
278 
279         case REMOVE_HW:
280             rc = H_HARDWARE;
281             goto exit;
282         }
283     }
284  exit:
285     check_tlb_flush(env, true);
286 
287     return rc;
288 }
289 
290 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
291                               target_ulong opcode, target_ulong *args)
292 {
293     CPUPPCState *env = &cpu->env;
294     target_ulong flags = args[0];
295     target_ulong ptex = args[1];
296     target_ulong avpn = args[2];
297     const ppc_hash_pte64_t *hptes;
298     target_ulong v, r;
299 
300     if (!valid_ptex(cpu, ptex)) {
301         return H_PARAMETER;
302     }
303 
304     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
305     v = ppc_hash64_hpte0(cpu, hptes, 0);
306     r = ppc_hash64_hpte1(cpu, hptes, 0);
307     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
308 
309     if ((v & HPTE64_V_VALID) == 0 ||
310         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
311         return H_NOT_FOUND;
312     }
313 
314     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
315            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
316     r |= (flags << 55) & HPTE64_R_PP0;
317     r |= (flags << 48) & HPTE64_R_KEY_HI;
318     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
319     ppc_hash64_store_hpte(cpu, ptex,
320                           (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
321     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
322     /* Flush the tlb */
323     check_tlb_flush(env, true);
324     /* Don't need a memory barrier, due to qemu's global lock */
325     ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
326     return H_SUCCESS;
327 }
328 
329 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
330                            target_ulong opcode, target_ulong *args)
331 {
332     target_ulong flags = args[0];
333     target_ulong ptex = args[1];
334     uint8_t *hpte;
335     int i, ridx, n_entries = 1;
336 
337     if (!valid_ptex(cpu, ptex)) {
338         return H_PARAMETER;
339     }
340 
341     if (flags & H_READ_4) {
342         /* Clear the two low order bits */
343         ptex &= ~(3ULL);
344         n_entries = 4;
345     }
346 
347     hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
348 
349     for (i = 0, ridx = 0; i < n_entries; i++) {
350         args[ridx++] = ldq_p(hpte);
351         args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
352         hpte += HASH_PTE_SIZE_64;
353     }
354 
355     return H_SUCCESS;
356 }
357 
358 struct sPAPRPendingHPT {
359     /* These fields are read-only after initialization */
360     int shift;
361     QemuThread thread;
362 
363     /* These fields are protected by the BQL */
364     bool complete;
365 
366     /* These fields are private to the preparation thread if
367      * !complete, otherwise protected by the BQL */
368     int ret;
369     void *hpt;
370 };
371 
372 static void free_pending_hpt(sPAPRPendingHPT *pending)
373 {
374     if (pending->hpt) {
375         qemu_vfree(pending->hpt);
376     }
377 
378     g_free(pending);
379 }
380 
381 static void *hpt_prepare_thread(void *opaque)
382 {
383     sPAPRPendingHPT *pending = opaque;
384     size_t size = 1ULL << pending->shift;
385 
386     pending->hpt = qemu_memalign(size, size);
387     if (pending->hpt) {
388         memset(pending->hpt, 0, size);
389         pending->ret = H_SUCCESS;
390     } else {
391         pending->ret = H_NO_MEM;
392     }
393 
394     qemu_mutex_lock_iothread();
395 
396     if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
397         /* Ready to go */
398         pending->complete = true;
399     } else {
400         /* We've been cancelled, clean ourselves up */
401         free_pending_hpt(pending);
402     }
403 
404     qemu_mutex_unlock_iothread();
405     return NULL;
406 }
407 
408 /* Must be called with BQL held */
409 static void cancel_hpt_prepare(sPAPRMachineState *spapr)
410 {
411     sPAPRPendingHPT *pending = spapr->pending_hpt;
412 
413     /* Let the thread know it's cancelled */
414     spapr->pending_hpt = NULL;
415 
416     if (!pending) {
417         /* Nothing to do */
418         return;
419     }
420 
421     if (!pending->complete) {
422         /* thread will clean itself up */
423         return;
424     }
425 
426     free_pending_hpt(pending);
427 }
428 
429 /* Convert a return code from the KVM ioctl()s implementing resize HPT
430  * into a PAPR hypercall return code */
431 static target_ulong resize_hpt_convert_rc(int ret)
432 {
433     if (ret >= 100000) {
434         return H_LONG_BUSY_ORDER_100_SEC;
435     } else if (ret >= 10000) {
436         return H_LONG_BUSY_ORDER_10_SEC;
437     } else if (ret >= 1000) {
438         return H_LONG_BUSY_ORDER_1_SEC;
439     } else if (ret >= 100) {
440         return H_LONG_BUSY_ORDER_100_MSEC;
441     } else if (ret >= 10) {
442         return H_LONG_BUSY_ORDER_10_MSEC;
443     } else if (ret > 0) {
444         return H_LONG_BUSY_ORDER_1_MSEC;
445     }
446 
447     switch (ret) {
448     case 0:
449         return H_SUCCESS;
450     case -EPERM:
451         return H_AUTHORITY;
452     case -EINVAL:
453         return H_PARAMETER;
454     case -ENXIO:
455         return H_CLOSED;
456     case -ENOSPC:
457         return H_PTEG_FULL;
458     case -EBUSY:
459         return H_BUSY;
460     case -ENOMEM:
461         return H_NO_MEM;
462     default:
463         return H_HARDWARE;
464     }
465 }
466 
467 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
468                                          sPAPRMachineState *spapr,
469                                          target_ulong opcode,
470                                          target_ulong *args)
471 {
472     target_ulong flags = args[0];
473     int shift = args[1];
474     sPAPRPendingHPT *pending = spapr->pending_hpt;
475     uint64_t current_ram_size;
476     int rc;
477 
478     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
479         return H_AUTHORITY;
480     }
481 
482     if (!spapr->htab_shift) {
483         /* Radix guest, no HPT */
484         return H_NOT_AVAILABLE;
485     }
486 
487     trace_spapr_h_resize_hpt_prepare(flags, shift);
488 
489     if (flags != 0) {
490         return H_PARAMETER;
491     }
492 
493     if (shift && ((shift < 18) || (shift > 46))) {
494         return H_PARAMETER;
495     }
496 
497     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
498 
499     /* We only allow the guest to allocate an HPT one order above what
500      * we'd normally give them (to stop a small guest claiming a huge
501      * chunk of resources in the HPT */
502     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
503         return H_RESOURCE;
504     }
505 
506     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
507     if (rc != -ENOSYS) {
508         return resize_hpt_convert_rc(rc);
509     }
510 
511     if (pending) {
512         /* something already in progress */
513         if (pending->shift == shift) {
514             /* and it's suitable */
515             if (pending->complete) {
516                 return pending->ret;
517             } else {
518                 return H_LONG_BUSY_ORDER_100_MSEC;
519             }
520         }
521 
522         /* not suitable, cancel and replace */
523         cancel_hpt_prepare(spapr);
524     }
525 
526     if (!shift) {
527         /* nothing to do */
528         return H_SUCCESS;
529     }
530 
531     /* start new prepare */
532 
533     pending = g_new0(sPAPRPendingHPT, 1);
534     pending->shift = shift;
535     pending->ret = H_HARDWARE;
536 
537     qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
538                        hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
539 
540     spapr->pending_hpt = pending;
541 
542     /* In theory we could estimate the time more accurately based on
543      * the new size, but there's not much point */
544     return H_LONG_BUSY_ORDER_100_MSEC;
545 }
546 
547 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
548 {
549     uint8_t *addr = htab;
550 
551     addr += pteg * HASH_PTEG_SIZE_64;
552     addr += slot * HASH_PTE_SIZE_64;
553     return  ldq_p(addr);
554 }
555 
556 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
557                            uint64_t pte0, uint64_t pte1)
558 {
559     uint8_t *addr = htab;
560 
561     addr += pteg * HASH_PTEG_SIZE_64;
562     addr += slot * HASH_PTE_SIZE_64;
563 
564     stq_p(addr, pte0);
565     stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
566 }
567 
568 static int rehash_hpte(PowerPCCPU *cpu,
569                        const ppc_hash_pte64_t *hptes,
570                        void *old_hpt, uint64_t oldsize,
571                        void *new_hpt, uint64_t newsize,
572                        uint64_t pteg, int slot)
573 {
574     uint64_t old_hash_mask = (oldsize >> 7) - 1;
575     uint64_t new_hash_mask = (newsize >> 7) - 1;
576     target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
577     target_ulong pte1;
578     uint64_t avpn;
579     unsigned base_pg_shift;
580     uint64_t hash, new_pteg, replace_pte0;
581 
582     if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
583         return H_SUCCESS;
584     }
585 
586     pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
587 
588     base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
589     assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
590     avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
591 
592     if (pte0 & HPTE64_V_SECONDARY) {
593         pteg = ~pteg;
594     }
595 
596     if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
597         uint64_t offset, vsid;
598 
599         /* We only have 28 - 23 bits of offset in avpn */
600         offset = (avpn & 0x1f) << 23;
601         vsid = avpn >> 5;
602         /* We can find more bits from the pteg value */
603         if (base_pg_shift < 23) {
604             offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
605         }
606 
607         hash = vsid ^ (offset >> base_pg_shift);
608     } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
609         uint64_t offset, vsid;
610 
611         /* We only have 40 - 23 bits of seg_off in avpn */
612         offset = (avpn & 0x1ffff) << 23;
613         vsid = avpn >> 17;
614         if (base_pg_shift < 23) {
615             offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
616                 << base_pg_shift;
617         }
618 
619         hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
620     } else {
621         error_report("rehash_pte: Bad segment size in HPTE");
622         return H_HARDWARE;
623     }
624 
625     new_pteg = hash & new_hash_mask;
626     if (pte0 & HPTE64_V_SECONDARY) {
627         assert(~pteg == (hash & old_hash_mask));
628         new_pteg = ~new_pteg;
629     } else {
630         assert(pteg == (hash & old_hash_mask));
631     }
632     assert((oldsize != newsize) || (pteg == new_pteg));
633     replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
634     /*
635      * Strictly speaking, we don't need all these tests, since we only
636      * ever rehash bolted HPTEs.  We might in future handle non-bolted
637      * HPTEs, though so make the logic correct for those cases as
638      * well.
639      */
640     if (replace_pte0 & HPTE64_V_VALID) {
641         assert(newsize < oldsize);
642         if (replace_pte0 & HPTE64_V_BOLTED) {
643             if (pte0 & HPTE64_V_BOLTED) {
644                 /* Bolted collision, nothing we can do */
645                 return H_PTEG_FULL;
646             } else {
647                 /* Discard this hpte */
648                 return H_SUCCESS;
649             }
650         }
651     }
652 
653     new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
654     return H_SUCCESS;
655 }
656 
657 static int rehash_hpt(PowerPCCPU *cpu,
658                       void *old_hpt, uint64_t oldsize,
659                       void *new_hpt, uint64_t newsize)
660 {
661     uint64_t n_ptegs = oldsize >> 7;
662     uint64_t pteg;
663     int slot;
664     int rc;
665 
666     for (pteg = 0; pteg < n_ptegs; pteg++) {
667         hwaddr ptex = pteg * HPTES_PER_GROUP;
668         const ppc_hash_pte64_t *hptes
669             = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
670 
671         if (!hptes) {
672             return H_HARDWARE;
673         }
674 
675         for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
676             rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
677                              pteg, slot);
678             if (rc != H_SUCCESS) {
679                 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
680                 return rc;
681             }
682         }
683         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
684     }
685 
686     return H_SUCCESS;
687 }
688 
689 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
690 {
691     int ret;
692 
693     cpu_synchronize_state(cs);
694 
695     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
696     if (ret < 0) {
697         error_report("failed to push sregs to KVM: %s", strerror(-ret));
698         exit(1);
699     }
700 }
701 
702 static void push_sregs_to_kvm_pr(sPAPRMachineState *spapr)
703 {
704     CPUState *cs;
705 
706     /*
707      * This is a hack for the benefit of KVM PR - it abuses the SDR1
708      * slot in kvm_sregs to communicate the userspace address of the
709      * HPT
710      */
711     if (!kvm_enabled() || !spapr->htab) {
712         return;
713     }
714 
715     CPU_FOREACH(cs) {
716         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
717     }
718 }
719 
720 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
721                                         sPAPRMachineState *spapr,
722                                         target_ulong opcode,
723                                         target_ulong *args)
724 {
725     target_ulong flags = args[0];
726     target_ulong shift = args[1];
727     sPAPRPendingHPT *pending = spapr->pending_hpt;
728     int rc;
729     size_t newsize;
730 
731     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
732         return H_AUTHORITY;
733     }
734 
735     trace_spapr_h_resize_hpt_commit(flags, shift);
736 
737     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
738     if (rc != -ENOSYS) {
739         return resize_hpt_convert_rc(rc);
740     }
741 
742     if (flags != 0) {
743         return H_PARAMETER;
744     }
745 
746     if (!pending || (pending->shift != shift)) {
747         /* no matching prepare */
748         return H_CLOSED;
749     }
750 
751     if (!pending->complete) {
752         /* prepare has not completed */
753         return H_BUSY;
754     }
755 
756     /* Shouldn't have got past PREPARE without an HPT */
757     g_assert(spapr->htab_shift);
758 
759     newsize = 1ULL << pending->shift;
760     rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
761                     pending->hpt, newsize);
762     if (rc == H_SUCCESS) {
763         qemu_vfree(spapr->htab);
764         spapr->htab = pending->hpt;
765         spapr->htab_shift = pending->shift;
766 
767         push_sregs_to_kvm_pr(spapr);
768 
769         pending->hpt = NULL; /* so it's not free()d */
770     }
771 
772     /* Clean up */
773     spapr->pending_hpt = NULL;
774     free_pending_hpt(pending);
775 
776     return rc;
777 }
778 
779 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
780                                 target_ulong opcode, target_ulong *args)
781 {
782     cpu_synchronize_state(CPU(cpu));
783     cpu->env.spr[SPR_SPRG0] = args[0];
784 
785     return H_SUCCESS;
786 }
787 
788 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
789                                target_ulong opcode, target_ulong *args)
790 {
791     if (!has_spr(cpu, SPR_DABR)) {
792         return H_HARDWARE;              /* DABR register not available */
793     }
794     cpu_synchronize_state(CPU(cpu));
795 
796     if (has_spr(cpu, SPR_DABRX)) {
797         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
798     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
799         return H_RESERVED_DABR;
800     }
801 
802     cpu->env.spr[SPR_DABR] = args[0];
803     return H_SUCCESS;
804 }
805 
806 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
807                                 target_ulong opcode, target_ulong *args)
808 {
809     target_ulong dabrx = args[1];
810 
811     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
812         return H_HARDWARE;
813     }
814 
815     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
816         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
817         return H_PARAMETER;
818     }
819 
820     cpu_synchronize_state(CPU(cpu));
821     cpu->env.spr[SPR_DABRX] = dabrx;
822     cpu->env.spr[SPR_DABR] = args[0];
823 
824     return H_SUCCESS;
825 }
826 
827 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
828                                 target_ulong opcode, target_ulong *args)
829 {
830     target_ulong flags = args[0];
831     hwaddr dst = args[1];
832     hwaddr src = args[2];
833     hwaddr len = TARGET_PAGE_SIZE;
834     uint8_t *pdst, *psrc;
835     target_long ret = H_SUCCESS;
836 
837     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
838                   | H_COPY_PAGE | H_ZERO_PAGE)) {
839         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
840                       flags);
841         return H_PARAMETER;
842     }
843 
844     /* Map-in destination */
845     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
846         return H_PARAMETER;
847     }
848     pdst = cpu_physical_memory_map(dst, &len, 1);
849     if (!pdst || len != TARGET_PAGE_SIZE) {
850         return H_PARAMETER;
851     }
852 
853     if (flags & H_COPY_PAGE) {
854         /* Map-in source, copy to destination, and unmap source again */
855         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
856             ret = H_PARAMETER;
857             goto unmap_out;
858         }
859         psrc = cpu_physical_memory_map(src, &len, 0);
860         if (!psrc || len != TARGET_PAGE_SIZE) {
861             ret = H_PARAMETER;
862             goto unmap_out;
863         }
864         memcpy(pdst, psrc, len);
865         cpu_physical_memory_unmap(psrc, len, 0, len);
866     } else if (flags & H_ZERO_PAGE) {
867         memset(pdst, 0, len);          /* Just clear the destination page */
868     }
869 
870     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
871         kvmppc_dcbst_range(cpu, pdst, len);
872     }
873     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
874         if (kvm_enabled()) {
875             kvmppc_icbi_range(cpu, pdst, len);
876         } else {
877             tb_flush(CPU(cpu));
878         }
879     }
880 
881 unmap_out:
882     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
883     return ret;
884 }
885 
886 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
887 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
888 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
889 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
890 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
891 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
892 
893 #define VPA_MIN_SIZE           640
894 #define VPA_SIZE_OFFSET        0x4
895 #define VPA_SHARED_PROC_OFFSET 0x9
896 #define VPA_SHARED_PROC_VAL    0x2
897 
898 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
899 {
900     CPUState *cs = CPU(ppc_env_get_cpu(env));
901     uint16_t size;
902     uint8_t tmp;
903 
904     if (vpa == 0) {
905         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
906         return H_HARDWARE;
907     }
908 
909     if (vpa % env->dcache_line_size) {
910         return H_PARAMETER;
911     }
912     /* FIXME: bounds check the address */
913 
914     size = lduw_be_phys(cs->as, vpa + 0x4);
915 
916     if (size < VPA_MIN_SIZE) {
917         return H_PARAMETER;
918     }
919 
920     /* VPA is not allowed to cross a page boundary */
921     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
922         return H_PARAMETER;
923     }
924 
925     env->vpa_addr = vpa;
926 
927     tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
928     tmp |= VPA_SHARED_PROC_VAL;
929     stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
930 
931     return H_SUCCESS;
932 }
933 
934 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
935 {
936     if (env->slb_shadow_addr) {
937         return H_RESOURCE;
938     }
939 
940     if (env->dtl_addr) {
941         return H_RESOURCE;
942     }
943 
944     env->vpa_addr = 0;
945     return H_SUCCESS;
946 }
947 
948 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
949 {
950     CPUState *cs = CPU(ppc_env_get_cpu(env));
951     uint32_t size;
952 
953     if (addr == 0) {
954         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
955         return H_HARDWARE;
956     }
957 
958     size = ldl_be_phys(cs->as, addr + 0x4);
959     if (size < 0x8) {
960         return H_PARAMETER;
961     }
962 
963     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
964         return H_PARAMETER;
965     }
966 
967     if (!env->vpa_addr) {
968         return H_RESOURCE;
969     }
970 
971     env->slb_shadow_addr = addr;
972     env->slb_shadow_size = size;
973 
974     return H_SUCCESS;
975 }
976 
977 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
978 {
979     env->slb_shadow_addr = 0;
980     env->slb_shadow_size = 0;
981     return H_SUCCESS;
982 }
983 
984 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
985 {
986     CPUState *cs = CPU(ppc_env_get_cpu(env));
987     uint32_t size;
988 
989     if (addr == 0) {
990         hcall_dprintf("Can't cope with DTL at logical 0\n");
991         return H_HARDWARE;
992     }
993 
994     size = ldl_be_phys(cs->as, addr + 0x4);
995 
996     if (size < 48) {
997         return H_PARAMETER;
998     }
999 
1000     if (!env->vpa_addr) {
1001         return H_RESOURCE;
1002     }
1003 
1004     env->dtl_addr = addr;
1005     env->dtl_size = size;
1006 
1007     return H_SUCCESS;
1008 }
1009 
1010 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
1011 {
1012     env->dtl_addr = 0;
1013     env->dtl_size = 0;
1014 
1015     return H_SUCCESS;
1016 }
1017 
1018 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1019                                    target_ulong opcode, target_ulong *args)
1020 {
1021     target_ulong flags = args[0];
1022     target_ulong procno = args[1];
1023     target_ulong vpa = args[2];
1024     target_ulong ret = H_PARAMETER;
1025     CPUPPCState *tenv;
1026     PowerPCCPU *tcpu;
1027 
1028     tcpu = spapr_find_cpu(procno);
1029     if (!tcpu) {
1030         return H_PARAMETER;
1031     }
1032     tenv = &tcpu->env;
1033 
1034     switch (flags) {
1035     case FLAGS_REGISTER_VPA:
1036         ret = register_vpa(tenv, vpa);
1037         break;
1038 
1039     case FLAGS_DEREGISTER_VPA:
1040         ret = deregister_vpa(tenv, vpa);
1041         break;
1042 
1043     case FLAGS_REGISTER_SLBSHADOW:
1044         ret = register_slb_shadow(tenv, vpa);
1045         break;
1046 
1047     case FLAGS_DEREGISTER_SLBSHADOW:
1048         ret = deregister_slb_shadow(tenv, vpa);
1049         break;
1050 
1051     case FLAGS_REGISTER_DTL:
1052         ret = register_dtl(tenv, vpa);
1053         break;
1054 
1055     case FLAGS_DEREGISTER_DTL:
1056         ret = deregister_dtl(tenv, vpa);
1057         break;
1058     }
1059 
1060     return ret;
1061 }
1062 
1063 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1064                            target_ulong opcode, target_ulong *args)
1065 {
1066     CPUPPCState *env = &cpu->env;
1067     CPUState *cs = CPU(cpu);
1068 
1069     env->msr |= (1ULL << MSR_EE);
1070     hreg_compute_hflags(env);
1071     if (!cpu_has_work(cs)) {
1072         cs->halted = 1;
1073         cs->exception_index = EXCP_HLT;
1074         cs->exit_request = 1;
1075     }
1076     return H_SUCCESS;
1077 }
1078 
1079 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1080                            target_ulong opcode, target_ulong *args)
1081 {
1082     target_ulong rtas_r3 = args[0];
1083     uint32_t token = rtas_ld(rtas_r3, 0);
1084     uint32_t nargs = rtas_ld(rtas_r3, 1);
1085     uint32_t nret = rtas_ld(rtas_r3, 2);
1086 
1087     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1088                            nret, rtas_r3 + 12 + 4*nargs);
1089 }
1090 
1091 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1092                                    target_ulong opcode, target_ulong *args)
1093 {
1094     CPUState *cs = CPU(cpu);
1095     target_ulong size = args[0];
1096     target_ulong addr = args[1];
1097 
1098     switch (size) {
1099     case 1:
1100         args[0] = ldub_phys(cs->as, addr);
1101         return H_SUCCESS;
1102     case 2:
1103         args[0] = lduw_phys(cs->as, addr);
1104         return H_SUCCESS;
1105     case 4:
1106         args[0] = ldl_phys(cs->as, addr);
1107         return H_SUCCESS;
1108     case 8:
1109         args[0] = ldq_phys(cs->as, addr);
1110         return H_SUCCESS;
1111     }
1112     return H_PARAMETER;
1113 }
1114 
1115 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1116                                     target_ulong opcode, target_ulong *args)
1117 {
1118     CPUState *cs = CPU(cpu);
1119 
1120     target_ulong size = args[0];
1121     target_ulong addr = args[1];
1122     target_ulong val  = args[2];
1123 
1124     switch (size) {
1125     case 1:
1126         stb_phys(cs->as, addr, val);
1127         return H_SUCCESS;
1128     case 2:
1129         stw_phys(cs->as, addr, val);
1130         return H_SUCCESS;
1131     case 4:
1132         stl_phys(cs->as, addr, val);
1133         return H_SUCCESS;
1134     case 8:
1135         stq_phys(cs->as, addr, val);
1136         return H_SUCCESS;
1137     }
1138     return H_PARAMETER;
1139 }
1140 
1141 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1142                                     target_ulong opcode, target_ulong *args)
1143 {
1144     CPUState *cs = CPU(cpu);
1145 
1146     target_ulong dst   = args[0]; /* Destination address */
1147     target_ulong src   = args[1]; /* Source address */
1148     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1149     target_ulong count = args[3]; /* Element count */
1150     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1151     uint64_t tmp;
1152     unsigned int mask = (1 << esize) - 1;
1153     int step = 1 << esize;
1154 
1155     if (count > 0x80000000) {
1156         return H_PARAMETER;
1157     }
1158 
1159     if ((dst & mask) || (src & mask) || (op > 1)) {
1160         return H_PARAMETER;
1161     }
1162 
1163     if (dst >= src && dst < (src + (count << esize))) {
1164             dst = dst + ((count - 1) << esize);
1165             src = src + ((count - 1) << esize);
1166             step = -step;
1167     }
1168 
1169     while (count--) {
1170         switch (esize) {
1171         case 0:
1172             tmp = ldub_phys(cs->as, src);
1173             break;
1174         case 1:
1175             tmp = lduw_phys(cs->as, src);
1176             break;
1177         case 2:
1178             tmp = ldl_phys(cs->as, src);
1179             break;
1180         case 3:
1181             tmp = ldq_phys(cs->as, src);
1182             break;
1183         default:
1184             return H_PARAMETER;
1185         }
1186         if (op == 1) {
1187             tmp = ~tmp;
1188         }
1189         switch (esize) {
1190         case 0:
1191             stb_phys(cs->as, dst, tmp);
1192             break;
1193         case 1:
1194             stw_phys(cs->as, dst, tmp);
1195             break;
1196         case 2:
1197             stl_phys(cs->as, dst, tmp);
1198             break;
1199         case 3:
1200             stq_phys(cs->as, dst, tmp);
1201             break;
1202         }
1203         dst = dst + step;
1204         src = src + step;
1205     }
1206 
1207     return H_SUCCESS;
1208 }
1209 
1210 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1211                                    target_ulong opcode, target_ulong *args)
1212 {
1213     /* Nothing to do on emulation, KVM will trap this in the kernel */
1214     return H_SUCCESS;
1215 }
1216 
1217 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1218                                    target_ulong opcode, target_ulong *args)
1219 {
1220     /* Nothing to do on emulation, KVM will trap this in the kernel */
1221     return H_SUCCESS;
1222 }
1223 
1224 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1225                                            target_ulong mflags,
1226                                            target_ulong value1,
1227                                            target_ulong value2)
1228 {
1229     CPUState *cs;
1230 
1231     if (value1) {
1232         return H_P3;
1233     }
1234     if (value2) {
1235         return H_P4;
1236     }
1237 
1238     switch (mflags) {
1239     case H_SET_MODE_ENDIAN_BIG:
1240         CPU_FOREACH(cs) {
1241             set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
1242         }
1243         spapr_pci_switch_vga(true);
1244         return H_SUCCESS;
1245 
1246     case H_SET_MODE_ENDIAN_LITTLE:
1247         CPU_FOREACH(cs) {
1248             set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
1249         }
1250         spapr_pci_switch_vga(false);
1251         return H_SUCCESS;
1252     }
1253 
1254     return H_UNSUPPORTED_FLAG;
1255 }
1256 
1257 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1258                                                         target_ulong mflags,
1259                                                         target_ulong value1,
1260                                                         target_ulong value2)
1261 {
1262     CPUState *cs;
1263     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1264 
1265     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1266         return H_P2;
1267     }
1268     if (value1) {
1269         return H_P3;
1270     }
1271     if (value2) {
1272         return H_P4;
1273     }
1274 
1275     if (mflags == AIL_RESERVED) {
1276         return H_UNSUPPORTED_FLAG;
1277     }
1278 
1279     CPU_FOREACH(cs) {
1280         set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1281     }
1282 
1283     return H_SUCCESS;
1284 }
1285 
1286 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1287                                target_ulong opcode, target_ulong *args)
1288 {
1289     target_ulong resource = args[1];
1290     target_ulong ret = H_P2;
1291 
1292     switch (resource) {
1293     case H_SET_MODE_RESOURCE_LE:
1294         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1295         break;
1296     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1297         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1298                                                   args[2], args[3]);
1299         break;
1300     }
1301 
1302     return ret;
1303 }
1304 
1305 static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1306                                 target_ulong opcode, target_ulong *args)
1307 {
1308     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1309                   opcode, " (H_CLEAN_SLB)");
1310     return H_FUNCTION;
1311 }
1312 
1313 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1314                                      target_ulong opcode, target_ulong *args)
1315 {
1316     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1317                   opcode, " (H_INVALIDATE_PID)");
1318     return H_FUNCTION;
1319 }
1320 
1321 static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
1322                                        uint64_t patbe_old, uint64_t patbe_new)
1323 {
1324     /*
1325      * We have 4 Options:
1326      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1327      * HASH->RADIX                                  : Free HPT
1328      * RADIX->HASH                                  : Allocate HPT
1329      * NOTHING->HASH                                : Allocate HPT
1330      * Note: NOTHING implies the case where we said the guest could choose
1331      *       later and so assumed radix and now it's called H_REG_PROC_TBL
1332      */
1333 
1334     if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
1335         /* We assume RADIX, so this catches all the "Do Nothing" cases */
1336     } else if (!(patbe_old & PATBE1_GR)) {
1337         /* HASH->RADIX : Free HPT */
1338         spapr_free_hpt(spapr);
1339     } else if (!(patbe_new & PATBE1_GR)) {
1340         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1341         spapr_setup_hpt_and_vrma(spapr);
1342     }
1343     return;
1344 }
1345 
1346 #define FLAGS_MASK              0x01FULL
1347 #define FLAG_MODIFY             0x10
1348 #define FLAG_REGISTER           0x08
1349 #define FLAG_RADIX              0x04
1350 #define FLAG_HASH_PROC_TBL      0x02
1351 #define FLAG_GTSE               0x01
1352 
1353 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1354                                              sPAPRMachineState *spapr,
1355                                              target_ulong opcode,
1356                                              target_ulong *args)
1357 {
1358     CPUState *cs;
1359     target_ulong flags = args[0];
1360     target_ulong proc_tbl = args[1];
1361     target_ulong page_size = args[2];
1362     target_ulong table_size = args[3];
1363     uint64_t cproc;
1364 
1365     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1366         return H_PARAMETER;
1367     }
1368     if (flags & FLAG_MODIFY) {
1369         if (flags & FLAG_REGISTER) {
1370             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1371                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1372                     return H_P2;
1373                 } else if (page_size) {
1374                     return H_P3;
1375                 } else if (table_size > 24) {
1376                     return H_P4;
1377                 }
1378                 cproc = PATBE1_GR | proc_tbl | table_size;
1379             } else { /* Register new HPT process table */
1380                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1381                     /* TODO - Not Supported */
1382                     /* Technically caused by flag bits => H_PARAMETER */
1383                     return H_PARAMETER;
1384                 } else { /* Hash with SLB */
1385                     if (proc_tbl >> 38) {
1386                         return H_P2;
1387                     } else if (page_size & ~0x7) {
1388                         return H_P3;
1389                     } else if (table_size > 24) {
1390                         return H_P4;
1391                     }
1392                 }
1393                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1394             }
1395 
1396         } else { /* Deregister current process table */
1397             /* Set to benign value: (current GR) | 0. This allows
1398              * deregistration in KVM to succeed even if the radix bit in flags
1399              * doesn't match the radix bit in the old PATB. */
1400             cproc = spapr->patb_entry & PATBE1_GR;
1401         }
1402     } else { /* Maintain current registration */
1403         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
1404             /* Technically caused by flag bits => H_PARAMETER */
1405             return H_PARAMETER; /* Existing Process Table Mismatch */
1406         }
1407         cproc = spapr->patb_entry;
1408     }
1409 
1410     /* Check if we need to setup OR free the hpt */
1411     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1412 
1413     spapr->patb_entry = cproc; /* Save new process table */
1414 
1415     /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1416     CPU_FOREACH(cs) {
1417         set_spr(cs, SPR_LPCR,
1418                 ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
1419                 ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
1420                 LPCR_UPRT | LPCR_GTSE);
1421     }
1422 
1423     if (kvm_enabled()) {
1424         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1425                                        flags & FLAG_GTSE, cproc);
1426     }
1427     return H_SUCCESS;
1428 }
1429 
1430 #define H_SIGNAL_SYS_RESET_ALL         -1
1431 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1432 
1433 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1434                                        sPAPRMachineState *spapr,
1435                                        target_ulong opcode, target_ulong *args)
1436 {
1437     target_long target = args[0];
1438     CPUState *cs;
1439 
1440     if (target < 0) {
1441         /* Broadcast */
1442         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1443             return H_PARAMETER;
1444         }
1445 
1446         CPU_FOREACH(cs) {
1447             PowerPCCPU *c = POWERPC_CPU(cs);
1448 
1449             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1450                 if (c == cpu) {
1451                     continue;
1452                 }
1453             }
1454             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1455         }
1456         return H_SUCCESS;
1457 
1458     } else {
1459         /* Unicast */
1460         cs = CPU(spapr_find_cpu(target));
1461         if (cs) {
1462             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1463             return H_SUCCESS;
1464         }
1465         return H_PARAMETER;
1466     }
1467 }
1468 
1469 static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1470                               target_ulong *addr, bool *raw_mode_supported,
1471                               Error **errp)
1472 {
1473     bool explicit_match = false; /* Matched the CPU's real PVR */
1474     uint32_t max_compat = spapr->max_compat_pvr;
1475     uint32_t best_compat = 0;
1476     int i;
1477 
1478     /*
1479      * We scan the supplied table of PVRs looking for two things
1480      *   1. Is our real CPU PVR in the list?
1481      *   2. What's the "best" listed logical PVR
1482      */
1483     for (i = 0; i < 512; ++i) {
1484         uint32_t pvr, pvr_mask;
1485 
1486         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1487         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1488         *addr += 8;
1489 
1490         if (~pvr_mask & pvr) {
1491             break; /* Terminator record */
1492         }
1493 
1494         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1495             explicit_match = true;
1496         } else {
1497             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1498                 best_compat = pvr;
1499             }
1500         }
1501     }
1502 
1503     if ((best_compat == 0) && (!explicit_match || max_compat)) {
1504         /* We couldn't find a suitable compatibility mode, and either
1505          * the guest doesn't support "raw" mode for this CPU, or raw
1506          * mode is disabled because a maximum compat mode is set */
1507         error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1508         return 0;
1509     }
1510 
1511     *raw_mode_supported = explicit_match;
1512 
1513     /* Parsing finished */
1514     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1515 
1516     return best_compat;
1517 }
1518 
1519 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1520                                                   sPAPRMachineState *spapr,
1521                                                   target_ulong opcode,
1522                                                   target_ulong *args)
1523 {
1524     /* Working address in data buffer */
1525     target_ulong addr = ppc64_phys_to_real(args[0]);
1526     target_ulong ov_table;
1527     uint32_t cas_pvr;
1528     sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1529     bool guest_radix;
1530     Error *local_err = NULL;
1531     bool raw_mode_supported = false;
1532 
1533     cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1534     if (local_err) {
1535         error_report_err(local_err);
1536         return H_HARDWARE;
1537     }
1538 
1539     /* Update CPUs */
1540     if (cpu->compat_pvr != cas_pvr) {
1541         ppc_set_compat_all(cas_pvr, &local_err);
1542         if (local_err) {
1543             /* We fail to set compat mode (likely because running with KVM PR),
1544              * but maybe we can fallback to raw mode if the guest supports it.
1545              */
1546             if (!raw_mode_supported) {
1547                 error_report_err(local_err);
1548                 return H_HARDWARE;
1549             }
1550             local_err = NULL;
1551         }
1552     }
1553 
1554     /* For the future use: here @ov_table points to the first option vector */
1555     ov_table = addr;
1556 
1557     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1558     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1559     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1560         error_report("guest requested hash and radix MMU, which is invalid.");
1561         exit(EXIT_FAILURE);
1562     }
1563     /* The radix/hash bit in byte 24 requires special handling: */
1564     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1565     spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1566 
1567     /*
1568      * HPT resizing is a bit of a special case, because when enabled
1569      * we assume an HPT guest will support it until it says it
1570      * doesn't, instead of assuming it won't support it until it says
1571      * it does.  Strictly speaking that approach could break for
1572      * guests which don't make a CAS call, but those are so old we
1573      * don't care about them.  Without that assumption we'd have to
1574      * make at least a temporary allocation of an HPT sized for max
1575      * memory, which could be impossibly difficult under KVM HV if
1576      * maxram is large.
1577      */
1578     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1579         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1580 
1581         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1582             error_report(
1583                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1584             exit(1);
1585         }
1586 
1587         if (spapr->htab_shift < maxshift) {
1588             /* Guest doesn't know about HPT resizing, so we
1589              * pre-emptively resize for the maximum permitted RAM.  At
1590              * the point this is called, nothing should have been
1591              * entered into the existing HPT */
1592             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1593             push_sregs_to_kvm_pr(spapr);
1594         }
1595     }
1596 
1597     /* NOTE: there are actually a number of ov5 bits where input from the
1598      * guest is always zero, and the platform/QEMU enables them independently
1599      * of guest input. To model these properly we'd want some sort of mask,
1600      * but since they only currently apply to memory migration as defined
1601      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1602      * to worry about this for now.
1603      */
1604     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1605 
1606     /* also clear the radix/hash bit from the current ov5_cas bits to
1607      * be in sync with the newly ov5 bits. Else the radix bit will be
1608      * seen as being removed and this will generate a reset loop
1609      */
1610     spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1611 
1612     /* full range of negotiated ov5 capabilities */
1613     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1614     spapr_ovec_cleanup(ov5_guest);
1615     /* capabilities that have been added since CAS-generated guest reset.
1616      * if capabilities have since been removed, generate another reset
1617      */
1618     ov5_updates = spapr_ovec_new();
1619     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1620                                         ov5_cas_old, spapr->ov5_cas);
1621     /* Now that processing is finished, set the radix/hash bit for the
1622      * guest if it requested a valid mode; otherwise terminate the boot. */
1623     if (guest_radix) {
1624         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1625             error_report("Guest requested unavailable MMU mode (radix).");
1626             exit(EXIT_FAILURE);
1627         }
1628         spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1629     } else {
1630         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1631             && !kvmppc_has_cap_mmu_hash_v3()) {
1632             error_report("Guest requested unavailable MMU mode (hash).");
1633             exit(EXIT_FAILURE);
1634         }
1635     }
1636     spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1637                                                           OV1_PPC_3_00);
1638     if (!spapr->cas_reboot) {
1639         /* If ppc_spapr_reset() did not set up a HPT but one is necessary
1640          * (because the guest isn't going to use radix) then set it up here. */
1641         if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
1642             /* legacy hash or new hash: */
1643             spapr_setup_hpt_and_vrma(spapr);
1644         }
1645         spapr->cas_reboot =
1646             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1647                                           ov5_updates) != 0);
1648     }
1649     spapr_ovec_cleanup(ov5_updates);
1650 
1651     if (spapr->cas_reboot) {
1652         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1653     }
1654 
1655     return H_SUCCESS;
1656 }
1657 
1658 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1659 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1660 
1661 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1662 {
1663     spapr_hcall_fn *slot;
1664 
1665     if (opcode <= MAX_HCALL_OPCODE) {
1666         assert((opcode & 0x3) == 0);
1667 
1668         slot = &papr_hypercall_table[opcode / 4];
1669     } else {
1670         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1671 
1672         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1673     }
1674 
1675     assert(!(*slot));
1676     *slot = fn;
1677 }
1678 
1679 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1680                              target_ulong *args)
1681 {
1682     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1683 
1684     if ((opcode <= MAX_HCALL_OPCODE)
1685         && ((opcode & 0x3) == 0)) {
1686         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1687 
1688         if (fn) {
1689             return fn(cpu, spapr, opcode, args);
1690         }
1691     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1692                (opcode <= KVMPPC_HCALL_MAX)) {
1693         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1694 
1695         if (fn) {
1696             return fn(cpu, spapr, opcode, args);
1697         }
1698     }
1699 
1700     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1701                   opcode);
1702     return H_FUNCTION;
1703 }
1704 
1705 static void hypercall_register_types(void)
1706 {
1707     /* hcall-pft */
1708     spapr_register_hypercall(H_ENTER, h_enter);
1709     spapr_register_hypercall(H_REMOVE, h_remove);
1710     spapr_register_hypercall(H_PROTECT, h_protect);
1711     spapr_register_hypercall(H_READ, h_read);
1712 
1713     /* hcall-bulk */
1714     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1715 
1716     /* hcall-hpt-resize */
1717     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1718     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1719 
1720     /* hcall-splpar */
1721     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1722     spapr_register_hypercall(H_CEDE, h_cede);
1723     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1724 
1725     /* processor register resource access h-calls */
1726     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1727     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1728     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1729     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1730     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1731 
1732     /* In Memory Table MMU h-calls */
1733     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1734     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1735     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1736 
1737     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1738      * here between the "CI" and the "CACHE" variants, they will use whatever
1739      * mapping attributes qemu is using. When using KVM, the kernel will
1740      * enforce the attributes more strongly
1741      */
1742     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1743     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1744     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1745     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1746     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1747     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1748     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1749 
1750     /* qemu/KVM-PPC specific hcalls */
1751     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1752 
1753     /* ibm,client-architecture-support support */
1754     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1755 }
1756 
1757 type_init(hypercall_register_types)
1758