xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision 500eb6db)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/module.h"
7 #include "qemu/error-report.h"
8 #include "cpu.h"
9 #include "exec/exec-all.h"
10 #include "helper_regs.h"
11 #include "hw/ppc/spapr.h"
12 #include "hw/ppc/spapr_cpu_core.h"
13 #include "mmu-hash64.h"
14 #include "cpu-models.h"
15 #include "trace.h"
16 #include "kvm_ppc.h"
17 #include "hw/ppc/spapr_ovec.h"
18 #include "mmu-book3s-v3.h"
19 #include "hw/mem/memory-device.h"
20 
21 static bool has_spr(PowerPCCPU *cpu, int spr)
22 {
23     /* We can test whether the SPR is defined by checking for a valid name */
24     return cpu->env.spr_cb[spr].name != NULL;
25 }
26 
27 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
28 {
29     /*
30      * hash value/pteg group index is normalized by HPT mask
31      */
32     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
33         return false;
34     }
35     return true;
36 }
37 
38 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
39 {
40     MachineState *machine = MACHINE(spapr);
41     DeviceMemoryState *dms = machine->device_memory;
42 
43     if (addr < machine->ram_size) {
44         return true;
45     }
46     if ((addr >= dms->base)
47         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
48         return true;
49     }
50 
51     return false;
52 }
53 
54 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
55                             target_ulong opcode, target_ulong *args)
56 {
57     target_ulong flags = args[0];
58     target_ulong ptex = args[1];
59     target_ulong pteh = args[2];
60     target_ulong ptel = args[3];
61     unsigned apshift;
62     target_ulong raddr;
63     target_ulong slot;
64     const ppc_hash_pte64_t *hptes;
65 
66     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
67     if (!apshift) {
68         /* Bad page size encoding */
69         return H_PARAMETER;
70     }
71 
72     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
73 
74     if (is_ram_address(spapr, raddr)) {
75         /* Regular RAM - should have WIMG=0010 */
76         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
77             return H_PARAMETER;
78         }
79     } else {
80         target_ulong wimg_flags;
81         /* Looks like an IO address */
82         /* FIXME: What WIMG combinations could be sensible for IO?
83          * For now we allow WIMG=010x, but are there others? */
84         /* FIXME: Should we check against registered IO addresses? */
85         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
86 
87         if (wimg_flags != HPTE64_R_I &&
88             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
89             return H_PARAMETER;
90         }
91     }
92 
93     pteh &= ~0x60ULL;
94 
95     if (!valid_ptex(cpu, ptex)) {
96         return H_PARAMETER;
97     }
98 
99     slot = ptex & 7ULL;
100     ptex = ptex & ~7ULL;
101 
102     if (likely((flags & H_EXACT) == 0)) {
103         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
104         for (slot = 0; slot < 8; slot++) {
105             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
106                 break;
107             }
108         }
109         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
110         if (slot == 8) {
111             return H_PTEG_FULL;
112         }
113     } else {
114         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
115         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
116             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
117             return H_PTEG_FULL;
118         }
119         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
120     }
121 
122     spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
123 
124     args[0] = ptex + slot;
125     return H_SUCCESS;
126 }
127 
128 typedef enum {
129     REMOVE_SUCCESS = 0,
130     REMOVE_NOT_FOUND = 1,
131     REMOVE_PARM = 2,
132     REMOVE_HW = 3,
133 } RemoveResult;
134 
135 static RemoveResult remove_hpte(PowerPCCPU *cpu
136                                 , target_ulong ptex,
137                                 target_ulong avpn,
138                                 target_ulong flags,
139                                 target_ulong *vp, target_ulong *rp)
140 {
141     const ppc_hash_pte64_t *hptes;
142     target_ulong v, r;
143 
144     if (!valid_ptex(cpu, ptex)) {
145         return REMOVE_PARM;
146     }
147 
148     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
149     v = ppc_hash64_hpte0(cpu, hptes, 0);
150     r = ppc_hash64_hpte1(cpu, hptes, 0);
151     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
152 
153     if ((v & HPTE64_V_VALID) == 0 ||
154         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
155         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
156         return REMOVE_NOT_FOUND;
157     }
158     *vp = v;
159     *rp = r;
160     spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
161     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
162     return REMOVE_SUCCESS;
163 }
164 
165 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
166                              target_ulong opcode, target_ulong *args)
167 {
168     CPUPPCState *env = &cpu->env;
169     target_ulong flags = args[0];
170     target_ulong ptex = args[1];
171     target_ulong avpn = args[2];
172     RemoveResult ret;
173 
174     ret = remove_hpte(cpu, ptex, avpn, flags,
175                       &args[0], &args[1]);
176 
177     switch (ret) {
178     case REMOVE_SUCCESS:
179         check_tlb_flush(env, true);
180         return H_SUCCESS;
181 
182     case REMOVE_NOT_FOUND:
183         return H_NOT_FOUND;
184 
185     case REMOVE_PARM:
186         return H_PARAMETER;
187 
188     case REMOVE_HW:
189         return H_HARDWARE;
190     }
191 
192     g_assert_not_reached();
193 }
194 
195 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
196 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
197 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
198 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
199 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
200 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
201 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
202 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
203 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
204 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
205 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
206 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
207 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
208 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
209 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
210 
211 #define H_BULK_REMOVE_MAX_BATCH        4
212 
213 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
214                                   target_ulong opcode, target_ulong *args)
215 {
216     CPUPPCState *env = &cpu->env;
217     int i;
218     target_ulong rc = H_SUCCESS;
219 
220     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
221         target_ulong *tsh = &args[i*2];
222         target_ulong tsl = args[i*2 + 1];
223         target_ulong v, r, ret;
224 
225         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
226             break;
227         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
228             return H_PARAMETER;
229         }
230 
231         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
232         *tsh |= H_BULK_REMOVE_RESPONSE;
233 
234         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
235             *tsh |= H_BULK_REMOVE_PARM;
236             return H_PARAMETER;
237         }
238 
239         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
240                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
241                           &v, &r);
242 
243         *tsh |= ret << 60;
244 
245         switch (ret) {
246         case REMOVE_SUCCESS:
247             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
248             break;
249 
250         case REMOVE_PARM:
251             rc = H_PARAMETER;
252             goto exit;
253 
254         case REMOVE_HW:
255             rc = H_HARDWARE;
256             goto exit;
257         }
258     }
259  exit:
260     check_tlb_flush(env, true);
261 
262     return rc;
263 }
264 
265 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
266                               target_ulong opcode, target_ulong *args)
267 {
268     CPUPPCState *env = &cpu->env;
269     target_ulong flags = args[0];
270     target_ulong ptex = args[1];
271     target_ulong avpn = args[2];
272     const ppc_hash_pte64_t *hptes;
273     target_ulong v, r;
274 
275     if (!valid_ptex(cpu, ptex)) {
276         return H_PARAMETER;
277     }
278 
279     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
280     v = ppc_hash64_hpte0(cpu, hptes, 0);
281     r = ppc_hash64_hpte1(cpu, hptes, 0);
282     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
283 
284     if ((v & HPTE64_V_VALID) == 0 ||
285         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
286         return H_NOT_FOUND;
287     }
288 
289     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
290            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
291     r |= (flags << 55) & HPTE64_R_PP0;
292     r |= (flags << 48) & HPTE64_R_KEY_HI;
293     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
294     spapr_store_hpte(cpu, ptex,
295                      (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
296     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
297     /* Flush the tlb */
298     check_tlb_flush(env, true);
299     /* Don't need a memory barrier, due to qemu's global lock */
300     spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
301     return H_SUCCESS;
302 }
303 
304 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
305                            target_ulong opcode, target_ulong *args)
306 {
307     target_ulong flags = args[0];
308     target_ulong ptex = args[1];
309     int i, ridx, n_entries = 1;
310     const ppc_hash_pte64_t *hptes;
311 
312     if (!valid_ptex(cpu, ptex)) {
313         return H_PARAMETER;
314     }
315 
316     if (flags & H_READ_4) {
317         /* Clear the two low order bits */
318         ptex &= ~(3ULL);
319         n_entries = 4;
320     }
321 
322     hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
323     for (i = 0, ridx = 0; i < n_entries; i++) {
324         args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
325         args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
326     }
327     ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
328 
329     return H_SUCCESS;
330 }
331 
332 struct SpaprPendingHpt {
333     /* These fields are read-only after initialization */
334     int shift;
335     QemuThread thread;
336 
337     /* These fields are protected by the BQL */
338     bool complete;
339 
340     /* These fields are private to the preparation thread if
341      * !complete, otherwise protected by the BQL */
342     int ret;
343     void *hpt;
344 };
345 
346 static void free_pending_hpt(SpaprPendingHpt *pending)
347 {
348     if (pending->hpt) {
349         qemu_vfree(pending->hpt);
350     }
351 
352     g_free(pending);
353 }
354 
355 static void *hpt_prepare_thread(void *opaque)
356 {
357     SpaprPendingHpt *pending = opaque;
358     size_t size = 1ULL << pending->shift;
359 
360     pending->hpt = qemu_memalign(size, size);
361     if (pending->hpt) {
362         memset(pending->hpt, 0, size);
363         pending->ret = H_SUCCESS;
364     } else {
365         pending->ret = H_NO_MEM;
366     }
367 
368     qemu_mutex_lock_iothread();
369 
370     if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
371         /* Ready to go */
372         pending->complete = true;
373     } else {
374         /* We've been cancelled, clean ourselves up */
375         free_pending_hpt(pending);
376     }
377 
378     qemu_mutex_unlock_iothread();
379     return NULL;
380 }
381 
382 /* Must be called with BQL held */
383 static void cancel_hpt_prepare(SpaprMachineState *spapr)
384 {
385     SpaprPendingHpt *pending = spapr->pending_hpt;
386 
387     /* Let the thread know it's cancelled */
388     spapr->pending_hpt = NULL;
389 
390     if (!pending) {
391         /* Nothing to do */
392         return;
393     }
394 
395     if (!pending->complete) {
396         /* thread will clean itself up */
397         return;
398     }
399 
400     free_pending_hpt(pending);
401 }
402 
403 /* Convert a return code from the KVM ioctl()s implementing resize HPT
404  * into a PAPR hypercall return code */
405 static target_ulong resize_hpt_convert_rc(int ret)
406 {
407     if (ret >= 100000) {
408         return H_LONG_BUSY_ORDER_100_SEC;
409     } else if (ret >= 10000) {
410         return H_LONG_BUSY_ORDER_10_SEC;
411     } else if (ret >= 1000) {
412         return H_LONG_BUSY_ORDER_1_SEC;
413     } else if (ret >= 100) {
414         return H_LONG_BUSY_ORDER_100_MSEC;
415     } else if (ret >= 10) {
416         return H_LONG_BUSY_ORDER_10_MSEC;
417     } else if (ret > 0) {
418         return H_LONG_BUSY_ORDER_1_MSEC;
419     }
420 
421     switch (ret) {
422     case 0:
423         return H_SUCCESS;
424     case -EPERM:
425         return H_AUTHORITY;
426     case -EINVAL:
427         return H_PARAMETER;
428     case -ENXIO:
429         return H_CLOSED;
430     case -ENOSPC:
431         return H_PTEG_FULL;
432     case -EBUSY:
433         return H_BUSY;
434     case -ENOMEM:
435         return H_NO_MEM;
436     default:
437         return H_HARDWARE;
438     }
439 }
440 
441 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
442                                          SpaprMachineState *spapr,
443                                          target_ulong opcode,
444                                          target_ulong *args)
445 {
446     target_ulong flags = args[0];
447     int shift = args[1];
448     SpaprPendingHpt *pending = spapr->pending_hpt;
449     uint64_t current_ram_size;
450     int rc;
451 
452     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
453         return H_AUTHORITY;
454     }
455 
456     if (!spapr->htab_shift) {
457         /* Radix guest, no HPT */
458         return H_NOT_AVAILABLE;
459     }
460 
461     trace_spapr_h_resize_hpt_prepare(flags, shift);
462 
463     if (flags != 0) {
464         return H_PARAMETER;
465     }
466 
467     if (shift && ((shift < 18) || (shift > 46))) {
468         return H_PARAMETER;
469     }
470 
471     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
472 
473     /* We only allow the guest to allocate an HPT one order above what
474      * we'd normally give them (to stop a small guest claiming a huge
475      * chunk of resources in the HPT */
476     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
477         return H_RESOURCE;
478     }
479 
480     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
481     if (rc != -ENOSYS) {
482         return resize_hpt_convert_rc(rc);
483     }
484 
485     if (pending) {
486         /* something already in progress */
487         if (pending->shift == shift) {
488             /* and it's suitable */
489             if (pending->complete) {
490                 return pending->ret;
491             } else {
492                 return H_LONG_BUSY_ORDER_100_MSEC;
493             }
494         }
495 
496         /* not suitable, cancel and replace */
497         cancel_hpt_prepare(spapr);
498     }
499 
500     if (!shift) {
501         /* nothing to do */
502         return H_SUCCESS;
503     }
504 
505     /* start new prepare */
506 
507     pending = g_new0(SpaprPendingHpt, 1);
508     pending->shift = shift;
509     pending->ret = H_HARDWARE;
510 
511     qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
512                        hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
513 
514     spapr->pending_hpt = pending;
515 
516     /* In theory we could estimate the time more accurately based on
517      * the new size, but there's not much point */
518     return H_LONG_BUSY_ORDER_100_MSEC;
519 }
520 
521 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
522 {
523     uint8_t *addr = htab;
524 
525     addr += pteg * HASH_PTEG_SIZE_64;
526     addr += slot * HASH_PTE_SIZE_64;
527     return  ldq_p(addr);
528 }
529 
530 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
531                            uint64_t pte0, uint64_t pte1)
532 {
533     uint8_t *addr = htab;
534 
535     addr += pteg * HASH_PTEG_SIZE_64;
536     addr += slot * HASH_PTE_SIZE_64;
537 
538     stq_p(addr, pte0);
539     stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
540 }
541 
542 static int rehash_hpte(PowerPCCPU *cpu,
543                        const ppc_hash_pte64_t *hptes,
544                        void *old_hpt, uint64_t oldsize,
545                        void *new_hpt, uint64_t newsize,
546                        uint64_t pteg, int slot)
547 {
548     uint64_t old_hash_mask = (oldsize >> 7) - 1;
549     uint64_t new_hash_mask = (newsize >> 7) - 1;
550     target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
551     target_ulong pte1;
552     uint64_t avpn;
553     unsigned base_pg_shift;
554     uint64_t hash, new_pteg, replace_pte0;
555 
556     if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
557         return H_SUCCESS;
558     }
559 
560     pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
561 
562     base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
563     assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
564     avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
565 
566     if (pte0 & HPTE64_V_SECONDARY) {
567         pteg = ~pteg;
568     }
569 
570     if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
571         uint64_t offset, vsid;
572 
573         /* We only have 28 - 23 bits of offset in avpn */
574         offset = (avpn & 0x1f) << 23;
575         vsid = avpn >> 5;
576         /* We can find more bits from the pteg value */
577         if (base_pg_shift < 23) {
578             offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
579         }
580 
581         hash = vsid ^ (offset >> base_pg_shift);
582     } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
583         uint64_t offset, vsid;
584 
585         /* We only have 40 - 23 bits of seg_off in avpn */
586         offset = (avpn & 0x1ffff) << 23;
587         vsid = avpn >> 17;
588         if (base_pg_shift < 23) {
589             offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
590                 << base_pg_shift;
591         }
592 
593         hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
594     } else {
595         error_report("rehash_pte: Bad segment size in HPTE");
596         return H_HARDWARE;
597     }
598 
599     new_pteg = hash & new_hash_mask;
600     if (pte0 & HPTE64_V_SECONDARY) {
601         assert(~pteg == (hash & old_hash_mask));
602         new_pteg = ~new_pteg;
603     } else {
604         assert(pteg == (hash & old_hash_mask));
605     }
606     assert((oldsize != newsize) || (pteg == new_pteg));
607     replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
608     /*
609      * Strictly speaking, we don't need all these tests, since we only
610      * ever rehash bolted HPTEs.  We might in future handle non-bolted
611      * HPTEs, though so make the logic correct for those cases as
612      * well.
613      */
614     if (replace_pte0 & HPTE64_V_VALID) {
615         assert(newsize < oldsize);
616         if (replace_pte0 & HPTE64_V_BOLTED) {
617             if (pte0 & HPTE64_V_BOLTED) {
618                 /* Bolted collision, nothing we can do */
619                 return H_PTEG_FULL;
620             } else {
621                 /* Discard this hpte */
622                 return H_SUCCESS;
623             }
624         }
625     }
626 
627     new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
628     return H_SUCCESS;
629 }
630 
631 static int rehash_hpt(PowerPCCPU *cpu,
632                       void *old_hpt, uint64_t oldsize,
633                       void *new_hpt, uint64_t newsize)
634 {
635     uint64_t n_ptegs = oldsize >> 7;
636     uint64_t pteg;
637     int slot;
638     int rc;
639 
640     for (pteg = 0; pteg < n_ptegs; pteg++) {
641         hwaddr ptex = pteg * HPTES_PER_GROUP;
642         const ppc_hash_pte64_t *hptes
643             = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
644 
645         if (!hptes) {
646             return H_HARDWARE;
647         }
648 
649         for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
650             rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
651                              pteg, slot);
652             if (rc != H_SUCCESS) {
653                 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
654                 return rc;
655             }
656         }
657         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
658     }
659 
660     return H_SUCCESS;
661 }
662 
663 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
664 {
665     int ret;
666 
667     cpu_synchronize_state(cs);
668 
669     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
670     if (ret < 0) {
671         error_report("failed to push sregs to KVM: %s", strerror(-ret));
672         exit(1);
673     }
674 }
675 
676 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
677 {
678     CPUState *cs;
679 
680     /*
681      * This is a hack for the benefit of KVM PR - it abuses the SDR1
682      * slot in kvm_sregs to communicate the userspace address of the
683      * HPT
684      */
685     if (!kvm_enabled() || !spapr->htab) {
686         return;
687     }
688 
689     CPU_FOREACH(cs) {
690         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
691     }
692 }
693 
694 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
695                                         SpaprMachineState *spapr,
696                                         target_ulong opcode,
697                                         target_ulong *args)
698 {
699     target_ulong flags = args[0];
700     target_ulong shift = args[1];
701     SpaprPendingHpt *pending = spapr->pending_hpt;
702     int rc;
703     size_t newsize;
704 
705     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
706         return H_AUTHORITY;
707     }
708 
709     if (!spapr->htab_shift) {
710         /* Radix guest, no HPT */
711         return H_NOT_AVAILABLE;
712     }
713 
714     trace_spapr_h_resize_hpt_commit(flags, shift);
715 
716     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
717     if (rc != -ENOSYS) {
718         rc = resize_hpt_convert_rc(rc);
719         if (rc == H_SUCCESS) {
720             /* Need to set the new htab_shift in the machine state */
721             spapr->htab_shift = shift;
722         }
723         return rc;
724     }
725 
726     if (flags != 0) {
727         return H_PARAMETER;
728     }
729 
730     if (!pending || (pending->shift != shift)) {
731         /* no matching prepare */
732         return H_CLOSED;
733     }
734 
735     if (!pending->complete) {
736         /* prepare has not completed */
737         return H_BUSY;
738     }
739 
740     /* Shouldn't have got past PREPARE without an HPT */
741     g_assert(spapr->htab_shift);
742 
743     newsize = 1ULL << pending->shift;
744     rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
745                     pending->hpt, newsize);
746     if (rc == H_SUCCESS) {
747         qemu_vfree(spapr->htab);
748         spapr->htab = pending->hpt;
749         spapr->htab_shift = pending->shift;
750 
751         push_sregs_to_kvm_pr(spapr);
752 
753         pending->hpt = NULL; /* so it's not free()d */
754     }
755 
756     /* Clean up */
757     spapr->pending_hpt = NULL;
758     free_pending_hpt(pending);
759 
760     return rc;
761 }
762 
763 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
764                                 target_ulong opcode, target_ulong *args)
765 {
766     cpu_synchronize_state(CPU(cpu));
767     cpu->env.spr[SPR_SPRG0] = args[0];
768 
769     return H_SUCCESS;
770 }
771 
772 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
773                                target_ulong opcode, target_ulong *args)
774 {
775     if (!has_spr(cpu, SPR_DABR)) {
776         return H_HARDWARE;              /* DABR register not available */
777     }
778     cpu_synchronize_state(CPU(cpu));
779 
780     if (has_spr(cpu, SPR_DABRX)) {
781         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
782     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
783         return H_RESERVED_DABR;
784     }
785 
786     cpu->env.spr[SPR_DABR] = args[0];
787     return H_SUCCESS;
788 }
789 
790 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
791                                 target_ulong opcode, target_ulong *args)
792 {
793     target_ulong dabrx = args[1];
794 
795     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
796         return H_HARDWARE;
797     }
798 
799     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
800         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
801         return H_PARAMETER;
802     }
803 
804     cpu_synchronize_state(CPU(cpu));
805     cpu->env.spr[SPR_DABRX] = dabrx;
806     cpu->env.spr[SPR_DABR] = args[0];
807 
808     return H_SUCCESS;
809 }
810 
811 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
812                                 target_ulong opcode, target_ulong *args)
813 {
814     target_ulong flags = args[0];
815     hwaddr dst = args[1];
816     hwaddr src = args[2];
817     hwaddr len = TARGET_PAGE_SIZE;
818     uint8_t *pdst, *psrc;
819     target_long ret = H_SUCCESS;
820 
821     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
822                   | H_COPY_PAGE | H_ZERO_PAGE)) {
823         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
824                       flags);
825         return H_PARAMETER;
826     }
827 
828     /* Map-in destination */
829     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
830         return H_PARAMETER;
831     }
832     pdst = cpu_physical_memory_map(dst, &len, 1);
833     if (!pdst || len != TARGET_PAGE_SIZE) {
834         return H_PARAMETER;
835     }
836 
837     if (flags & H_COPY_PAGE) {
838         /* Map-in source, copy to destination, and unmap source again */
839         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
840             ret = H_PARAMETER;
841             goto unmap_out;
842         }
843         psrc = cpu_physical_memory_map(src, &len, 0);
844         if (!psrc || len != TARGET_PAGE_SIZE) {
845             ret = H_PARAMETER;
846             goto unmap_out;
847         }
848         memcpy(pdst, psrc, len);
849         cpu_physical_memory_unmap(psrc, len, 0, len);
850     } else if (flags & H_ZERO_PAGE) {
851         memset(pdst, 0, len);          /* Just clear the destination page */
852     }
853 
854     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
855         kvmppc_dcbst_range(cpu, pdst, len);
856     }
857     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
858         if (kvm_enabled()) {
859             kvmppc_icbi_range(cpu, pdst, len);
860         } else {
861             tb_flush(CPU(cpu));
862         }
863     }
864 
865 unmap_out:
866     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
867     return ret;
868 }
869 
870 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
871 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
872 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
873 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
874 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
875 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
876 
877 #define VPA_MIN_SIZE           640
878 #define VPA_SIZE_OFFSET        0x4
879 #define VPA_SHARED_PROC_OFFSET 0x9
880 #define VPA_SHARED_PROC_VAL    0x2
881 
882 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
883 {
884     CPUState *cs = CPU(cpu);
885     CPUPPCState *env = &cpu->env;
886     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
887     uint16_t size;
888     uint8_t tmp;
889 
890     if (vpa == 0) {
891         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
892         return H_HARDWARE;
893     }
894 
895     if (vpa % env->dcache_line_size) {
896         return H_PARAMETER;
897     }
898     /* FIXME: bounds check the address */
899 
900     size = lduw_be_phys(cs->as, vpa + 0x4);
901 
902     if (size < VPA_MIN_SIZE) {
903         return H_PARAMETER;
904     }
905 
906     /* VPA is not allowed to cross a page boundary */
907     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
908         return H_PARAMETER;
909     }
910 
911     spapr_cpu->vpa_addr = vpa;
912 
913     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
914     tmp |= VPA_SHARED_PROC_VAL;
915     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
916 
917     return H_SUCCESS;
918 }
919 
920 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
921 {
922     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
923 
924     if (spapr_cpu->slb_shadow_addr) {
925         return H_RESOURCE;
926     }
927 
928     if (spapr_cpu->dtl_addr) {
929         return H_RESOURCE;
930     }
931 
932     spapr_cpu->vpa_addr = 0;
933     return H_SUCCESS;
934 }
935 
936 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
937 {
938     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
939     uint32_t size;
940 
941     if (addr == 0) {
942         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
943         return H_HARDWARE;
944     }
945 
946     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
947     if (size < 0x8) {
948         return H_PARAMETER;
949     }
950 
951     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
952         return H_PARAMETER;
953     }
954 
955     if (!spapr_cpu->vpa_addr) {
956         return H_RESOURCE;
957     }
958 
959     spapr_cpu->slb_shadow_addr = addr;
960     spapr_cpu->slb_shadow_size = size;
961 
962     return H_SUCCESS;
963 }
964 
965 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
966 {
967     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
968 
969     spapr_cpu->slb_shadow_addr = 0;
970     spapr_cpu->slb_shadow_size = 0;
971     return H_SUCCESS;
972 }
973 
974 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
975 {
976     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
977     uint32_t size;
978 
979     if (addr == 0) {
980         hcall_dprintf("Can't cope with DTL at logical 0\n");
981         return H_HARDWARE;
982     }
983 
984     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
985 
986     if (size < 48) {
987         return H_PARAMETER;
988     }
989 
990     if (!spapr_cpu->vpa_addr) {
991         return H_RESOURCE;
992     }
993 
994     spapr_cpu->dtl_addr = addr;
995     spapr_cpu->dtl_size = size;
996 
997     return H_SUCCESS;
998 }
999 
1000 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
1001 {
1002     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1003 
1004     spapr_cpu->dtl_addr = 0;
1005     spapr_cpu->dtl_size = 0;
1006 
1007     return H_SUCCESS;
1008 }
1009 
1010 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1011                                    target_ulong opcode, target_ulong *args)
1012 {
1013     target_ulong flags = args[0];
1014     target_ulong procno = args[1];
1015     target_ulong vpa = args[2];
1016     target_ulong ret = H_PARAMETER;
1017     PowerPCCPU *tcpu;
1018 
1019     tcpu = spapr_find_cpu(procno);
1020     if (!tcpu) {
1021         return H_PARAMETER;
1022     }
1023 
1024     switch (flags) {
1025     case FLAGS_REGISTER_VPA:
1026         ret = register_vpa(tcpu, vpa);
1027         break;
1028 
1029     case FLAGS_DEREGISTER_VPA:
1030         ret = deregister_vpa(tcpu, vpa);
1031         break;
1032 
1033     case FLAGS_REGISTER_SLBSHADOW:
1034         ret = register_slb_shadow(tcpu, vpa);
1035         break;
1036 
1037     case FLAGS_DEREGISTER_SLBSHADOW:
1038         ret = deregister_slb_shadow(tcpu, vpa);
1039         break;
1040 
1041     case FLAGS_REGISTER_DTL:
1042         ret = register_dtl(tcpu, vpa);
1043         break;
1044 
1045     case FLAGS_DEREGISTER_DTL:
1046         ret = deregister_dtl(tcpu, vpa);
1047         break;
1048     }
1049 
1050     return ret;
1051 }
1052 
1053 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1054                            target_ulong opcode, target_ulong *args)
1055 {
1056     CPUPPCState *env = &cpu->env;
1057     CPUState *cs = CPU(cpu);
1058 
1059     env->msr |= (1ULL << MSR_EE);
1060     hreg_compute_hflags(env);
1061     if (!cpu_has_work(cs)) {
1062         cs->halted = 1;
1063         cs->exception_index = EXCP_HLT;
1064         cs->exit_request = 1;
1065     }
1066     return H_SUCCESS;
1067 }
1068 
1069 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1070                            target_ulong opcode, target_ulong *args)
1071 {
1072     target_ulong rtas_r3 = args[0];
1073     uint32_t token = rtas_ld(rtas_r3, 0);
1074     uint32_t nargs = rtas_ld(rtas_r3, 1);
1075     uint32_t nret = rtas_ld(rtas_r3, 2);
1076 
1077     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1078                            nret, rtas_r3 + 12 + 4*nargs);
1079 }
1080 
1081 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1082                                    target_ulong opcode, target_ulong *args)
1083 {
1084     CPUState *cs = CPU(cpu);
1085     target_ulong size = args[0];
1086     target_ulong addr = args[1];
1087 
1088     switch (size) {
1089     case 1:
1090         args[0] = ldub_phys(cs->as, addr);
1091         return H_SUCCESS;
1092     case 2:
1093         args[0] = lduw_phys(cs->as, addr);
1094         return H_SUCCESS;
1095     case 4:
1096         args[0] = ldl_phys(cs->as, addr);
1097         return H_SUCCESS;
1098     case 8:
1099         args[0] = ldq_phys(cs->as, addr);
1100         return H_SUCCESS;
1101     }
1102     return H_PARAMETER;
1103 }
1104 
1105 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1106                                     target_ulong opcode, target_ulong *args)
1107 {
1108     CPUState *cs = CPU(cpu);
1109 
1110     target_ulong size = args[0];
1111     target_ulong addr = args[1];
1112     target_ulong val  = args[2];
1113 
1114     switch (size) {
1115     case 1:
1116         stb_phys(cs->as, addr, val);
1117         return H_SUCCESS;
1118     case 2:
1119         stw_phys(cs->as, addr, val);
1120         return H_SUCCESS;
1121     case 4:
1122         stl_phys(cs->as, addr, val);
1123         return H_SUCCESS;
1124     case 8:
1125         stq_phys(cs->as, addr, val);
1126         return H_SUCCESS;
1127     }
1128     return H_PARAMETER;
1129 }
1130 
1131 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1132                                     target_ulong opcode, target_ulong *args)
1133 {
1134     CPUState *cs = CPU(cpu);
1135 
1136     target_ulong dst   = args[0]; /* Destination address */
1137     target_ulong src   = args[1]; /* Source address */
1138     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1139     target_ulong count = args[3]; /* Element count */
1140     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1141     uint64_t tmp;
1142     unsigned int mask = (1 << esize) - 1;
1143     int step = 1 << esize;
1144 
1145     if (count > 0x80000000) {
1146         return H_PARAMETER;
1147     }
1148 
1149     if ((dst & mask) || (src & mask) || (op > 1)) {
1150         return H_PARAMETER;
1151     }
1152 
1153     if (dst >= src && dst < (src + (count << esize))) {
1154             dst = dst + ((count - 1) << esize);
1155             src = src + ((count - 1) << esize);
1156             step = -step;
1157     }
1158 
1159     while (count--) {
1160         switch (esize) {
1161         case 0:
1162             tmp = ldub_phys(cs->as, src);
1163             break;
1164         case 1:
1165             tmp = lduw_phys(cs->as, src);
1166             break;
1167         case 2:
1168             tmp = ldl_phys(cs->as, src);
1169             break;
1170         case 3:
1171             tmp = ldq_phys(cs->as, src);
1172             break;
1173         default:
1174             return H_PARAMETER;
1175         }
1176         if (op == 1) {
1177             tmp = ~tmp;
1178         }
1179         switch (esize) {
1180         case 0:
1181             stb_phys(cs->as, dst, tmp);
1182             break;
1183         case 1:
1184             stw_phys(cs->as, dst, tmp);
1185             break;
1186         case 2:
1187             stl_phys(cs->as, dst, tmp);
1188             break;
1189         case 3:
1190             stq_phys(cs->as, dst, tmp);
1191             break;
1192         }
1193         dst = dst + step;
1194         src = src + step;
1195     }
1196 
1197     return H_SUCCESS;
1198 }
1199 
1200 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1201                                    target_ulong opcode, target_ulong *args)
1202 {
1203     /* Nothing to do on emulation, KVM will trap this in the kernel */
1204     return H_SUCCESS;
1205 }
1206 
1207 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1208                                    target_ulong opcode, target_ulong *args)
1209 {
1210     /* Nothing to do on emulation, KVM will trap this in the kernel */
1211     return H_SUCCESS;
1212 }
1213 
1214 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1215                                            target_ulong mflags,
1216                                            target_ulong value1,
1217                                            target_ulong value2)
1218 {
1219     if (value1) {
1220         return H_P3;
1221     }
1222     if (value2) {
1223         return H_P4;
1224     }
1225 
1226     switch (mflags) {
1227     case H_SET_MODE_ENDIAN_BIG:
1228         spapr_set_all_lpcrs(0, LPCR_ILE);
1229         spapr_pci_switch_vga(true);
1230         return H_SUCCESS;
1231 
1232     case H_SET_MODE_ENDIAN_LITTLE:
1233         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1234         spapr_pci_switch_vga(false);
1235         return H_SUCCESS;
1236     }
1237 
1238     return H_UNSUPPORTED_FLAG;
1239 }
1240 
1241 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1242                                                         target_ulong mflags,
1243                                                         target_ulong value1,
1244                                                         target_ulong value2)
1245 {
1246     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1247 
1248     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1249         return H_P2;
1250     }
1251     if (value1) {
1252         return H_P3;
1253     }
1254     if (value2) {
1255         return H_P4;
1256     }
1257 
1258     if (mflags == AIL_RESERVED) {
1259         return H_UNSUPPORTED_FLAG;
1260     }
1261 
1262     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1263 
1264     return H_SUCCESS;
1265 }
1266 
1267 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1268                                target_ulong opcode, target_ulong *args)
1269 {
1270     target_ulong resource = args[1];
1271     target_ulong ret = H_P2;
1272 
1273     switch (resource) {
1274     case H_SET_MODE_RESOURCE_LE:
1275         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1276         break;
1277     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1278         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1279                                                   args[2], args[3]);
1280         break;
1281     }
1282 
1283     return ret;
1284 }
1285 
1286 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1287                                 target_ulong opcode, target_ulong *args)
1288 {
1289     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1290                   opcode, " (H_CLEAN_SLB)");
1291     return H_FUNCTION;
1292 }
1293 
1294 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1295                                      target_ulong opcode, target_ulong *args)
1296 {
1297     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1298                   opcode, " (H_INVALIDATE_PID)");
1299     return H_FUNCTION;
1300 }
1301 
1302 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1303                                        uint64_t patbe_old, uint64_t patbe_new)
1304 {
1305     /*
1306      * We have 4 Options:
1307      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1308      * HASH->RADIX                                  : Free HPT
1309      * RADIX->HASH                                  : Allocate HPT
1310      * NOTHING->HASH                                : Allocate HPT
1311      * Note: NOTHING implies the case where we said the guest could choose
1312      *       later and so assumed radix and now it's called H_REG_PROC_TBL
1313      */
1314 
1315     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1316         /* We assume RADIX, so this catches all the "Do Nothing" cases */
1317     } else if (!(patbe_old & PATE1_GR)) {
1318         /* HASH->RADIX : Free HPT */
1319         spapr_free_hpt(spapr);
1320     } else if (!(patbe_new & PATE1_GR)) {
1321         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1322         spapr_setup_hpt_and_vrma(spapr);
1323     }
1324     return;
1325 }
1326 
1327 #define FLAGS_MASK              0x01FULL
1328 #define FLAG_MODIFY             0x10
1329 #define FLAG_REGISTER           0x08
1330 #define FLAG_RADIX              0x04
1331 #define FLAG_HASH_PROC_TBL      0x02
1332 #define FLAG_GTSE               0x01
1333 
1334 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1335                                              SpaprMachineState *spapr,
1336                                              target_ulong opcode,
1337                                              target_ulong *args)
1338 {
1339     target_ulong flags = args[0];
1340     target_ulong proc_tbl = args[1];
1341     target_ulong page_size = args[2];
1342     target_ulong table_size = args[3];
1343     target_ulong update_lpcr = 0;
1344     uint64_t cproc;
1345 
1346     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1347         return H_PARAMETER;
1348     }
1349     if (flags & FLAG_MODIFY) {
1350         if (flags & FLAG_REGISTER) {
1351             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1352                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1353                     return H_P2;
1354                 } else if (page_size) {
1355                     return H_P3;
1356                 } else if (table_size > 24) {
1357                     return H_P4;
1358                 }
1359                 cproc = PATE1_GR | proc_tbl | table_size;
1360             } else { /* Register new HPT process table */
1361                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1362                     /* TODO - Not Supported */
1363                     /* Technically caused by flag bits => H_PARAMETER */
1364                     return H_PARAMETER;
1365                 } else { /* Hash with SLB */
1366                     if (proc_tbl >> 38) {
1367                         return H_P2;
1368                     } else if (page_size & ~0x7) {
1369                         return H_P3;
1370                     } else if (table_size > 24) {
1371                         return H_P4;
1372                     }
1373                 }
1374                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1375             }
1376 
1377         } else { /* Deregister current process table */
1378             /*
1379              * Set to benign value: (current GR) | 0. This allows
1380              * deregistration in KVM to succeed even if the radix bit
1381              * in flags doesn't match the radix bit in the old PATE.
1382              */
1383             cproc = spapr->patb_entry & PATE1_GR;
1384         }
1385     } else { /* Maintain current registration */
1386         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1387             /* Technically caused by flag bits => H_PARAMETER */
1388             return H_PARAMETER; /* Existing Process Table Mismatch */
1389         }
1390         cproc = spapr->patb_entry;
1391     }
1392 
1393     /* Check if we need to setup OR free the hpt */
1394     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1395 
1396     spapr->patb_entry = cproc; /* Save new process table */
1397 
1398     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1399     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
1400         update_lpcr |= (LPCR_UPRT | LPCR_HR);
1401     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1402         update_lpcr |= LPCR_UPRT;
1403     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
1404         update_lpcr |= LPCR_GTSE;
1405 
1406     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1407 
1408     if (kvm_enabled()) {
1409         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1410                                        flags & FLAG_GTSE, cproc);
1411     }
1412     return H_SUCCESS;
1413 }
1414 
1415 #define H_SIGNAL_SYS_RESET_ALL         -1
1416 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1417 
1418 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1419                                        SpaprMachineState *spapr,
1420                                        target_ulong opcode, target_ulong *args)
1421 {
1422     target_long target = args[0];
1423     CPUState *cs;
1424 
1425     if (target < 0) {
1426         /* Broadcast */
1427         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1428             return H_PARAMETER;
1429         }
1430 
1431         CPU_FOREACH(cs) {
1432             PowerPCCPU *c = POWERPC_CPU(cs);
1433 
1434             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1435                 if (c == cpu) {
1436                     continue;
1437                 }
1438             }
1439             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1440         }
1441         return H_SUCCESS;
1442 
1443     } else {
1444         /* Unicast */
1445         cs = CPU(spapr_find_cpu(target));
1446         if (cs) {
1447             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1448             return H_SUCCESS;
1449         }
1450         return H_PARAMETER;
1451     }
1452 }
1453 
1454 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
1455                               target_ulong *addr, bool *raw_mode_supported,
1456                               Error **errp)
1457 {
1458     bool explicit_match = false; /* Matched the CPU's real PVR */
1459     uint32_t max_compat = spapr->max_compat_pvr;
1460     uint32_t best_compat = 0;
1461     int i;
1462 
1463     /*
1464      * We scan the supplied table of PVRs looking for two things
1465      *   1. Is our real CPU PVR in the list?
1466      *   2. What's the "best" listed logical PVR
1467      */
1468     for (i = 0; i < 512; ++i) {
1469         uint32_t pvr, pvr_mask;
1470 
1471         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1472         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1473         *addr += 8;
1474 
1475         if (~pvr_mask & pvr) {
1476             break; /* Terminator record */
1477         }
1478 
1479         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1480             explicit_match = true;
1481         } else {
1482             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1483                 best_compat = pvr;
1484             }
1485         }
1486     }
1487 
1488     if ((best_compat == 0) && (!explicit_match || max_compat)) {
1489         /* We couldn't find a suitable compatibility mode, and either
1490          * the guest doesn't support "raw" mode for this CPU, or raw
1491          * mode is disabled because a maximum compat mode is set */
1492         error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1493         return 0;
1494     }
1495 
1496     *raw_mode_supported = explicit_match;
1497 
1498     /* Parsing finished */
1499     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1500 
1501     return best_compat;
1502 }
1503 
1504 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1505                                                   SpaprMachineState *spapr,
1506                                                   target_ulong opcode,
1507                                                   target_ulong *args)
1508 {
1509     /* Working address in data buffer */
1510     target_ulong addr = ppc64_phys_to_real(args[0]);
1511     target_ulong ov_table;
1512     uint32_t cas_pvr;
1513     SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1514     bool guest_radix;
1515     Error *local_err = NULL;
1516     bool raw_mode_supported = false;
1517     bool guest_xive;
1518 
1519     cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1520     if (local_err) {
1521         error_report_err(local_err);
1522         return H_HARDWARE;
1523     }
1524 
1525     /* Update CPUs */
1526     if (cpu->compat_pvr != cas_pvr) {
1527         ppc_set_compat_all(cas_pvr, &local_err);
1528         if (local_err) {
1529             /* We fail to set compat mode (likely because running with KVM PR),
1530              * but maybe we can fallback to raw mode if the guest supports it.
1531              */
1532             if (!raw_mode_supported) {
1533                 error_report_err(local_err);
1534                 return H_HARDWARE;
1535             }
1536             error_free(local_err);
1537             local_err = NULL;
1538         }
1539     }
1540 
1541     /* For the future use: here @ov_table points to the first option vector */
1542     ov_table = addr;
1543 
1544     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1545     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1546     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1547         error_report("guest requested hash and radix MMU, which is invalid.");
1548         exit(EXIT_FAILURE);
1549     }
1550     if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1551         error_report("guest requested an invalid interrupt mode");
1552         exit(EXIT_FAILURE);
1553     }
1554 
1555     /* The radix/hash bit in byte 24 requires special handling: */
1556     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1557     spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1558 
1559     guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1560 
1561     /*
1562      * HPT resizing is a bit of a special case, because when enabled
1563      * we assume an HPT guest will support it until it says it
1564      * doesn't, instead of assuming it won't support it until it says
1565      * it does.  Strictly speaking that approach could break for
1566      * guests which don't make a CAS call, but those are so old we
1567      * don't care about them.  Without that assumption we'd have to
1568      * make at least a temporary allocation of an HPT sized for max
1569      * memory, which could be impossibly difficult under KVM HV if
1570      * maxram is large.
1571      */
1572     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1573         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1574 
1575         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1576             error_report(
1577                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1578             exit(1);
1579         }
1580 
1581         if (spapr->htab_shift < maxshift) {
1582             /* Guest doesn't know about HPT resizing, so we
1583              * pre-emptively resize for the maximum permitted RAM.  At
1584              * the point this is called, nothing should have been
1585              * entered into the existing HPT */
1586             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1587             push_sregs_to_kvm_pr(spapr);
1588         }
1589     }
1590 
1591     /* NOTE: there are actually a number of ov5 bits where input from the
1592      * guest is always zero, and the platform/QEMU enables them independently
1593      * of guest input. To model these properly we'd want some sort of mask,
1594      * but since they only currently apply to memory migration as defined
1595      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1596      * to worry about this for now.
1597      */
1598     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1599 
1600     /* also clear the radix/hash bit from the current ov5_cas bits to
1601      * be in sync with the newly ov5 bits. Else the radix bit will be
1602      * seen as being removed and this will generate a reset loop
1603      */
1604     spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1605 
1606     /* full range of negotiated ov5 capabilities */
1607     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1608     spapr_ovec_cleanup(ov5_guest);
1609     /* capabilities that have been added since CAS-generated guest reset.
1610      * if capabilities have since been removed, generate another reset
1611      */
1612     ov5_updates = spapr_ovec_new();
1613     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1614                                         ov5_cas_old, spapr->ov5_cas);
1615     /* Now that processing is finished, set the radix/hash bit for the
1616      * guest if it requested a valid mode; otherwise terminate the boot. */
1617     if (guest_radix) {
1618         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1619             error_report("Guest requested unavailable MMU mode (radix).");
1620             exit(EXIT_FAILURE);
1621         }
1622         spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1623     } else {
1624         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1625             && !kvmppc_has_cap_mmu_hash_v3()) {
1626             error_report("Guest requested unavailable MMU mode (hash).");
1627             exit(EXIT_FAILURE);
1628         }
1629     }
1630     spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1631                                                           OV1_PPC_3_00);
1632     if (!spapr->cas_reboot) {
1633         /* If spapr_machine_reset() did not set up a HPT but one is necessary
1634          * (because the guest isn't going to use radix) then set it up here. */
1635         if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1636             /* legacy hash or new hash: */
1637             spapr_setup_hpt_and_vrma(spapr);
1638         }
1639         spapr->cas_reboot =
1640             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1641                                           ov5_updates) != 0);
1642     }
1643 
1644     /*
1645      * Ensure the guest asks for an interrupt mode we support; otherwise
1646      * terminate the boot.
1647      */
1648     if (guest_xive) {
1649         if (spapr->irq->ov5 == SPAPR_OV5_XIVE_LEGACY) {
1650             error_report(
1651 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1652             exit(EXIT_FAILURE);
1653         }
1654     } else {
1655         if (spapr->irq->ov5 == SPAPR_OV5_XIVE_EXPLOIT) {
1656             error_report(
1657 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1658             exit(EXIT_FAILURE);
1659         }
1660     }
1661 
1662     /*
1663      * Generate a machine reset when we have an update of the
1664      * interrupt mode. Only required when the machine supports both
1665      * modes.
1666      */
1667     if (!spapr->cas_reboot) {
1668         spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
1669             && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
1670     }
1671 
1672     spapr_ovec_cleanup(ov5_updates);
1673 
1674     if (spapr->cas_reboot) {
1675         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1676     }
1677 
1678     return H_SUCCESS;
1679 }
1680 
1681 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
1682                                               SpaprMachineState *spapr,
1683                                               target_ulong opcode,
1684                                               target_ulong *args)
1685 {
1686     target_ulong flags = args[0];
1687     target_ulong procno = args[1];
1688     PowerPCCPU *tcpu;
1689     int idx;
1690 
1691     /* only support procno from H_REGISTER_VPA */
1692     if (flags != 0x1) {
1693         return H_FUNCTION;
1694     }
1695 
1696     tcpu = spapr_find_cpu(procno);
1697     if (tcpu == NULL) {
1698         return H_P2;
1699     }
1700 
1701     /* sequence is the same as in the "ibm,associativity" property */
1702 
1703     idx = 0;
1704 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1705                              ((uint64_t)(b) & 0xffffffff))
1706     args[idx++] = ASSOCIATIVITY(0, 0);
1707     args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
1708     args[idx++] = ASSOCIATIVITY(procno, -1);
1709     for ( ; idx < 6; idx++) {
1710         args[idx] = -1;
1711     }
1712 #undef ASSOCIATIVITY
1713 
1714     return H_SUCCESS;
1715 }
1716 
1717 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1718                                               SpaprMachineState *spapr,
1719                                               target_ulong opcode,
1720                                               target_ulong *args)
1721 {
1722     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1723                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1724     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1725     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1726     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1727     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1728     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1729                                                      SPAPR_CAP_CCF_ASSIST);
1730 
1731     switch (safe_cache) {
1732     case SPAPR_CAP_WORKAROUND:
1733         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1734         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1735         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1736         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1737         break;
1738     case SPAPR_CAP_FIXED:
1739         break;
1740     default: /* broken */
1741         assert(safe_cache == SPAPR_CAP_BROKEN);
1742         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1743         break;
1744     }
1745 
1746     switch (safe_bounds_check) {
1747     case SPAPR_CAP_WORKAROUND:
1748         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1749         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1750         break;
1751     case SPAPR_CAP_FIXED:
1752         break;
1753     default: /* broken */
1754         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1755         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1756         break;
1757     }
1758 
1759     switch (safe_indirect_branch) {
1760     case SPAPR_CAP_FIXED_NA:
1761         break;
1762     case SPAPR_CAP_FIXED_CCD:
1763         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1764         break;
1765     case SPAPR_CAP_FIXED_IBS:
1766         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1767         break;
1768     case SPAPR_CAP_WORKAROUND:
1769         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1770         if (count_cache_flush_assist) {
1771             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1772         }
1773         break;
1774     default: /* broken */
1775         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1776         break;
1777     }
1778 
1779     args[0] = characteristics;
1780     args[1] = behaviour;
1781     return H_SUCCESS;
1782 }
1783 
1784 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1785                                 target_ulong opcode, target_ulong *args)
1786 {
1787     target_ulong dt = ppc64_phys_to_real(args[0]);
1788     struct fdt_header hdr = { 0 };
1789     unsigned cb;
1790     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1791     void *fdt;
1792 
1793     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1794     cb = fdt32_to_cpu(hdr.totalsize);
1795 
1796     if (!smc->update_dt_enabled) {
1797         return H_SUCCESS;
1798     }
1799 
1800     /* Check that the fdt did not grow out of proportion */
1801     if (cb > spapr->fdt_initial_size * 2) {
1802         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1803                                           fdt32_to_cpu(hdr.magic));
1804         return H_PARAMETER;
1805     }
1806 
1807     fdt = g_malloc0(cb);
1808     cpu_physical_memory_read(dt, fdt, cb);
1809 
1810     /* Check the fdt consistency */
1811     if (fdt_check_full(fdt, cb)) {
1812         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1813                                            fdt32_to_cpu(hdr.magic));
1814         return H_PARAMETER;
1815     }
1816 
1817     g_free(spapr->fdt_blob);
1818     spapr->fdt_size = cb;
1819     spapr->fdt_blob = fdt;
1820     trace_spapr_update_dt(cb);
1821 
1822     return H_SUCCESS;
1823 }
1824 
1825 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1826 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1827 
1828 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1829 {
1830     spapr_hcall_fn *slot;
1831 
1832     if (opcode <= MAX_HCALL_OPCODE) {
1833         assert((opcode & 0x3) == 0);
1834 
1835         slot = &papr_hypercall_table[opcode / 4];
1836     } else {
1837         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1838 
1839         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1840     }
1841 
1842     assert(!(*slot));
1843     *slot = fn;
1844 }
1845 
1846 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1847                              target_ulong *args)
1848 {
1849     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1850 
1851     if ((opcode <= MAX_HCALL_OPCODE)
1852         && ((opcode & 0x3) == 0)) {
1853         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1854 
1855         if (fn) {
1856             return fn(cpu, spapr, opcode, args);
1857         }
1858     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1859                (opcode <= KVMPPC_HCALL_MAX)) {
1860         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1861 
1862         if (fn) {
1863             return fn(cpu, spapr, opcode, args);
1864         }
1865     }
1866 
1867     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1868                   opcode);
1869     return H_FUNCTION;
1870 }
1871 
1872 static void hypercall_register_types(void)
1873 {
1874     /* hcall-pft */
1875     spapr_register_hypercall(H_ENTER, h_enter);
1876     spapr_register_hypercall(H_REMOVE, h_remove);
1877     spapr_register_hypercall(H_PROTECT, h_protect);
1878     spapr_register_hypercall(H_READ, h_read);
1879 
1880     /* hcall-bulk */
1881     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1882 
1883     /* hcall-hpt-resize */
1884     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1885     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1886 
1887     /* hcall-splpar */
1888     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1889     spapr_register_hypercall(H_CEDE, h_cede);
1890     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1891 
1892     /* processor register resource access h-calls */
1893     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1894     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1895     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1896     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1897     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1898 
1899     /* In Memory Table MMU h-calls */
1900     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1901     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1902     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1903 
1904     /* hcall-get-cpu-characteristics */
1905     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1906                              h_get_cpu_characteristics);
1907 
1908     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1909      * here between the "CI" and the "CACHE" variants, they will use whatever
1910      * mapping attributes qemu is using. When using KVM, the kernel will
1911      * enforce the attributes more strongly
1912      */
1913     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1914     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1915     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1916     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1917     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1918     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1919     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1920 
1921     /* qemu/KVM-PPC specific hcalls */
1922     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1923 
1924     /* ibm,client-architecture-support support */
1925     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1926 
1927     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1928 
1929     /* Virtual Processor Home Node */
1930     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
1931                              h_home_node_associativity);
1932 }
1933 
1934 type_init(hypercall_register_types)
1935