xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision 7609ffb9)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "cpu.h"
7 #include "exec/exec-all.h"
8 #include "helper_regs.h"
9 #include "hw/ppc/spapr.h"
10 #include "mmu-hash64.h"
11 #include "cpu-models.h"
12 #include "trace.h"
13 #include "kvm_ppc.h"
14 #include "hw/ppc/spapr_ovec.h"
15 
16 struct SPRSyncState {
17     int spr;
18     target_ulong value;
19     target_ulong mask;
20 };
21 
22 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
23 {
24     struct SPRSyncState *s = arg.host_ptr;
25     PowerPCCPU *cpu = POWERPC_CPU(cs);
26     CPUPPCState *env = &cpu->env;
27 
28     cpu_synchronize_state(cs);
29     env->spr[s->spr] &= ~s->mask;
30     env->spr[s->spr] |= s->value;
31 }
32 
33 static void set_spr(CPUState *cs, int spr, target_ulong value,
34                     target_ulong mask)
35 {
36     struct SPRSyncState s = {
37         .spr = spr,
38         .value = value,
39         .mask = mask
40     };
41     run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
42 }
43 
44 static bool has_spr(PowerPCCPU *cpu, int spr)
45 {
46     /* We can test whether the SPR is defined by checking for a valid name */
47     return cpu->env.spr_cb[spr].name != NULL;
48 }
49 
50 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
51 {
52     /*
53      * hash value/pteg group index is normalized by HPT mask
54      */
55     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
56         return false;
57     }
58     return true;
59 }
60 
61 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
62 {
63     MachineState *machine = MACHINE(spapr);
64     MemoryHotplugState *hpms = &spapr->hotplug_memory;
65 
66     if (addr < machine->ram_size) {
67         return true;
68     }
69     if ((addr >= hpms->base)
70         && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
71         return true;
72     }
73 
74     return false;
75 }
76 
77 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
78                             target_ulong opcode, target_ulong *args)
79 {
80     target_ulong flags = args[0];
81     target_ulong ptex = args[1];
82     target_ulong pteh = args[2];
83     target_ulong ptel = args[3];
84     unsigned apshift;
85     target_ulong raddr;
86     target_ulong slot;
87     const ppc_hash_pte64_t *hptes;
88 
89     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
90     if (!apshift) {
91         /* Bad page size encoding */
92         return H_PARAMETER;
93     }
94 
95     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
96 
97     if (is_ram_address(spapr, raddr)) {
98         /* Regular RAM - should have WIMG=0010 */
99         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
100             return H_PARAMETER;
101         }
102     } else {
103         target_ulong wimg_flags;
104         /* Looks like an IO address */
105         /* FIXME: What WIMG combinations could be sensible for IO?
106          * For now we allow WIMG=010x, but are there others? */
107         /* FIXME: Should we check against registered IO addresses? */
108         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
109 
110         if (wimg_flags != HPTE64_R_I &&
111             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
112             return H_PARAMETER;
113         }
114     }
115 
116     pteh &= ~0x60ULL;
117 
118     if (!valid_ptex(cpu, ptex)) {
119         return H_PARAMETER;
120     }
121 
122     slot = ptex & 7ULL;
123     ptex = ptex & ~7ULL;
124 
125     if (likely((flags & H_EXACT) == 0)) {
126         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
127         for (slot = 0; slot < 8; slot++) {
128             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
129                 break;
130             }
131         }
132         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
133         if (slot == 8) {
134             return H_PTEG_FULL;
135         }
136     } else {
137         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
138         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
139             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
140             return H_PTEG_FULL;
141         }
142         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
143     }
144 
145     ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
146 
147     args[0] = ptex + slot;
148     return H_SUCCESS;
149 }
150 
151 typedef enum {
152     REMOVE_SUCCESS = 0,
153     REMOVE_NOT_FOUND = 1,
154     REMOVE_PARM = 2,
155     REMOVE_HW = 3,
156 } RemoveResult;
157 
158 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
159                                 target_ulong avpn,
160                                 target_ulong flags,
161                                 target_ulong *vp, target_ulong *rp)
162 {
163     const ppc_hash_pte64_t *hptes;
164     target_ulong v, r;
165 
166     if (!valid_ptex(cpu, ptex)) {
167         return REMOVE_PARM;
168     }
169 
170     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
171     v = ppc_hash64_hpte0(cpu, hptes, 0);
172     r = ppc_hash64_hpte1(cpu, hptes, 0);
173     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
174 
175     if ((v & HPTE64_V_VALID) == 0 ||
176         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
177         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
178         return REMOVE_NOT_FOUND;
179     }
180     *vp = v;
181     *rp = r;
182     ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
183     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
184     return REMOVE_SUCCESS;
185 }
186 
187 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
188                              target_ulong opcode, target_ulong *args)
189 {
190     CPUPPCState *env = &cpu->env;
191     target_ulong flags = args[0];
192     target_ulong ptex = args[1];
193     target_ulong avpn = args[2];
194     RemoveResult ret;
195 
196     ret = remove_hpte(cpu, ptex, avpn, flags,
197                       &args[0], &args[1]);
198 
199     switch (ret) {
200     case REMOVE_SUCCESS:
201         check_tlb_flush(env, true);
202         return H_SUCCESS;
203 
204     case REMOVE_NOT_FOUND:
205         return H_NOT_FOUND;
206 
207     case REMOVE_PARM:
208         return H_PARAMETER;
209 
210     case REMOVE_HW:
211         return H_HARDWARE;
212     }
213 
214     g_assert_not_reached();
215 }
216 
217 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
218 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
219 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
220 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
221 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
222 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
223 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
224 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
225 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
226 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
227 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
228 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
229 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
230 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
231 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
232 
233 #define H_BULK_REMOVE_MAX_BATCH        4
234 
235 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
236                                   target_ulong opcode, target_ulong *args)
237 {
238     CPUPPCState *env = &cpu->env;
239     int i;
240     target_ulong rc = H_SUCCESS;
241 
242     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
243         target_ulong *tsh = &args[i*2];
244         target_ulong tsl = args[i*2 + 1];
245         target_ulong v, r, ret;
246 
247         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
248             break;
249         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
250             return H_PARAMETER;
251         }
252 
253         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
254         *tsh |= H_BULK_REMOVE_RESPONSE;
255 
256         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
257             *tsh |= H_BULK_REMOVE_PARM;
258             return H_PARAMETER;
259         }
260 
261         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
262                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
263                           &v, &r);
264 
265         *tsh |= ret << 60;
266 
267         switch (ret) {
268         case REMOVE_SUCCESS:
269             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
270             break;
271 
272         case REMOVE_PARM:
273             rc = H_PARAMETER;
274             goto exit;
275 
276         case REMOVE_HW:
277             rc = H_HARDWARE;
278             goto exit;
279         }
280     }
281  exit:
282     check_tlb_flush(env, true);
283 
284     return rc;
285 }
286 
287 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
288                               target_ulong opcode, target_ulong *args)
289 {
290     CPUPPCState *env = &cpu->env;
291     target_ulong flags = args[0];
292     target_ulong ptex = args[1];
293     target_ulong avpn = args[2];
294     const ppc_hash_pte64_t *hptes;
295     target_ulong v, r;
296 
297     if (!valid_ptex(cpu, ptex)) {
298         return H_PARAMETER;
299     }
300 
301     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
302     v = ppc_hash64_hpte0(cpu, hptes, 0);
303     r = ppc_hash64_hpte1(cpu, hptes, 0);
304     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
305 
306     if ((v & HPTE64_V_VALID) == 0 ||
307         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
308         return H_NOT_FOUND;
309     }
310 
311     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
312            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
313     r |= (flags << 55) & HPTE64_R_PP0;
314     r |= (flags << 48) & HPTE64_R_KEY_HI;
315     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
316     ppc_hash64_store_hpte(cpu, ptex,
317                           (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
318     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
319     /* Flush the tlb */
320     check_tlb_flush(env, true);
321     /* Don't need a memory barrier, due to qemu's global lock */
322     ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
323     return H_SUCCESS;
324 }
325 
326 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
327                            target_ulong opcode, target_ulong *args)
328 {
329     target_ulong flags = args[0];
330     target_ulong ptex = args[1];
331     uint8_t *hpte;
332     int i, ridx, n_entries = 1;
333 
334     if (!valid_ptex(cpu, ptex)) {
335         return H_PARAMETER;
336     }
337 
338     if (flags & H_READ_4) {
339         /* Clear the two low order bits */
340         ptex &= ~(3ULL);
341         n_entries = 4;
342     }
343 
344     hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
345 
346     for (i = 0, ridx = 0; i < n_entries; i++) {
347         args[ridx++] = ldq_p(hpte);
348         args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
349         hpte += HASH_PTE_SIZE_64;
350     }
351 
352     return H_SUCCESS;
353 }
354 
355 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
356                                 target_ulong opcode, target_ulong *args)
357 {
358     cpu_synchronize_state(CPU(cpu));
359     cpu->env.spr[SPR_SPRG0] = args[0];
360 
361     return H_SUCCESS;
362 }
363 
364 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
365                                target_ulong opcode, target_ulong *args)
366 {
367     if (!has_spr(cpu, SPR_DABR)) {
368         return H_HARDWARE;              /* DABR register not available */
369     }
370     cpu_synchronize_state(CPU(cpu));
371 
372     if (has_spr(cpu, SPR_DABRX)) {
373         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
374     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
375         return H_RESERVED_DABR;
376     }
377 
378     cpu->env.spr[SPR_DABR] = args[0];
379     return H_SUCCESS;
380 }
381 
382 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
383                                 target_ulong opcode, target_ulong *args)
384 {
385     target_ulong dabrx = args[1];
386 
387     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
388         return H_HARDWARE;
389     }
390 
391     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
392         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
393         return H_PARAMETER;
394     }
395 
396     cpu_synchronize_state(CPU(cpu));
397     cpu->env.spr[SPR_DABRX] = dabrx;
398     cpu->env.spr[SPR_DABR] = args[0];
399 
400     return H_SUCCESS;
401 }
402 
403 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
404                                 target_ulong opcode, target_ulong *args)
405 {
406     target_ulong flags = args[0];
407     hwaddr dst = args[1];
408     hwaddr src = args[2];
409     hwaddr len = TARGET_PAGE_SIZE;
410     uint8_t *pdst, *psrc;
411     target_long ret = H_SUCCESS;
412 
413     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
414                   | H_COPY_PAGE | H_ZERO_PAGE)) {
415         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
416                       flags);
417         return H_PARAMETER;
418     }
419 
420     /* Map-in destination */
421     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
422         return H_PARAMETER;
423     }
424     pdst = cpu_physical_memory_map(dst, &len, 1);
425     if (!pdst || len != TARGET_PAGE_SIZE) {
426         return H_PARAMETER;
427     }
428 
429     if (flags & H_COPY_PAGE) {
430         /* Map-in source, copy to destination, and unmap source again */
431         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
432             ret = H_PARAMETER;
433             goto unmap_out;
434         }
435         psrc = cpu_physical_memory_map(src, &len, 0);
436         if (!psrc || len != TARGET_PAGE_SIZE) {
437             ret = H_PARAMETER;
438             goto unmap_out;
439         }
440         memcpy(pdst, psrc, len);
441         cpu_physical_memory_unmap(psrc, len, 0, len);
442     } else if (flags & H_ZERO_PAGE) {
443         memset(pdst, 0, len);          /* Just clear the destination page */
444     }
445 
446     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
447         kvmppc_dcbst_range(cpu, pdst, len);
448     }
449     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
450         if (kvm_enabled()) {
451             kvmppc_icbi_range(cpu, pdst, len);
452         } else {
453             tb_flush(CPU(cpu));
454         }
455     }
456 
457 unmap_out:
458     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
459     return ret;
460 }
461 
462 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
463 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
464 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
465 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
466 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
467 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
468 
469 #define VPA_MIN_SIZE           640
470 #define VPA_SIZE_OFFSET        0x4
471 #define VPA_SHARED_PROC_OFFSET 0x9
472 #define VPA_SHARED_PROC_VAL    0x2
473 
474 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
475 {
476     CPUState *cs = CPU(ppc_env_get_cpu(env));
477     uint16_t size;
478     uint8_t tmp;
479 
480     if (vpa == 0) {
481         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
482         return H_HARDWARE;
483     }
484 
485     if (vpa % env->dcache_line_size) {
486         return H_PARAMETER;
487     }
488     /* FIXME: bounds check the address */
489 
490     size = lduw_be_phys(cs->as, vpa + 0x4);
491 
492     if (size < VPA_MIN_SIZE) {
493         return H_PARAMETER;
494     }
495 
496     /* VPA is not allowed to cross a page boundary */
497     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
498         return H_PARAMETER;
499     }
500 
501     env->vpa_addr = vpa;
502 
503     tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
504     tmp |= VPA_SHARED_PROC_VAL;
505     stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
506 
507     return H_SUCCESS;
508 }
509 
510 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
511 {
512     if (env->slb_shadow_addr) {
513         return H_RESOURCE;
514     }
515 
516     if (env->dtl_addr) {
517         return H_RESOURCE;
518     }
519 
520     env->vpa_addr = 0;
521     return H_SUCCESS;
522 }
523 
524 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
525 {
526     CPUState *cs = CPU(ppc_env_get_cpu(env));
527     uint32_t size;
528 
529     if (addr == 0) {
530         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
531         return H_HARDWARE;
532     }
533 
534     size = ldl_be_phys(cs->as, addr + 0x4);
535     if (size < 0x8) {
536         return H_PARAMETER;
537     }
538 
539     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
540         return H_PARAMETER;
541     }
542 
543     if (!env->vpa_addr) {
544         return H_RESOURCE;
545     }
546 
547     env->slb_shadow_addr = addr;
548     env->slb_shadow_size = size;
549 
550     return H_SUCCESS;
551 }
552 
553 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
554 {
555     env->slb_shadow_addr = 0;
556     env->slb_shadow_size = 0;
557     return H_SUCCESS;
558 }
559 
560 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
561 {
562     CPUState *cs = CPU(ppc_env_get_cpu(env));
563     uint32_t size;
564 
565     if (addr == 0) {
566         hcall_dprintf("Can't cope with DTL at logical 0\n");
567         return H_HARDWARE;
568     }
569 
570     size = ldl_be_phys(cs->as, addr + 0x4);
571 
572     if (size < 48) {
573         return H_PARAMETER;
574     }
575 
576     if (!env->vpa_addr) {
577         return H_RESOURCE;
578     }
579 
580     env->dtl_addr = addr;
581     env->dtl_size = size;
582 
583     return H_SUCCESS;
584 }
585 
586 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
587 {
588     env->dtl_addr = 0;
589     env->dtl_size = 0;
590 
591     return H_SUCCESS;
592 }
593 
594 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
595                                    target_ulong opcode, target_ulong *args)
596 {
597     target_ulong flags = args[0];
598     target_ulong procno = args[1];
599     target_ulong vpa = args[2];
600     target_ulong ret = H_PARAMETER;
601     CPUPPCState *tenv;
602     PowerPCCPU *tcpu;
603 
604     tcpu = ppc_get_vcpu_by_dt_id(procno);
605     if (!tcpu) {
606         return H_PARAMETER;
607     }
608     tenv = &tcpu->env;
609 
610     switch (flags) {
611     case FLAGS_REGISTER_VPA:
612         ret = register_vpa(tenv, vpa);
613         break;
614 
615     case FLAGS_DEREGISTER_VPA:
616         ret = deregister_vpa(tenv, vpa);
617         break;
618 
619     case FLAGS_REGISTER_SLBSHADOW:
620         ret = register_slb_shadow(tenv, vpa);
621         break;
622 
623     case FLAGS_DEREGISTER_SLBSHADOW:
624         ret = deregister_slb_shadow(tenv, vpa);
625         break;
626 
627     case FLAGS_REGISTER_DTL:
628         ret = register_dtl(tenv, vpa);
629         break;
630 
631     case FLAGS_DEREGISTER_DTL:
632         ret = deregister_dtl(tenv, vpa);
633         break;
634     }
635 
636     return ret;
637 }
638 
639 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
640                            target_ulong opcode, target_ulong *args)
641 {
642     CPUPPCState *env = &cpu->env;
643     CPUState *cs = CPU(cpu);
644 
645     env->msr |= (1ULL << MSR_EE);
646     hreg_compute_hflags(env);
647     if (!cpu_has_work(cs)) {
648         cs->halted = 1;
649         cs->exception_index = EXCP_HLT;
650         cs->exit_request = 1;
651     }
652     return H_SUCCESS;
653 }
654 
655 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
656                            target_ulong opcode, target_ulong *args)
657 {
658     target_ulong rtas_r3 = args[0];
659     uint32_t token = rtas_ld(rtas_r3, 0);
660     uint32_t nargs = rtas_ld(rtas_r3, 1);
661     uint32_t nret = rtas_ld(rtas_r3, 2);
662 
663     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
664                            nret, rtas_r3 + 12 + 4*nargs);
665 }
666 
667 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
668                                    target_ulong opcode, target_ulong *args)
669 {
670     CPUState *cs = CPU(cpu);
671     target_ulong size = args[0];
672     target_ulong addr = args[1];
673 
674     switch (size) {
675     case 1:
676         args[0] = ldub_phys(cs->as, addr);
677         return H_SUCCESS;
678     case 2:
679         args[0] = lduw_phys(cs->as, addr);
680         return H_SUCCESS;
681     case 4:
682         args[0] = ldl_phys(cs->as, addr);
683         return H_SUCCESS;
684     case 8:
685         args[0] = ldq_phys(cs->as, addr);
686         return H_SUCCESS;
687     }
688     return H_PARAMETER;
689 }
690 
691 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
692                                     target_ulong opcode, target_ulong *args)
693 {
694     CPUState *cs = CPU(cpu);
695 
696     target_ulong size = args[0];
697     target_ulong addr = args[1];
698     target_ulong val  = args[2];
699 
700     switch (size) {
701     case 1:
702         stb_phys(cs->as, addr, val);
703         return H_SUCCESS;
704     case 2:
705         stw_phys(cs->as, addr, val);
706         return H_SUCCESS;
707     case 4:
708         stl_phys(cs->as, addr, val);
709         return H_SUCCESS;
710     case 8:
711         stq_phys(cs->as, addr, val);
712         return H_SUCCESS;
713     }
714     return H_PARAMETER;
715 }
716 
717 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
718                                     target_ulong opcode, target_ulong *args)
719 {
720     CPUState *cs = CPU(cpu);
721 
722     target_ulong dst   = args[0]; /* Destination address */
723     target_ulong src   = args[1]; /* Source address */
724     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
725     target_ulong count = args[3]; /* Element count */
726     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
727     uint64_t tmp;
728     unsigned int mask = (1 << esize) - 1;
729     int step = 1 << esize;
730 
731     if (count > 0x80000000) {
732         return H_PARAMETER;
733     }
734 
735     if ((dst & mask) || (src & mask) || (op > 1)) {
736         return H_PARAMETER;
737     }
738 
739     if (dst >= src && dst < (src + (count << esize))) {
740             dst = dst + ((count - 1) << esize);
741             src = src + ((count - 1) << esize);
742             step = -step;
743     }
744 
745     while (count--) {
746         switch (esize) {
747         case 0:
748             tmp = ldub_phys(cs->as, src);
749             break;
750         case 1:
751             tmp = lduw_phys(cs->as, src);
752             break;
753         case 2:
754             tmp = ldl_phys(cs->as, src);
755             break;
756         case 3:
757             tmp = ldq_phys(cs->as, src);
758             break;
759         default:
760             return H_PARAMETER;
761         }
762         if (op == 1) {
763             tmp = ~tmp;
764         }
765         switch (esize) {
766         case 0:
767             stb_phys(cs->as, dst, tmp);
768             break;
769         case 1:
770             stw_phys(cs->as, dst, tmp);
771             break;
772         case 2:
773             stl_phys(cs->as, dst, tmp);
774             break;
775         case 3:
776             stq_phys(cs->as, dst, tmp);
777             break;
778         }
779         dst = dst + step;
780         src = src + step;
781     }
782 
783     return H_SUCCESS;
784 }
785 
786 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
787                                    target_ulong opcode, target_ulong *args)
788 {
789     /* Nothing to do on emulation, KVM will trap this in the kernel */
790     return H_SUCCESS;
791 }
792 
793 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
794                                    target_ulong opcode, target_ulong *args)
795 {
796     /* Nothing to do on emulation, KVM will trap this in the kernel */
797     return H_SUCCESS;
798 }
799 
800 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
801                                            target_ulong mflags,
802                                            target_ulong value1,
803                                            target_ulong value2)
804 {
805     CPUState *cs;
806 
807     if (value1) {
808         return H_P3;
809     }
810     if (value2) {
811         return H_P4;
812     }
813 
814     switch (mflags) {
815     case H_SET_MODE_ENDIAN_BIG:
816         CPU_FOREACH(cs) {
817             set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
818         }
819         spapr_pci_switch_vga(true);
820         return H_SUCCESS;
821 
822     case H_SET_MODE_ENDIAN_LITTLE:
823         CPU_FOREACH(cs) {
824             set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
825         }
826         spapr_pci_switch_vga(false);
827         return H_SUCCESS;
828     }
829 
830     return H_UNSUPPORTED_FLAG;
831 }
832 
833 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
834                                                         target_ulong mflags,
835                                                         target_ulong value1,
836                                                         target_ulong value2)
837 {
838     CPUState *cs;
839     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
840 
841     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
842         return H_P2;
843     }
844     if (value1) {
845         return H_P3;
846     }
847     if (value2) {
848         return H_P4;
849     }
850 
851     if (mflags == AIL_RESERVED) {
852         return H_UNSUPPORTED_FLAG;
853     }
854 
855     CPU_FOREACH(cs) {
856         set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
857     }
858 
859     return H_SUCCESS;
860 }
861 
862 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
863                                target_ulong opcode, target_ulong *args)
864 {
865     target_ulong resource = args[1];
866     target_ulong ret = H_P2;
867 
868     switch (resource) {
869     case H_SET_MODE_RESOURCE_LE:
870         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
871         break;
872     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
873         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
874                                                   args[2], args[3]);
875         break;
876     }
877 
878     return ret;
879 }
880 
881 #define H_SIGNAL_SYS_RESET_ALL         -1
882 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
883 
884 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
885                                        sPAPRMachineState *spapr,
886                                        target_ulong opcode, target_ulong *args)
887 {
888     target_long target = args[0];
889     CPUState *cs;
890 
891     if (target < 0) {
892         /* Broadcast */
893         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
894             return H_PARAMETER;
895         }
896 
897         CPU_FOREACH(cs) {
898             PowerPCCPU *c = POWERPC_CPU(cs);
899 
900             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
901                 if (c == cpu) {
902                     continue;
903                 }
904             }
905             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
906         }
907         return H_SUCCESS;
908 
909     } else {
910         /* Unicast */
911         CPU_FOREACH(cs) {
912             if (cpu->cpu_dt_id == target) {
913                 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
914                 return H_SUCCESS;
915             }
916         }
917         return H_PARAMETER;
918     }
919 }
920 
921 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
922                                                   sPAPRMachineState *spapr,
923                                                   target_ulong opcode,
924                                                   target_ulong *args)
925 {
926     target_ulong list = ppc64_phys_to_real(args[0]);
927     target_ulong ov_table;
928     bool explicit_match = false; /* Matched the CPU's real PVR */
929     uint32_t max_compat = cpu->max_compat;
930     uint32_t best_compat = 0;
931     int i;
932     sPAPROptionVector *ov5_guest, *ov5_cas_old, *ov5_updates;
933 
934     /*
935      * We scan the supplied table of PVRs looking for two things
936      *   1. Is our real CPU PVR in the list?
937      *   2. What's the "best" listed logical PVR
938      */
939     for (i = 0; i < 512; ++i) {
940         uint32_t pvr, pvr_mask;
941 
942         pvr_mask = ldl_be_phys(&address_space_memory, list);
943         pvr = ldl_be_phys(&address_space_memory, list + 4);
944         list += 8;
945 
946         if (~pvr_mask & pvr) {
947             break; /* Terminator record */
948         }
949 
950         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
951             explicit_match = true;
952         } else {
953             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
954                 best_compat = pvr;
955             }
956         }
957     }
958 
959     if ((best_compat == 0) && (!explicit_match || max_compat)) {
960         /* We couldn't find a suitable compatibility mode, and either
961          * the guest doesn't support "raw" mode for this CPU, or raw
962          * mode is disabled because a maximum compat mode is set */
963         return H_HARDWARE;
964     }
965 
966     /* Parsing finished */
967     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
968 
969     /* Update CPUs */
970     if (cpu->compat_pvr != best_compat) {
971         Error *local_err = NULL;
972 
973         ppc_set_compat_all(best_compat, &local_err);
974         if (local_err) {
975             error_report_err(local_err);
976             return H_HARDWARE;
977         }
978     }
979 
980     /* For the future use: here @ov_table points to the first option vector */
981     ov_table = list;
982 
983     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
984 
985     /* NOTE: there are actually a number of ov5 bits where input from the
986      * guest is always zero, and the platform/QEMU enables them independently
987      * of guest input. To model these properly we'd want some sort of mask,
988      * but since they only currently apply to memory migration as defined
989      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
990      * to worry about this for now.
991      */
992     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
993     /* full range of negotiated ov5 capabilities */
994     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
995     spapr_ovec_cleanup(ov5_guest);
996     /* capabilities that have been added since CAS-generated guest reset.
997      * if capabilities have since been removed, generate another reset
998      */
999     ov5_updates = spapr_ovec_new();
1000     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1001                                         ov5_cas_old, spapr->ov5_cas);
1002 
1003     if (!spapr->cas_reboot) {
1004         spapr->cas_reboot =
1005             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1006                                           ov5_updates) != 0);
1007     }
1008     spapr_ovec_cleanup(ov5_updates);
1009 
1010     if (spapr->cas_reboot) {
1011         qemu_system_reset_request();
1012     }
1013 
1014     return H_SUCCESS;
1015 }
1016 
1017 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1018 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1019 
1020 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1021 {
1022     spapr_hcall_fn *slot;
1023 
1024     if (opcode <= MAX_HCALL_OPCODE) {
1025         assert((opcode & 0x3) == 0);
1026 
1027         slot = &papr_hypercall_table[opcode / 4];
1028     } else {
1029         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1030 
1031         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1032     }
1033 
1034     assert(!(*slot));
1035     *slot = fn;
1036 }
1037 
1038 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1039                              target_ulong *args)
1040 {
1041     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1042 
1043     if ((opcode <= MAX_HCALL_OPCODE)
1044         && ((opcode & 0x3) == 0)) {
1045         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1046 
1047         if (fn) {
1048             return fn(cpu, spapr, opcode, args);
1049         }
1050     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1051                (opcode <= KVMPPC_HCALL_MAX)) {
1052         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1053 
1054         if (fn) {
1055             return fn(cpu, spapr, opcode, args);
1056         }
1057     }
1058 
1059     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1060                   opcode);
1061     return H_FUNCTION;
1062 }
1063 
1064 static void hypercall_register_types(void)
1065 {
1066     /* hcall-pft */
1067     spapr_register_hypercall(H_ENTER, h_enter);
1068     spapr_register_hypercall(H_REMOVE, h_remove);
1069     spapr_register_hypercall(H_PROTECT, h_protect);
1070     spapr_register_hypercall(H_READ, h_read);
1071 
1072     /* hcall-bulk */
1073     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1074 
1075     /* hcall-splpar */
1076     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1077     spapr_register_hypercall(H_CEDE, h_cede);
1078     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1079 
1080     /* processor register resource access h-calls */
1081     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1082     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1083     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1084     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1085     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1086 
1087     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1088      * here between the "CI" and the "CACHE" variants, they will use whatever
1089      * mapping attributes qemu is using. When using KVM, the kernel will
1090      * enforce the attributes more strongly
1091      */
1092     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1093     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1094     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1095     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1096     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1097     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1098     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1099 
1100     /* qemu/KVM-PPC specific hcalls */
1101     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1102 
1103     /* ibm,client-architecture-support support */
1104     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1105 }
1106 
1107 type_init(hypercall_register_types)
1108