1 #include "qemu/osdep.h" 2 #include "qemu/cutils.h" 3 #include "qapi/error.h" 4 #include "sysemu/hw_accel.h" 5 #include "sysemu/runstate.h" 6 #include "qemu/log.h" 7 #include "qemu/main-loop.h" 8 #include "qemu/module.h" 9 #include "qemu/error-report.h" 10 #include "exec/exec-all.h" 11 #include "helper_regs.h" 12 #include "hw/ppc/spapr.h" 13 #include "hw/ppc/spapr_cpu_core.h" 14 #include "mmu-hash64.h" 15 #include "cpu-models.h" 16 #include "trace.h" 17 #include "kvm_ppc.h" 18 #include "hw/ppc/fdt.h" 19 #include "hw/ppc/spapr_ovec.h" 20 #include "mmu-book3s-v3.h" 21 #include "hw/mem/memory-device.h" 22 23 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) 24 { 25 MachineState *machine = MACHINE(spapr); 26 DeviceMemoryState *dms = machine->device_memory; 27 28 if (addr < machine->ram_size) { 29 return true; 30 } 31 if ((addr >= dms->base) 32 && ((addr - dms->base) < memory_region_size(&dms->mr))) { 33 return true; 34 } 35 36 return false; 37 } 38 39 /* Convert a return code from the KVM ioctl()s implementing resize HPT 40 * into a PAPR hypercall return code */ 41 static target_ulong resize_hpt_convert_rc(int ret) 42 { 43 if (ret >= 100000) { 44 return H_LONG_BUSY_ORDER_100_SEC; 45 } else if (ret >= 10000) { 46 return H_LONG_BUSY_ORDER_10_SEC; 47 } else if (ret >= 1000) { 48 return H_LONG_BUSY_ORDER_1_SEC; 49 } else if (ret >= 100) { 50 return H_LONG_BUSY_ORDER_100_MSEC; 51 } else if (ret >= 10) { 52 return H_LONG_BUSY_ORDER_10_MSEC; 53 } else if (ret > 0) { 54 return H_LONG_BUSY_ORDER_1_MSEC; 55 } 56 57 switch (ret) { 58 case 0: 59 return H_SUCCESS; 60 case -EPERM: 61 return H_AUTHORITY; 62 case -EINVAL: 63 return H_PARAMETER; 64 case -ENXIO: 65 return H_CLOSED; 66 case -ENOSPC: 67 return H_PTEG_FULL; 68 case -EBUSY: 69 return H_BUSY; 70 case -ENOMEM: 71 return H_NO_MEM; 72 default: 73 return H_HARDWARE; 74 } 75 } 76 77 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, 78 SpaprMachineState *spapr, 79 target_ulong opcode, 80 target_ulong *args) 81 { 82 target_ulong flags = args[0]; 83 int shift = args[1]; 84 uint64_t current_ram_size; 85 int rc; 86 87 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 88 return H_AUTHORITY; 89 } 90 91 if (!spapr->htab_shift) { 92 /* Radix guest, no HPT */ 93 return H_NOT_AVAILABLE; 94 } 95 96 trace_spapr_h_resize_hpt_prepare(flags, shift); 97 98 if (flags != 0) { 99 return H_PARAMETER; 100 } 101 102 if (shift && ((shift < 18) || (shift > 46))) { 103 return H_PARAMETER; 104 } 105 106 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 107 108 /* We only allow the guest to allocate an HPT one order above what 109 * we'd normally give them (to stop a small guest claiming a huge 110 * chunk of resources in the HPT */ 111 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { 112 return H_RESOURCE; 113 } 114 115 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); 116 if (rc != -ENOSYS) { 117 return resize_hpt_convert_rc(rc); 118 } 119 120 if (kvm_enabled()) { 121 return H_HARDWARE; 122 } 123 124 return softmmu_resize_hpt_prepare(cpu, spapr, shift); 125 } 126 127 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) 128 { 129 int ret; 130 131 cpu_synchronize_state(cs); 132 133 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); 134 if (ret < 0) { 135 error_report("failed to push sregs to KVM: %s", strerror(-ret)); 136 exit(1); 137 } 138 } 139 140 void push_sregs_to_kvm_pr(SpaprMachineState *spapr) 141 { 142 CPUState *cs; 143 144 /* 145 * This is a hack for the benefit of KVM PR - it abuses the SDR1 146 * slot in kvm_sregs to communicate the userspace address of the 147 * HPT 148 */ 149 if (!kvm_enabled() || !spapr->htab) { 150 return; 151 } 152 153 CPU_FOREACH(cs) { 154 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); 155 } 156 } 157 158 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, 159 SpaprMachineState *spapr, 160 target_ulong opcode, 161 target_ulong *args) 162 { 163 target_ulong flags = args[0]; 164 target_ulong shift = args[1]; 165 int rc; 166 167 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 168 return H_AUTHORITY; 169 } 170 171 if (!spapr->htab_shift) { 172 /* Radix guest, no HPT */ 173 return H_NOT_AVAILABLE; 174 } 175 176 trace_spapr_h_resize_hpt_commit(flags, shift); 177 178 rc = kvmppc_resize_hpt_commit(cpu, flags, shift); 179 if (rc != -ENOSYS) { 180 rc = resize_hpt_convert_rc(rc); 181 if (rc == H_SUCCESS) { 182 /* Need to set the new htab_shift in the machine state */ 183 spapr->htab_shift = shift; 184 } 185 return rc; 186 } 187 188 if (kvm_enabled()) { 189 return H_HARDWARE; 190 } 191 192 return softmmu_resize_hpt_commit(cpu, spapr, flags, shift); 193 } 194 195 196 197 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, 198 target_ulong opcode, target_ulong *args) 199 { 200 cpu_synchronize_state(CPU(cpu)); 201 cpu->env.spr[SPR_SPRG0] = args[0]; 202 203 return H_SUCCESS; 204 } 205 206 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 207 target_ulong opcode, target_ulong *args) 208 { 209 if (!ppc_has_spr(cpu, SPR_DABR)) { 210 return H_HARDWARE; /* DABR register not available */ 211 } 212 cpu_synchronize_state(CPU(cpu)); 213 214 if (ppc_has_spr(cpu, SPR_DABRX)) { 215 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ 216 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ 217 return H_RESERVED_DABR; 218 } 219 220 cpu->env.spr[SPR_DABR] = args[0]; 221 return H_SUCCESS; 222 } 223 224 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, 225 target_ulong opcode, target_ulong *args) 226 { 227 target_ulong dabrx = args[1]; 228 229 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) { 230 return H_HARDWARE; 231 } 232 233 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 234 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { 235 return H_PARAMETER; 236 } 237 238 cpu_synchronize_state(CPU(cpu)); 239 cpu->env.spr[SPR_DABRX] = dabrx; 240 cpu->env.spr[SPR_DABR] = args[0]; 241 242 return H_SUCCESS; 243 } 244 245 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, 246 target_ulong opcode, target_ulong *args) 247 { 248 target_ulong flags = args[0]; 249 hwaddr dst = args[1]; 250 hwaddr src = args[2]; 251 hwaddr len = TARGET_PAGE_SIZE; 252 uint8_t *pdst, *psrc; 253 target_long ret = H_SUCCESS; 254 255 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE 256 | H_COPY_PAGE | H_ZERO_PAGE)) { 257 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", 258 flags); 259 return H_PARAMETER; 260 } 261 262 /* Map-in destination */ 263 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { 264 return H_PARAMETER; 265 } 266 pdst = cpu_physical_memory_map(dst, &len, true); 267 if (!pdst || len != TARGET_PAGE_SIZE) { 268 return H_PARAMETER; 269 } 270 271 if (flags & H_COPY_PAGE) { 272 /* Map-in source, copy to destination, and unmap source again */ 273 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { 274 ret = H_PARAMETER; 275 goto unmap_out; 276 } 277 psrc = cpu_physical_memory_map(src, &len, false); 278 if (!psrc || len != TARGET_PAGE_SIZE) { 279 ret = H_PARAMETER; 280 goto unmap_out; 281 } 282 memcpy(pdst, psrc, len); 283 cpu_physical_memory_unmap(psrc, len, 0, len); 284 } else if (flags & H_ZERO_PAGE) { 285 memset(pdst, 0, len); /* Just clear the destination page */ 286 } 287 288 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { 289 kvmppc_dcbst_range(cpu, pdst, len); 290 } 291 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { 292 if (kvm_enabled()) { 293 kvmppc_icbi_range(cpu, pdst, len); 294 } else { 295 tb_flush(CPU(cpu)); 296 } 297 } 298 299 unmap_out: 300 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); 301 return ret; 302 } 303 304 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL 305 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL 306 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL 307 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL 308 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL 309 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL 310 311 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) 312 { 313 CPUState *cs = CPU(cpu); 314 CPUPPCState *env = &cpu->env; 315 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 316 uint16_t size; 317 uint8_t tmp; 318 319 if (vpa == 0) { 320 hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); 321 return H_HARDWARE; 322 } 323 324 if (vpa % env->dcache_line_size) { 325 return H_PARAMETER; 326 } 327 /* FIXME: bounds check the address */ 328 329 size = lduw_be_phys(cs->as, vpa + 0x4); 330 331 if (size < VPA_MIN_SIZE) { 332 return H_PARAMETER; 333 } 334 335 /* VPA is not allowed to cross a page boundary */ 336 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { 337 return H_PARAMETER; 338 } 339 340 spapr_cpu->vpa_addr = vpa; 341 342 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); 343 tmp |= VPA_SHARED_PROC_VAL; 344 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); 345 346 return H_SUCCESS; 347 } 348 349 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) 350 { 351 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 352 353 if (spapr_cpu->slb_shadow_addr) { 354 return H_RESOURCE; 355 } 356 357 if (spapr_cpu->dtl_addr) { 358 return H_RESOURCE; 359 } 360 361 spapr_cpu->vpa_addr = 0; 362 return H_SUCCESS; 363 } 364 365 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 366 { 367 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 368 uint32_t size; 369 370 if (addr == 0) { 371 hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); 372 return H_HARDWARE; 373 } 374 375 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 376 if (size < 0x8) { 377 return H_PARAMETER; 378 } 379 380 if ((addr / 4096) != ((addr + size - 1) / 4096)) { 381 return H_PARAMETER; 382 } 383 384 if (!spapr_cpu->vpa_addr) { 385 return H_RESOURCE; 386 } 387 388 spapr_cpu->slb_shadow_addr = addr; 389 spapr_cpu->slb_shadow_size = size; 390 391 return H_SUCCESS; 392 } 393 394 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) 395 { 396 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 397 398 spapr_cpu->slb_shadow_addr = 0; 399 spapr_cpu->slb_shadow_size = 0; 400 return H_SUCCESS; 401 } 402 403 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) 404 { 405 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 406 uint32_t size; 407 408 if (addr == 0) { 409 hcall_dprintf("Can't cope with DTL at logical 0\n"); 410 return H_HARDWARE; 411 } 412 413 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); 414 415 if (size < 48) { 416 return H_PARAMETER; 417 } 418 419 if (!spapr_cpu->vpa_addr) { 420 return H_RESOURCE; 421 } 422 423 spapr_cpu->dtl_addr = addr; 424 spapr_cpu->dtl_size = size; 425 426 return H_SUCCESS; 427 } 428 429 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) 430 { 431 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 432 433 spapr_cpu->dtl_addr = 0; 434 spapr_cpu->dtl_size = 0; 435 436 return H_SUCCESS; 437 } 438 439 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, 440 target_ulong opcode, target_ulong *args) 441 { 442 target_ulong flags = args[0]; 443 target_ulong procno = args[1]; 444 target_ulong vpa = args[2]; 445 target_ulong ret = H_PARAMETER; 446 PowerPCCPU *tcpu; 447 448 tcpu = spapr_find_cpu(procno); 449 if (!tcpu) { 450 return H_PARAMETER; 451 } 452 453 switch (flags) { 454 case FLAGS_REGISTER_VPA: 455 ret = register_vpa(tcpu, vpa); 456 break; 457 458 case FLAGS_DEREGISTER_VPA: 459 ret = deregister_vpa(tcpu, vpa); 460 break; 461 462 case FLAGS_REGISTER_SLBSHADOW: 463 ret = register_slb_shadow(tcpu, vpa); 464 break; 465 466 case FLAGS_DEREGISTER_SLBSHADOW: 467 ret = deregister_slb_shadow(tcpu, vpa); 468 break; 469 470 case FLAGS_REGISTER_DTL: 471 ret = register_dtl(tcpu, vpa); 472 break; 473 474 case FLAGS_DEREGISTER_DTL: 475 ret = deregister_dtl(tcpu, vpa); 476 break; 477 } 478 479 return ret; 480 } 481 482 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, 483 target_ulong opcode, target_ulong *args) 484 { 485 CPUPPCState *env = &cpu->env; 486 CPUState *cs = CPU(cpu); 487 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 488 489 env->msr |= (1ULL << MSR_EE); 490 hreg_compute_hflags(env); 491 492 if (spapr_cpu->prod) { 493 spapr_cpu->prod = false; 494 return H_SUCCESS; 495 } 496 497 if (!cpu_has_work(cs)) { 498 cs->halted = 1; 499 cs->exception_index = EXCP_HLT; 500 cs->exit_request = 1; 501 } 502 503 return H_SUCCESS; 504 } 505 506 /* 507 * Confer to self, aka join. Cede could use the same pattern as well, if 508 * EXCP_HLT can be changed to ECXP_HALTED. 509 */ 510 static target_ulong h_confer_self(PowerPCCPU *cpu) 511 { 512 CPUState *cs = CPU(cpu); 513 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 514 515 if (spapr_cpu->prod) { 516 spapr_cpu->prod = false; 517 return H_SUCCESS; 518 } 519 cs->halted = 1; 520 cs->exception_index = EXCP_HALTED; 521 cs->exit_request = 1; 522 523 return H_SUCCESS; 524 } 525 526 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, 527 target_ulong opcode, target_ulong *args) 528 { 529 CPUPPCState *env = &cpu->env; 530 CPUState *cs; 531 bool last_unjoined = true; 532 533 if (env->msr & (1ULL << MSR_EE)) { 534 return H_BAD_MODE; 535 } 536 537 /* 538 * Must not join the last CPU running. Interestingly, no such restriction 539 * for H_CONFER-to-self, but that is probably not intended to be used 540 * when H_JOIN is available. 541 */ 542 CPU_FOREACH(cs) { 543 PowerPCCPU *c = POWERPC_CPU(cs); 544 CPUPPCState *e = &c->env; 545 if (c == cpu) { 546 continue; 547 } 548 549 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ 550 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { 551 last_unjoined = false; 552 break; 553 } 554 } 555 if (last_unjoined) { 556 return H_CONTINUE; 557 } 558 559 return h_confer_self(cpu); 560 } 561 562 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, 563 target_ulong opcode, target_ulong *args) 564 { 565 target_long target = args[0]; 566 uint32_t dispatch = args[1]; 567 CPUState *cs = CPU(cpu); 568 SpaprCpuState *spapr_cpu; 569 570 /* 571 * -1 means confer to all other CPUs without dispatch counter check, 572 * otherwise it's a targeted confer. 573 */ 574 if (target != -1) { 575 PowerPCCPU *target_cpu = spapr_find_cpu(target); 576 uint32_t target_dispatch; 577 578 if (!target_cpu) { 579 return H_PARAMETER; 580 } 581 582 /* 583 * target == self is a special case, we wait until prodded, without 584 * dispatch counter check. 585 */ 586 if (cpu == target_cpu) { 587 return h_confer_self(cpu); 588 } 589 590 spapr_cpu = spapr_cpu_state(target_cpu); 591 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { 592 return H_SUCCESS; 593 } 594 595 target_dispatch = ldl_be_phys(cs->as, 596 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 597 if (target_dispatch != dispatch) { 598 return H_SUCCESS; 599 } 600 601 /* 602 * The targeted confer does not do anything special beyond yielding 603 * the current vCPU, but even this should be better than nothing. 604 * At least for single-threaded tcg, it gives the target a chance to 605 * run before we run again. Multi-threaded tcg does not really do 606 * anything with EXCP_YIELD yet. 607 */ 608 } 609 610 cs->exception_index = EXCP_YIELD; 611 cs->exit_request = 1; 612 cpu_loop_exit(cs); 613 614 return H_SUCCESS; 615 } 616 617 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, 618 target_ulong opcode, target_ulong *args) 619 { 620 target_long target = args[0]; 621 PowerPCCPU *tcpu; 622 CPUState *cs; 623 SpaprCpuState *spapr_cpu; 624 625 tcpu = spapr_find_cpu(target); 626 cs = CPU(tcpu); 627 if (!cs) { 628 return H_PARAMETER; 629 } 630 631 spapr_cpu = spapr_cpu_state(tcpu); 632 spapr_cpu->prod = true; 633 cs->halted = 0; 634 qemu_cpu_kick(cs); 635 636 return H_SUCCESS; 637 } 638 639 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, 640 target_ulong opcode, target_ulong *args) 641 { 642 target_ulong rtas_r3 = args[0]; 643 uint32_t token = rtas_ld(rtas_r3, 0); 644 uint32_t nargs = rtas_ld(rtas_r3, 1); 645 uint32_t nret = rtas_ld(rtas_r3, 2); 646 647 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, 648 nret, rtas_r3 + 12 + 4*nargs); 649 } 650 651 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, 652 target_ulong opcode, target_ulong *args) 653 { 654 CPUState *cs = CPU(cpu); 655 target_ulong size = args[0]; 656 target_ulong addr = args[1]; 657 658 switch (size) { 659 case 1: 660 args[0] = ldub_phys(cs->as, addr); 661 return H_SUCCESS; 662 case 2: 663 args[0] = lduw_phys(cs->as, addr); 664 return H_SUCCESS; 665 case 4: 666 args[0] = ldl_phys(cs->as, addr); 667 return H_SUCCESS; 668 case 8: 669 args[0] = ldq_phys(cs->as, addr); 670 return H_SUCCESS; 671 } 672 return H_PARAMETER; 673 } 674 675 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, 676 target_ulong opcode, target_ulong *args) 677 { 678 CPUState *cs = CPU(cpu); 679 680 target_ulong size = args[0]; 681 target_ulong addr = args[1]; 682 target_ulong val = args[2]; 683 684 switch (size) { 685 case 1: 686 stb_phys(cs->as, addr, val); 687 return H_SUCCESS; 688 case 2: 689 stw_phys(cs->as, addr, val); 690 return H_SUCCESS; 691 case 4: 692 stl_phys(cs->as, addr, val); 693 return H_SUCCESS; 694 case 8: 695 stq_phys(cs->as, addr, val); 696 return H_SUCCESS; 697 } 698 return H_PARAMETER; 699 } 700 701 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, 702 target_ulong opcode, target_ulong *args) 703 { 704 CPUState *cs = CPU(cpu); 705 706 target_ulong dst = args[0]; /* Destination address */ 707 target_ulong src = args[1]; /* Source address */ 708 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ 709 target_ulong count = args[3]; /* Element count */ 710 target_ulong op = args[4]; /* 0 = copy, 1 = invert */ 711 uint64_t tmp; 712 unsigned int mask = (1 << esize) - 1; 713 int step = 1 << esize; 714 715 if (count > 0x80000000) { 716 return H_PARAMETER; 717 } 718 719 if ((dst & mask) || (src & mask) || (op > 1)) { 720 return H_PARAMETER; 721 } 722 723 if (dst >= src && dst < (src + (count << esize))) { 724 dst = dst + ((count - 1) << esize); 725 src = src + ((count - 1) << esize); 726 step = -step; 727 } 728 729 while (count--) { 730 switch (esize) { 731 case 0: 732 tmp = ldub_phys(cs->as, src); 733 break; 734 case 1: 735 tmp = lduw_phys(cs->as, src); 736 break; 737 case 2: 738 tmp = ldl_phys(cs->as, src); 739 break; 740 case 3: 741 tmp = ldq_phys(cs->as, src); 742 break; 743 default: 744 return H_PARAMETER; 745 } 746 if (op == 1) { 747 tmp = ~tmp; 748 } 749 switch (esize) { 750 case 0: 751 stb_phys(cs->as, dst, tmp); 752 break; 753 case 1: 754 stw_phys(cs->as, dst, tmp); 755 break; 756 case 2: 757 stl_phys(cs->as, dst, tmp); 758 break; 759 case 3: 760 stq_phys(cs->as, dst, tmp); 761 break; 762 } 763 dst = dst + step; 764 src = src + step; 765 } 766 767 return H_SUCCESS; 768 } 769 770 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, 771 target_ulong opcode, target_ulong *args) 772 { 773 /* Nothing to do on emulation, KVM will trap this in the kernel */ 774 return H_SUCCESS; 775 } 776 777 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, 778 target_ulong opcode, target_ulong *args) 779 { 780 /* Nothing to do on emulation, KVM will trap this in the kernel */ 781 return H_SUCCESS; 782 } 783 784 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, 785 SpaprMachineState *spapr, 786 target_ulong mflags, 787 target_ulong value1, 788 target_ulong value2) 789 { 790 if (value1) { 791 return H_P3; 792 } 793 if (value2) { 794 return H_P4; 795 } 796 797 switch (mflags) { 798 case H_SET_MODE_ENDIAN_BIG: 799 spapr_set_all_lpcrs(0, LPCR_ILE); 800 spapr_pci_switch_vga(spapr, true); 801 return H_SUCCESS; 802 803 case H_SET_MODE_ENDIAN_LITTLE: 804 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); 805 spapr_pci_switch_vga(spapr, false); 806 return H_SUCCESS; 807 } 808 809 return H_UNSUPPORTED_FLAG; 810 } 811 812 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, 813 target_ulong mflags, 814 target_ulong value1, 815 target_ulong value2) 816 { 817 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 818 819 if (!(pcc->insns_flags2 & PPC2_ISA207S)) { 820 return H_P2; 821 } 822 if (value1) { 823 return H_P3; 824 } 825 if (value2) { 826 return H_P4; 827 } 828 829 if (mflags == 1) { 830 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */ 831 return H_UNSUPPORTED_FLAG; 832 } 833 834 if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) { 835 /* AIL=2 is reserved in POWER10 (ISA v3.1) */ 836 return H_UNSUPPORTED_FLAG; 837 } 838 839 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); 840 841 return H_SUCCESS; 842 } 843 844 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, 845 target_ulong opcode, target_ulong *args) 846 { 847 target_ulong resource = args[1]; 848 target_ulong ret = H_P2; 849 850 switch (resource) { 851 case H_SET_MODE_RESOURCE_LE: 852 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]); 853 break; 854 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 855 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], 856 args[2], args[3]); 857 break; 858 } 859 860 return ret; 861 } 862 863 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, 864 target_ulong opcode, target_ulong *args) 865 { 866 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 867 opcode, " (H_CLEAN_SLB)"); 868 return H_FUNCTION; 869 } 870 871 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, 872 target_ulong opcode, target_ulong *args) 873 { 874 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", 875 opcode, " (H_INVALIDATE_PID)"); 876 return H_FUNCTION; 877 } 878 879 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, 880 uint64_t patbe_old, uint64_t patbe_new) 881 { 882 /* 883 * We have 4 Options: 884 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing 885 * HASH->RADIX : Free HPT 886 * RADIX->HASH : Allocate HPT 887 * NOTHING->HASH : Allocate HPT 888 * Note: NOTHING implies the case where we said the guest could choose 889 * later and so assumed radix and now it's called H_REG_PROC_TBL 890 */ 891 892 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { 893 /* We assume RADIX, so this catches all the "Do Nothing" cases */ 894 } else if (!(patbe_old & PATE1_GR)) { 895 /* HASH->RADIX : Free HPT */ 896 spapr_free_hpt(spapr); 897 } else if (!(patbe_new & PATE1_GR)) { 898 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ 899 spapr_setup_hpt(spapr); 900 } 901 return; 902 } 903 904 #define FLAGS_MASK 0x01FULL 905 #define FLAG_MODIFY 0x10 906 #define FLAG_REGISTER 0x08 907 #define FLAG_RADIX 0x04 908 #define FLAG_HASH_PROC_TBL 0x02 909 #define FLAG_GTSE 0x01 910 911 static target_ulong h_register_process_table(PowerPCCPU *cpu, 912 SpaprMachineState *spapr, 913 target_ulong opcode, 914 target_ulong *args) 915 { 916 target_ulong flags = args[0]; 917 target_ulong proc_tbl = args[1]; 918 target_ulong page_size = args[2]; 919 target_ulong table_size = args[3]; 920 target_ulong update_lpcr = 0; 921 uint64_t cproc; 922 923 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ 924 return H_PARAMETER; 925 } 926 if (flags & FLAG_MODIFY) { 927 if (flags & FLAG_REGISTER) { 928 if (flags & FLAG_RADIX) { /* Register new RADIX process table */ 929 if (proc_tbl & 0xfff || proc_tbl >> 60) { 930 return H_P2; 931 } else if (page_size) { 932 return H_P3; 933 } else if (table_size > 24) { 934 return H_P4; 935 } 936 cproc = PATE1_GR | proc_tbl | table_size; 937 } else { /* Register new HPT process table */ 938 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ 939 /* TODO - Not Supported */ 940 /* Technically caused by flag bits => H_PARAMETER */ 941 return H_PARAMETER; 942 } else { /* Hash with SLB */ 943 if (proc_tbl >> 38) { 944 return H_P2; 945 } else if (page_size & ~0x7) { 946 return H_P3; 947 } else if (table_size > 24) { 948 return H_P4; 949 } 950 } 951 cproc = (proc_tbl << 25) | page_size << 5 | table_size; 952 } 953 954 } else { /* Deregister current process table */ 955 /* 956 * Set to benign value: (current GR) | 0. This allows 957 * deregistration in KVM to succeed even if the radix bit 958 * in flags doesn't match the radix bit in the old PATE. 959 */ 960 cproc = spapr->patb_entry & PATE1_GR; 961 } 962 } else { /* Maintain current registration */ 963 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { 964 /* Technically caused by flag bits => H_PARAMETER */ 965 return H_PARAMETER; /* Existing Process Table Mismatch */ 966 } 967 cproc = spapr->patb_entry; 968 } 969 970 /* Check if we need to setup OR free the hpt */ 971 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); 972 973 spapr->patb_entry = cproc; /* Save new process table */ 974 975 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ 976 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ 977 update_lpcr |= (LPCR_UPRT | LPCR_HR); 978 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ 979 update_lpcr |= LPCR_UPRT; 980 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ 981 update_lpcr |= LPCR_GTSE; 982 983 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); 984 985 if (kvm_enabled()) { 986 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, 987 flags & FLAG_GTSE, cproc); 988 } 989 return H_SUCCESS; 990 } 991 992 #define H_SIGNAL_SYS_RESET_ALL -1 993 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 994 995 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, 996 SpaprMachineState *spapr, 997 target_ulong opcode, target_ulong *args) 998 { 999 target_long target = args[0]; 1000 CPUState *cs; 1001 1002 if (target < 0) { 1003 /* Broadcast */ 1004 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1005 return H_PARAMETER; 1006 } 1007 1008 CPU_FOREACH(cs) { 1009 PowerPCCPU *c = POWERPC_CPU(cs); 1010 1011 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { 1012 if (c == cpu) { 1013 continue; 1014 } 1015 } 1016 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1017 } 1018 return H_SUCCESS; 1019 1020 } else { 1021 /* Unicast */ 1022 cs = CPU(spapr_find_cpu(target)); 1023 if (cs) { 1024 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 1025 return H_SUCCESS; 1026 } 1027 return H_PARAMETER; 1028 } 1029 } 1030 1031 /* Returns either a logical PVR or zero if none was found */ 1032 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat, 1033 target_ulong *addr, bool *raw_mode_supported) 1034 { 1035 bool explicit_match = false; /* Matched the CPU's real PVR */ 1036 uint32_t best_compat = 0; 1037 int i; 1038 1039 /* 1040 * We scan the supplied table of PVRs looking for two things 1041 * 1. Is our real CPU PVR in the list? 1042 * 2. What's the "best" listed logical PVR 1043 */ 1044 for (i = 0; i < 512; ++i) { 1045 uint32_t pvr, pvr_mask; 1046 1047 pvr_mask = ldl_be_phys(&address_space_memory, *addr); 1048 pvr = ldl_be_phys(&address_space_memory, *addr + 4); 1049 *addr += 8; 1050 1051 if (~pvr_mask & pvr) { 1052 break; /* Terminator record */ 1053 } 1054 1055 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { 1056 explicit_match = true; 1057 } else { 1058 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { 1059 best_compat = pvr; 1060 } 1061 } 1062 } 1063 1064 *raw_mode_supported = explicit_match; 1065 1066 /* Parsing finished */ 1067 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); 1068 1069 return best_compat; 1070 } 1071 1072 static 1073 target_ulong do_client_architecture_support(PowerPCCPU *cpu, 1074 SpaprMachineState *spapr, 1075 target_ulong vec, 1076 target_ulong fdt_bufsize) 1077 { 1078 target_ulong ov_table; /* Working address in data buffer */ 1079 uint32_t cas_pvr; 1080 SpaprOptionVector *ov1_guest, *ov5_guest; 1081 bool guest_radix; 1082 bool raw_mode_supported = false; 1083 bool guest_xive; 1084 CPUState *cs; 1085 void *fdt; 1086 uint32_t max_compat = spapr->max_compat_pvr; 1087 1088 /* CAS is supposed to be called early when only the boot vCPU is active. */ 1089 CPU_FOREACH(cs) { 1090 if (cs == CPU(cpu)) { 1091 continue; 1092 } 1093 if (!cs->halted) { 1094 warn_report("guest has multiple active vCPUs at CAS, which is not allowed"); 1095 return H_MULTI_THREADS_ACTIVE; 1096 } 1097 } 1098 1099 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported); 1100 if (!cas_pvr && (!raw_mode_supported || max_compat)) { 1101 /* 1102 * We couldn't find a suitable compatibility mode, and either 1103 * the guest doesn't support "raw" mode for this CPU, or "raw" 1104 * mode is disabled because a maximum compat mode is set. 1105 */ 1106 error_report("Couldn't negotiate a suitable PVR during CAS"); 1107 return H_HARDWARE; 1108 } 1109 1110 /* Update CPUs */ 1111 if (cpu->compat_pvr != cas_pvr) { 1112 Error *local_err = NULL; 1113 1114 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) { 1115 /* We fail to set compat mode (likely because running with KVM PR), 1116 * but maybe we can fallback to raw mode if the guest supports it. 1117 */ 1118 if (!raw_mode_supported) { 1119 error_report_err(local_err); 1120 return H_HARDWARE; 1121 } 1122 error_free(local_err); 1123 } 1124 } 1125 1126 /* For the future use: here @ov_table points to the first option vector */ 1127 ov_table = vec; 1128 1129 ov1_guest = spapr_ovec_parse_vector(ov_table, 1); 1130 if (!ov1_guest) { 1131 warn_report("guest didn't provide option vector 1"); 1132 return H_PARAMETER; 1133 } 1134 ov5_guest = spapr_ovec_parse_vector(ov_table, 5); 1135 if (!ov5_guest) { 1136 spapr_ovec_cleanup(ov1_guest); 1137 warn_report("guest didn't provide option vector 5"); 1138 return H_PARAMETER; 1139 } 1140 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { 1141 error_report("guest requested hash and radix MMU, which is invalid."); 1142 exit(EXIT_FAILURE); 1143 } 1144 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { 1145 error_report("guest requested an invalid interrupt mode"); 1146 exit(EXIT_FAILURE); 1147 } 1148 1149 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); 1150 1151 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); 1152 1153 /* 1154 * HPT resizing is a bit of a special case, because when enabled 1155 * we assume an HPT guest will support it until it says it 1156 * doesn't, instead of assuming it won't support it until it says 1157 * it does. Strictly speaking that approach could break for 1158 * guests which don't make a CAS call, but those are so old we 1159 * don't care about them. Without that assumption we'd have to 1160 * make at least a temporary allocation of an HPT sized for max 1161 * memory, which could be impossibly difficult under KVM HV if 1162 * maxram is large. 1163 */ 1164 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { 1165 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1166 1167 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { 1168 error_report( 1169 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); 1170 exit(1); 1171 } 1172 1173 if (spapr->htab_shift < maxshift) { 1174 /* Guest doesn't know about HPT resizing, so we 1175 * pre-emptively resize for the maximum permitted RAM. At 1176 * the point this is called, nothing should have been 1177 * entered into the existing HPT */ 1178 spapr_reallocate_hpt(spapr, maxshift, &error_fatal); 1179 push_sregs_to_kvm_pr(spapr); 1180 } 1181 } 1182 1183 /* NOTE: there are actually a number of ov5 bits where input from the 1184 * guest is always zero, and the platform/QEMU enables them independently 1185 * of guest input. To model these properly we'd want some sort of mask, 1186 * but since they only currently apply to memory migration as defined 1187 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need 1188 * to worry about this for now. 1189 */ 1190 1191 /* full range of negotiated ov5 capabilities */ 1192 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); 1193 spapr_ovec_cleanup(ov5_guest); 1194 1195 spapr_check_mmu_mode(guest_radix); 1196 1197 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00); 1198 spapr_ovec_cleanup(ov1_guest); 1199 1200 /* 1201 * Ensure the guest asks for an interrupt mode we support; 1202 * otherwise terminate the boot. 1203 */ 1204 if (guest_xive) { 1205 if (!spapr->irq->xive) { 1206 error_report( 1207 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); 1208 exit(EXIT_FAILURE); 1209 } 1210 } else { 1211 if (!spapr->irq->xics) { 1212 error_report( 1213 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); 1214 exit(EXIT_FAILURE); 1215 } 1216 } 1217 1218 spapr_irq_update_active_intc(spapr); 1219 1220 /* 1221 * Process all pending hot-plug/unplug requests now. An updated full 1222 * rendered FDT will be returned to the guest. 1223 */ 1224 spapr_drc_reset_all(spapr); 1225 spapr_clear_pending_hotplug_events(spapr); 1226 1227 /* 1228 * If spapr_machine_reset() did not set up a HPT but one is necessary 1229 * (because the guest isn't going to use radix) then set it up here. 1230 */ 1231 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { 1232 /* legacy hash or new hash: */ 1233 spapr_setup_hpt(spapr); 1234 } 1235 1236 fdt = spapr_build_fdt(spapr, false, fdt_bufsize); 1237 1238 g_free(spapr->fdt_blob); 1239 spapr->fdt_size = fdt_totalsize(fdt); 1240 spapr->fdt_initial_size = spapr->fdt_size; 1241 spapr->fdt_blob = fdt; 1242 1243 return H_SUCCESS; 1244 } 1245 1246 static target_ulong h_client_architecture_support(PowerPCCPU *cpu, 1247 SpaprMachineState *spapr, 1248 target_ulong opcode, 1249 target_ulong *args) 1250 { 1251 target_ulong vec = ppc64_phys_to_real(args[0]); 1252 target_ulong fdt_buf = args[1]; 1253 target_ulong fdt_bufsize = args[2]; 1254 target_ulong ret; 1255 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 1256 1257 if (fdt_bufsize < sizeof(hdr)) { 1258 error_report("SLOF provided insufficient CAS buffer " 1259 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr)); 1260 exit(EXIT_FAILURE); 1261 } 1262 1263 fdt_bufsize -= sizeof(hdr); 1264 1265 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize); 1266 if (ret == H_SUCCESS) { 1267 _FDT((fdt_pack(spapr->fdt_blob))); 1268 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob); 1269 spapr->fdt_initial_size = spapr->fdt_size; 1270 1271 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr)); 1272 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob, 1273 spapr->fdt_size); 1274 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr)); 1275 } 1276 1277 return ret; 1278 } 1279 1280 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, 1281 SpaprMachineState *spapr, 1282 target_ulong opcode, 1283 target_ulong *args) 1284 { 1285 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & 1286 ~H_CPU_CHAR_THR_RECONF_TRIG; 1287 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; 1288 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); 1289 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); 1290 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); 1291 uint8_t count_cache_flush_assist = spapr_get_cap(spapr, 1292 SPAPR_CAP_CCF_ASSIST); 1293 1294 switch (safe_cache) { 1295 case SPAPR_CAP_WORKAROUND: 1296 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; 1297 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; 1298 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; 1299 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1300 break; 1301 case SPAPR_CAP_FIXED: 1302 break; 1303 default: /* broken */ 1304 assert(safe_cache == SPAPR_CAP_BROKEN); 1305 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; 1306 break; 1307 } 1308 1309 switch (safe_bounds_check) { 1310 case SPAPR_CAP_WORKAROUND: 1311 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; 1312 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1313 break; 1314 case SPAPR_CAP_FIXED: 1315 break; 1316 default: /* broken */ 1317 assert(safe_bounds_check == SPAPR_CAP_BROKEN); 1318 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; 1319 break; 1320 } 1321 1322 switch (safe_indirect_branch) { 1323 case SPAPR_CAP_FIXED_NA: 1324 break; 1325 case SPAPR_CAP_FIXED_CCD: 1326 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; 1327 break; 1328 case SPAPR_CAP_FIXED_IBS: 1329 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; 1330 break; 1331 case SPAPR_CAP_WORKAROUND: 1332 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; 1333 if (count_cache_flush_assist) { 1334 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; 1335 } 1336 break; 1337 default: /* broken */ 1338 assert(safe_indirect_branch == SPAPR_CAP_BROKEN); 1339 break; 1340 } 1341 1342 args[0] = characteristics; 1343 args[1] = behaviour; 1344 return H_SUCCESS; 1345 } 1346 1347 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, 1348 target_ulong opcode, target_ulong *args) 1349 { 1350 target_ulong dt = ppc64_phys_to_real(args[0]); 1351 struct fdt_header hdr = { 0 }; 1352 unsigned cb; 1353 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 1354 void *fdt; 1355 1356 cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); 1357 cb = fdt32_to_cpu(hdr.totalsize); 1358 1359 if (!smc->update_dt_enabled) { 1360 return H_SUCCESS; 1361 } 1362 1363 /* Check that the fdt did not grow out of proportion */ 1364 if (cb > spapr->fdt_initial_size * 2) { 1365 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, 1366 fdt32_to_cpu(hdr.magic)); 1367 return H_PARAMETER; 1368 } 1369 1370 fdt = g_malloc0(cb); 1371 cpu_physical_memory_read(dt, fdt, cb); 1372 1373 /* Check the fdt consistency */ 1374 if (fdt_check_full(fdt, cb)) { 1375 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, 1376 fdt32_to_cpu(hdr.magic)); 1377 return H_PARAMETER; 1378 } 1379 1380 g_free(spapr->fdt_blob); 1381 spapr->fdt_size = cb; 1382 spapr->fdt_blob = fdt; 1383 trace_spapr_update_dt(cb); 1384 1385 return H_SUCCESS; 1386 } 1387 1388 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; 1389 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; 1390 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; 1391 1392 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) 1393 { 1394 spapr_hcall_fn *slot; 1395 1396 if (opcode <= MAX_HCALL_OPCODE) { 1397 assert((opcode & 0x3) == 0); 1398 1399 slot = &papr_hypercall_table[opcode / 4]; 1400 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { 1401 /* we only have SVM-related hcall numbers assigned in multiples of 4 */ 1402 assert((opcode & 0x3) == 0); 1403 1404 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 1405 } else { 1406 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); 1407 1408 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1409 } 1410 1411 assert(!(*slot)); 1412 *slot = fn; 1413 } 1414 1415 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, 1416 target_ulong *args) 1417 { 1418 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 1419 1420 if ((opcode <= MAX_HCALL_OPCODE) 1421 && ((opcode & 0x3) == 0)) { 1422 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; 1423 1424 if (fn) { 1425 return fn(cpu, spapr, opcode, args); 1426 } 1427 } else if ((opcode >= SVM_HCALL_BASE) && 1428 (opcode <= SVM_HCALL_MAX)) { 1429 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; 1430 1431 if (fn) { 1432 return fn(cpu, spapr, opcode, args); 1433 } 1434 } else if ((opcode >= KVMPPC_HCALL_BASE) && 1435 (opcode <= KVMPPC_HCALL_MAX)) { 1436 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; 1437 1438 if (fn) { 1439 return fn(cpu, spapr, opcode, args); 1440 } 1441 } 1442 1443 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", 1444 opcode); 1445 return H_FUNCTION; 1446 } 1447 1448 #ifndef CONFIG_TCG 1449 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr, 1450 target_ulong opcode, target_ulong *args) 1451 { 1452 g_assert_not_reached(); 1453 } 1454 1455 static void hypercall_register_softmmu(void) 1456 { 1457 /* hcall-pft */ 1458 spapr_register_hypercall(H_ENTER, h_softmmu); 1459 spapr_register_hypercall(H_REMOVE, h_softmmu); 1460 spapr_register_hypercall(H_PROTECT, h_softmmu); 1461 spapr_register_hypercall(H_READ, h_softmmu); 1462 1463 /* hcall-bulk */ 1464 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu); 1465 } 1466 #else 1467 static void hypercall_register_softmmu(void) 1468 { 1469 /* DO NOTHING */ 1470 } 1471 #endif 1472 1473 static void hypercall_register_types(void) 1474 { 1475 hypercall_register_softmmu(); 1476 1477 /* hcall-hpt-resize */ 1478 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); 1479 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); 1480 1481 /* hcall-splpar */ 1482 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); 1483 spapr_register_hypercall(H_CEDE, h_cede); 1484 spapr_register_hypercall(H_CONFER, h_confer); 1485 spapr_register_hypercall(H_PROD, h_prod); 1486 1487 /* hcall-join */ 1488 spapr_register_hypercall(H_JOIN, h_join); 1489 1490 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); 1491 1492 /* processor register resource access h-calls */ 1493 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); 1494 spapr_register_hypercall(H_SET_DABR, h_set_dabr); 1495 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); 1496 spapr_register_hypercall(H_PAGE_INIT, h_page_init); 1497 spapr_register_hypercall(H_SET_MODE, h_set_mode); 1498 1499 /* In Memory Table MMU h-calls */ 1500 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); 1501 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); 1502 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); 1503 1504 /* hcall-get-cpu-characteristics */ 1505 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, 1506 h_get_cpu_characteristics); 1507 1508 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate 1509 * here between the "CI" and the "CACHE" variants, they will use whatever 1510 * mapping attributes qemu is using. When using KVM, the kernel will 1511 * enforce the attributes more strongly 1512 */ 1513 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); 1514 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); 1515 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); 1516 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); 1517 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); 1518 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); 1519 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); 1520 1521 /* qemu/KVM-PPC specific hcalls */ 1522 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); 1523 1524 /* ibm,client-architecture-support support */ 1525 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); 1526 1527 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); 1528 } 1529 1530 type_init(hypercall_register_types) 1531