xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision 2f44bea9)
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/spapr.h"
13 #include "hw/ppc/spapr_cpu_core.h"
14 #include "mmu-hash64.h"
15 #include "cpu-models.h"
16 #include "trace.h"
17 #include "kvm_ppc.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/spapr_ovec.h"
20 #include "mmu-book3s-v3.h"
21 #include "hw/mem/memory-device.h"
22 
23 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
24 {
25     MachineState *machine = MACHINE(spapr);
26     DeviceMemoryState *dms = machine->device_memory;
27 
28     if (addr < machine->ram_size) {
29         return true;
30     }
31     if ((addr >= dms->base)
32         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
33         return true;
34     }
35 
36     return false;
37 }
38 
39 /* Convert a return code from the KVM ioctl()s implementing resize HPT
40  * into a PAPR hypercall return code */
41 static target_ulong resize_hpt_convert_rc(int ret)
42 {
43     if (ret >= 100000) {
44         return H_LONG_BUSY_ORDER_100_SEC;
45     } else if (ret >= 10000) {
46         return H_LONG_BUSY_ORDER_10_SEC;
47     } else if (ret >= 1000) {
48         return H_LONG_BUSY_ORDER_1_SEC;
49     } else if (ret >= 100) {
50         return H_LONG_BUSY_ORDER_100_MSEC;
51     } else if (ret >= 10) {
52         return H_LONG_BUSY_ORDER_10_MSEC;
53     } else if (ret > 0) {
54         return H_LONG_BUSY_ORDER_1_MSEC;
55     }
56 
57     switch (ret) {
58     case 0:
59         return H_SUCCESS;
60     case -EPERM:
61         return H_AUTHORITY;
62     case -EINVAL:
63         return H_PARAMETER;
64     case -ENXIO:
65         return H_CLOSED;
66     case -ENOSPC:
67         return H_PTEG_FULL;
68     case -EBUSY:
69         return H_BUSY;
70     case -ENOMEM:
71         return H_NO_MEM;
72     default:
73         return H_HARDWARE;
74     }
75 }
76 
77 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
78                                          SpaprMachineState *spapr,
79                                          target_ulong opcode,
80                                          target_ulong *args)
81 {
82     target_ulong flags = args[0];
83     int shift = args[1];
84     uint64_t current_ram_size;
85     int rc;
86 
87     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
88         return H_AUTHORITY;
89     }
90 
91     if (!spapr->htab_shift) {
92         /* Radix guest, no HPT */
93         return H_NOT_AVAILABLE;
94     }
95 
96     trace_spapr_h_resize_hpt_prepare(flags, shift);
97 
98     if (flags != 0) {
99         return H_PARAMETER;
100     }
101 
102     if (shift && ((shift < 18) || (shift > 46))) {
103         return H_PARAMETER;
104     }
105 
106     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
107 
108     /* We only allow the guest to allocate an HPT one order above what
109      * we'd normally give them (to stop a small guest claiming a huge
110      * chunk of resources in the HPT */
111     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
112         return H_RESOURCE;
113     }
114 
115     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
116     if (rc != -ENOSYS) {
117         return resize_hpt_convert_rc(rc);
118     }
119 
120     if (kvm_enabled()) {
121         return H_HARDWARE;
122     }
123 
124     return softmmu_resize_hpt_prepare(cpu, spapr, shift);
125 }
126 
127 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
128 {
129     int ret;
130 
131     cpu_synchronize_state(cs);
132 
133     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
134     if (ret < 0) {
135         error_report("failed to push sregs to KVM: %s", strerror(-ret));
136         exit(1);
137     }
138 }
139 
140 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
141 {
142     CPUState *cs;
143 
144     /*
145      * This is a hack for the benefit of KVM PR - it abuses the SDR1
146      * slot in kvm_sregs to communicate the userspace address of the
147      * HPT
148      */
149     if (!kvm_enabled() || !spapr->htab) {
150         return;
151     }
152 
153     CPU_FOREACH(cs) {
154         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
155     }
156 }
157 
158 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
159                                         SpaprMachineState *spapr,
160                                         target_ulong opcode,
161                                         target_ulong *args)
162 {
163     target_ulong flags = args[0];
164     target_ulong shift = args[1];
165     int rc;
166 
167     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
168         return H_AUTHORITY;
169     }
170 
171     if (!spapr->htab_shift) {
172         /* Radix guest, no HPT */
173         return H_NOT_AVAILABLE;
174     }
175 
176     trace_spapr_h_resize_hpt_commit(flags, shift);
177 
178     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
179     if (rc != -ENOSYS) {
180         rc = resize_hpt_convert_rc(rc);
181         if (rc == H_SUCCESS) {
182             /* Need to set the new htab_shift in the machine state */
183             spapr->htab_shift = shift;
184         }
185         return rc;
186     }
187 
188     if (kvm_enabled()) {
189         return H_HARDWARE;
190     }
191 
192     return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
193 }
194 
195 
196 
197 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
198                                 target_ulong opcode, target_ulong *args)
199 {
200     cpu_synchronize_state(CPU(cpu));
201     cpu->env.spr[SPR_SPRG0] = args[0];
202 
203     return H_SUCCESS;
204 }
205 
206 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
207                                target_ulong opcode, target_ulong *args)
208 {
209     if (!ppc_has_spr(cpu, SPR_DABR)) {
210         return H_HARDWARE;              /* DABR register not available */
211     }
212     cpu_synchronize_state(CPU(cpu));
213 
214     if (ppc_has_spr(cpu, SPR_DABRX)) {
215         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
216     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
217         return H_RESERVED_DABR;
218     }
219 
220     cpu->env.spr[SPR_DABR] = args[0];
221     return H_SUCCESS;
222 }
223 
224 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
225                                 target_ulong opcode, target_ulong *args)
226 {
227     target_ulong dabrx = args[1];
228 
229     if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
230         return H_HARDWARE;
231     }
232 
233     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
234         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
235         return H_PARAMETER;
236     }
237 
238     cpu_synchronize_state(CPU(cpu));
239     cpu->env.spr[SPR_DABRX] = dabrx;
240     cpu->env.spr[SPR_DABR] = args[0];
241 
242     return H_SUCCESS;
243 }
244 
245 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
246                                 target_ulong opcode, target_ulong *args)
247 {
248     target_ulong flags = args[0];
249     hwaddr dst = args[1];
250     hwaddr src = args[2];
251     hwaddr len = TARGET_PAGE_SIZE;
252     uint8_t *pdst, *psrc;
253     target_long ret = H_SUCCESS;
254 
255     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
256                   | H_COPY_PAGE | H_ZERO_PAGE)) {
257         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
258                       flags);
259         return H_PARAMETER;
260     }
261 
262     /* Map-in destination */
263     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
264         return H_PARAMETER;
265     }
266     pdst = cpu_physical_memory_map(dst, &len, true);
267     if (!pdst || len != TARGET_PAGE_SIZE) {
268         return H_PARAMETER;
269     }
270 
271     if (flags & H_COPY_PAGE) {
272         /* Map-in source, copy to destination, and unmap source again */
273         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
274             ret = H_PARAMETER;
275             goto unmap_out;
276         }
277         psrc = cpu_physical_memory_map(src, &len, false);
278         if (!psrc || len != TARGET_PAGE_SIZE) {
279             ret = H_PARAMETER;
280             goto unmap_out;
281         }
282         memcpy(pdst, psrc, len);
283         cpu_physical_memory_unmap(psrc, len, 0, len);
284     } else if (flags & H_ZERO_PAGE) {
285         memset(pdst, 0, len);          /* Just clear the destination page */
286     }
287 
288     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
289         kvmppc_dcbst_range(cpu, pdst, len);
290     }
291     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
292         if (kvm_enabled()) {
293             kvmppc_icbi_range(cpu, pdst, len);
294         } else {
295             tb_flush(CPU(cpu));
296         }
297     }
298 
299 unmap_out:
300     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
301     return ret;
302 }
303 
304 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
305 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
306 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
307 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
308 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
309 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
310 
311 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
312 {
313     CPUState *cs = CPU(cpu);
314     CPUPPCState *env = &cpu->env;
315     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
316     uint16_t size;
317     uint8_t tmp;
318 
319     if (vpa == 0) {
320         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
321         return H_HARDWARE;
322     }
323 
324     if (vpa % env->dcache_line_size) {
325         return H_PARAMETER;
326     }
327     /* FIXME: bounds check the address */
328 
329     size = lduw_be_phys(cs->as, vpa + 0x4);
330 
331     if (size < VPA_MIN_SIZE) {
332         return H_PARAMETER;
333     }
334 
335     /* VPA is not allowed to cross a page boundary */
336     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
337         return H_PARAMETER;
338     }
339 
340     spapr_cpu->vpa_addr = vpa;
341 
342     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
343     tmp |= VPA_SHARED_PROC_VAL;
344     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
345 
346     return H_SUCCESS;
347 }
348 
349 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
350 {
351     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
352 
353     if (spapr_cpu->slb_shadow_addr) {
354         return H_RESOURCE;
355     }
356 
357     if (spapr_cpu->dtl_addr) {
358         return H_RESOURCE;
359     }
360 
361     spapr_cpu->vpa_addr = 0;
362     return H_SUCCESS;
363 }
364 
365 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
366 {
367     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
368     uint32_t size;
369 
370     if (addr == 0) {
371         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
372         return H_HARDWARE;
373     }
374 
375     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
376     if (size < 0x8) {
377         return H_PARAMETER;
378     }
379 
380     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
381         return H_PARAMETER;
382     }
383 
384     if (!spapr_cpu->vpa_addr) {
385         return H_RESOURCE;
386     }
387 
388     spapr_cpu->slb_shadow_addr = addr;
389     spapr_cpu->slb_shadow_size = size;
390 
391     return H_SUCCESS;
392 }
393 
394 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
395 {
396     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
397 
398     spapr_cpu->slb_shadow_addr = 0;
399     spapr_cpu->slb_shadow_size = 0;
400     return H_SUCCESS;
401 }
402 
403 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
404 {
405     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
406     uint32_t size;
407 
408     if (addr == 0) {
409         hcall_dprintf("Can't cope with DTL at logical 0\n");
410         return H_HARDWARE;
411     }
412 
413     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
414 
415     if (size < 48) {
416         return H_PARAMETER;
417     }
418 
419     if (!spapr_cpu->vpa_addr) {
420         return H_RESOURCE;
421     }
422 
423     spapr_cpu->dtl_addr = addr;
424     spapr_cpu->dtl_size = size;
425 
426     return H_SUCCESS;
427 }
428 
429 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
430 {
431     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
432 
433     spapr_cpu->dtl_addr = 0;
434     spapr_cpu->dtl_size = 0;
435 
436     return H_SUCCESS;
437 }
438 
439 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
440                                    target_ulong opcode, target_ulong *args)
441 {
442     target_ulong flags = args[0];
443     target_ulong procno = args[1];
444     target_ulong vpa = args[2];
445     target_ulong ret = H_PARAMETER;
446     PowerPCCPU *tcpu;
447 
448     tcpu = spapr_find_cpu(procno);
449     if (!tcpu) {
450         return H_PARAMETER;
451     }
452 
453     switch (flags) {
454     case FLAGS_REGISTER_VPA:
455         ret = register_vpa(tcpu, vpa);
456         break;
457 
458     case FLAGS_DEREGISTER_VPA:
459         ret = deregister_vpa(tcpu, vpa);
460         break;
461 
462     case FLAGS_REGISTER_SLBSHADOW:
463         ret = register_slb_shadow(tcpu, vpa);
464         break;
465 
466     case FLAGS_DEREGISTER_SLBSHADOW:
467         ret = deregister_slb_shadow(tcpu, vpa);
468         break;
469 
470     case FLAGS_REGISTER_DTL:
471         ret = register_dtl(tcpu, vpa);
472         break;
473 
474     case FLAGS_DEREGISTER_DTL:
475         ret = deregister_dtl(tcpu, vpa);
476         break;
477     }
478 
479     return ret;
480 }
481 
482 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
483                            target_ulong opcode, target_ulong *args)
484 {
485     CPUPPCState *env = &cpu->env;
486     CPUState *cs = CPU(cpu);
487     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
488 
489     env->msr |= (1ULL << MSR_EE);
490     hreg_compute_hflags(env);
491 
492     if (spapr_cpu->prod) {
493         spapr_cpu->prod = false;
494         return H_SUCCESS;
495     }
496 
497     if (!cpu_has_work(cs)) {
498         cs->halted = 1;
499         cs->exception_index = EXCP_HLT;
500         cs->exit_request = 1;
501     }
502 
503     return H_SUCCESS;
504 }
505 
506 /*
507  * Confer to self, aka join. Cede could use the same pattern as well, if
508  * EXCP_HLT can be changed to ECXP_HALTED.
509  */
510 static target_ulong h_confer_self(PowerPCCPU *cpu)
511 {
512     CPUState *cs = CPU(cpu);
513     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
514 
515     if (spapr_cpu->prod) {
516         spapr_cpu->prod = false;
517         return H_SUCCESS;
518     }
519     cs->halted = 1;
520     cs->exception_index = EXCP_HALTED;
521     cs->exit_request = 1;
522 
523     return H_SUCCESS;
524 }
525 
526 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
527                            target_ulong opcode, target_ulong *args)
528 {
529     CPUPPCState *env = &cpu->env;
530     CPUState *cs;
531     bool last_unjoined = true;
532 
533     if (env->msr & (1ULL << MSR_EE)) {
534         return H_BAD_MODE;
535     }
536 
537     /*
538      * Must not join the last CPU running. Interestingly, no such restriction
539      * for H_CONFER-to-self, but that is probably not intended to be used
540      * when H_JOIN is available.
541      */
542     CPU_FOREACH(cs) {
543         PowerPCCPU *c = POWERPC_CPU(cs);
544         CPUPPCState *e = &c->env;
545         if (c == cpu) {
546             continue;
547         }
548 
549         /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
550         if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
551             last_unjoined = false;
552             break;
553         }
554     }
555     if (last_unjoined) {
556         return H_CONTINUE;
557     }
558 
559     return h_confer_self(cpu);
560 }
561 
562 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
563                            target_ulong opcode, target_ulong *args)
564 {
565     target_long target = args[0];
566     uint32_t dispatch = args[1];
567     CPUState *cs = CPU(cpu);
568     SpaprCpuState *spapr_cpu;
569 
570     /*
571      * -1 means confer to all other CPUs without dispatch counter check,
572      *  otherwise it's a targeted confer.
573      */
574     if (target != -1) {
575         PowerPCCPU *target_cpu = spapr_find_cpu(target);
576         uint32_t target_dispatch;
577 
578         if (!target_cpu) {
579             return H_PARAMETER;
580         }
581 
582         /*
583          * target == self is a special case, we wait until prodded, without
584          * dispatch counter check.
585          */
586         if (cpu == target_cpu) {
587             return h_confer_self(cpu);
588         }
589 
590         spapr_cpu = spapr_cpu_state(target_cpu);
591         if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
592             return H_SUCCESS;
593         }
594 
595         target_dispatch = ldl_be_phys(cs->as,
596                                   spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
597         if (target_dispatch != dispatch) {
598             return H_SUCCESS;
599         }
600 
601         /*
602          * The targeted confer does not do anything special beyond yielding
603          * the current vCPU, but even this should be better than nothing.
604          * At least for single-threaded tcg, it gives the target a chance to
605          * run before we run again. Multi-threaded tcg does not really do
606          * anything with EXCP_YIELD yet.
607          */
608     }
609 
610     cs->exception_index = EXCP_YIELD;
611     cs->exit_request = 1;
612     cpu_loop_exit(cs);
613 
614     return H_SUCCESS;
615 }
616 
617 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
618                            target_ulong opcode, target_ulong *args)
619 {
620     target_long target = args[0];
621     PowerPCCPU *tcpu;
622     CPUState *cs;
623     SpaprCpuState *spapr_cpu;
624 
625     tcpu = spapr_find_cpu(target);
626     cs = CPU(tcpu);
627     if (!cs) {
628         return H_PARAMETER;
629     }
630 
631     spapr_cpu = spapr_cpu_state(tcpu);
632     spapr_cpu->prod = true;
633     cs->halted = 0;
634     qemu_cpu_kick(cs);
635 
636     return H_SUCCESS;
637 }
638 
639 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
640                            target_ulong opcode, target_ulong *args)
641 {
642     target_ulong rtas_r3 = args[0];
643     uint32_t token = rtas_ld(rtas_r3, 0);
644     uint32_t nargs = rtas_ld(rtas_r3, 1);
645     uint32_t nret = rtas_ld(rtas_r3, 2);
646 
647     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
648                            nret, rtas_r3 + 12 + 4*nargs);
649 }
650 
651 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
652                                    target_ulong opcode, target_ulong *args)
653 {
654     CPUState *cs = CPU(cpu);
655     target_ulong size = args[0];
656     target_ulong addr = args[1];
657 
658     switch (size) {
659     case 1:
660         args[0] = ldub_phys(cs->as, addr);
661         return H_SUCCESS;
662     case 2:
663         args[0] = lduw_phys(cs->as, addr);
664         return H_SUCCESS;
665     case 4:
666         args[0] = ldl_phys(cs->as, addr);
667         return H_SUCCESS;
668     case 8:
669         args[0] = ldq_phys(cs->as, addr);
670         return H_SUCCESS;
671     }
672     return H_PARAMETER;
673 }
674 
675 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
676                                     target_ulong opcode, target_ulong *args)
677 {
678     CPUState *cs = CPU(cpu);
679 
680     target_ulong size = args[0];
681     target_ulong addr = args[1];
682     target_ulong val  = args[2];
683 
684     switch (size) {
685     case 1:
686         stb_phys(cs->as, addr, val);
687         return H_SUCCESS;
688     case 2:
689         stw_phys(cs->as, addr, val);
690         return H_SUCCESS;
691     case 4:
692         stl_phys(cs->as, addr, val);
693         return H_SUCCESS;
694     case 8:
695         stq_phys(cs->as, addr, val);
696         return H_SUCCESS;
697     }
698     return H_PARAMETER;
699 }
700 
701 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
702                                     target_ulong opcode, target_ulong *args)
703 {
704     CPUState *cs = CPU(cpu);
705 
706     target_ulong dst   = args[0]; /* Destination address */
707     target_ulong src   = args[1]; /* Source address */
708     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
709     target_ulong count = args[3]; /* Element count */
710     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
711     uint64_t tmp;
712     unsigned int mask = (1 << esize) - 1;
713     int step = 1 << esize;
714 
715     if (count > 0x80000000) {
716         return H_PARAMETER;
717     }
718 
719     if ((dst & mask) || (src & mask) || (op > 1)) {
720         return H_PARAMETER;
721     }
722 
723     if (dst >= src && dst < (src + (count << esize))) {
724             dst = dst + ((count - 1) << esize);
725             src = src + ((count - 1) << esize);
726             step = -step;
727     }
728 
729     while (count--) {
730         switch (esize) {
731         case 0:
732             tmp = ldub_phys(cs->as, src);
733             break;
734         case 1:
735             tmp = lduw_phys(cs->as, src);
736             break;
737         case 2:
738             tmp = ldl_phys(cs->as, src);
739             break;
740         case 3:
741             tmp = ldq_phys(cs->as, src);
742             break;
743         default:
744             return H_PARAMETER;
745         }
746         if (op == 1) {
747             tmp = ~tmp;
748         }
749         switch (esize) {
750         case 0:
751             stb_phys(cs->as, dst, tmp);
752             break;
753         case 1:
754             stw_phys(cs->as, dst, tmp);
755             break;
756         case 2:
757             stl_phys(cs->as, dst, tmp);
758             break;
759         case 3:
760             stq_phys(cs->as, dst, tmp);
761             break;
762         }
763         dst = dst + step;
764         src = src + step;
765     }
766 
767     return H_SUCCESS;
768 }
769 
770 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
771                                    target_ulong opcode, target_ulong *args)
772 {
773     /* Nothing to do on emulation, KVM will trap this in the kernel */
774     return H_SUCCESS;
775 }
776 
777 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
778                                    target_ulong opcode, target_ulong *args)
779 {
780     /* Nothing to do on emulation, KVM will trap this in the kernel */
781     return H_SUCCESS;
782 }
783 
784 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
785                                            SpaprMachineState *spapr,
786                                            target_ulong mflags,
787                                            target_ulong value1,
788                                            target_ulong value2)
789 {
790     if (value1) {
791         return H_P3;
792     }
793     if (value2) {
794         return H_P4;
795     }
796 
797     switch (mflags) {
798     case H_SET_MODE_ENDIAN_BIG:
799         spapr_set_all_lpcrs(0, LPCR_ILE);
800         spapr_pci_switch_vga(spapr, true);
801         return H_SUCCESS;
802 
803     case H_SET_MODE_ENDIAN_LITTLE:
804         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
805         spapr_pci_switch_vga(spapr, false);
806         return H_SUCCESS;
807     }
808 
809     return H_UNSUPPORTED_FLAG;
810 }
811 
812 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
813                                                         target_ulong mflags,
814                                                         target_ulong value1,
815                                                         target_ulong value2)
816 {
817     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
818 
819     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
820         return H_P2;
821     }
822     if (value1) {
823         return H_P3;
824     }
825     if (value2) {
826         return H_P4;
827     }
828 
829     if (mflags == 1) {
830         /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
831         return H_UNSUPPORTED_FLAG;
832     }
833 
834     if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
835         /* AIL=2 is reserved in POWER10 (ISA v3.1) */
836         return H_UNSUPPORTED_FLAG;
837     }
838 
839     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
840 
841     return H_SUCCESS;
842 }
843 
844 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
845                                target_ulong opcode, target_ulong *args)
846 {
847     target_ulong resource = args[1];
848     target_ulong ret = H_P2;
849 
850     switch (resource) {
851     case H_SET_MODE_RESOURCE_LE:
852         ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
853         break;
854     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
855         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
856                                                   args[2], args[3]);
857         break;
858     }
859 
860     return ret;
861 }
862 
863 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
864                                 target_ulong opcode, target_ulong *args)
865 {
866     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
867                   opcode, " (H_CLEAN_SLB)");
868     return H_FUNCTION;
869 }
870 
871 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
872                                      target_ulong opcode, target_ulong *args)
873 {
874     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
875                   opcode, " (H_INVALIDATE_PID)");
876     return H_FUNCTION;
877 }
878 
879 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
880                                        uint64_t patbe_old, uint64_t patbe_new)
881 {
882     /*
883      * We have 4 Options:
884      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
885      * HASH->RADIX                                  : Free HPT
886      * RADIX->HASH                                  : Allocate HPT
887      * NOTHING->HASH                                : Allocate HPT
888      * Note: NOTHING implies the case where we said the guest could choose
889      *       later and so assumed radix and now it's called H_REG_PROC_TBL
890      */
891 
892     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
893         /* We assume RADIX, so this catches all the "Do Nothing" cases */
894     } else if (!(patbe_old & PATE1_GR)) {
895         /* HASH->RADIX : Free HPT */
896         spapr_free_hpt(spapr);
897     } else if (!(patbe_new & PATE1_GR)) {
898         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
899         spapr_setup_hpt(spapr);
900     }
901     return;
902 }
903 
904 #define FLAGS_MASK              0x01FULL
905 #define FLAG_MODIFY             0x10
906 #define FLAG_REGISTER           0x08
907 #define FLAG_RADIX              0x04
908 #define FLAG_HASH_PROC_TBL      0x02
909 #define FLAG_GTSE               0x01
910 
911 static target_ulong h_register_process_table(PowerPCCPU *cpu,
912                                              SpaprMachineState *spapr,
913                                              target_ulong opcode,
914                                              target_ulong *args)
915 {
916     target_ulong flags = args[0];
917     target_ulong proc_tbl = args[1];
918     target_ulong page_size = args[2];
919     target_ulong table_size = args[3];
920     target_ulong update_lpcr = 0;
921     uint64_t cproc;
922 
923     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
924         return H_PARAMETER;
925     }
926     if (flags & FLAG_MODIFY) {
927         if (flags & FLAG_REGISTER) {
928             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
929                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
930                     return H_P2;
931                 } else if (page_size) {
932                     return H_P3;
933                 } else if (table_size > 24) {
934                     return H_P4;
935                 }
936                 cproc = PATE1_GR | proc_tbl | table_size;
937             } else { /* Register new HPT process table */
938                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
939                     /* TODO - Not Supported */
940                     /* Technically caused by flag bits => H_PARAMETER */
941                     return H_PARAMETER;
942                 } else { /* Hash with SLB */
943                     if (proc_tbl >> 38) {
944                         return H_P2;
945                     } else if (page_size & ~0x7) {
946                         return H_P3;
947                     } else if (table_size > 24) {
948                         return H_P4;
949                     }
950                 }
951                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
952             }
953 
954         } else { /* Deregister current process table */
955             /*
956              * Set to benign value: (current GR) | 0. This allows
957              * deregistration in KVM to succeed even if the radix bit
958              * in flags doesn't match the radix bit in the old PATE.
959              */
960             cproc = spapr->patb_entry & PATE1_GR;
961         }
962     } else { /* Maintain current registration */
963         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
964             /* Technically caused by flag bits => H_PARAMETER */
965             return H_PARAMETER; /* Existing Process Table Mismatch */
966         }
967         cproc = spapr->patb_entry;
968     }
969 
970     /* Check if we need to setup OR free the hpt */
971     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
972 
973     spapr->patb_entry = cproc; /* Save new process table */
974 
975     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
976     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
977         update_lpcr |= (LPCR_UPRT | LPCR_HR);
978     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
979         update_lpcr |= LPCR_UPRT;
980     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
981         update_lpcr |= LPCR_GTSE;
982 
983     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
984 
985     if (kvm_enabled()) {
986         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
987                                        flags & FLAG_GTSE, cproc);
988     }
989     return H_SUCCESS;
990 }
991 
992 #define H_SIGNAL_SYS_RESET_ALL         -1
993 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
994 
995 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
996                                        SpaprMachineState *spapr,
997                                        target_ulong opcode, target_ulong *args)
998 {
999     target_long target = args[0];
1000     CPUState *cs;
1001 
1002     if (target < 0) {
1003         /* Broadcast */
1004         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1005             return H_PARAMETER;
1006         }
1007 
1008         CPU_FOREACH(cs) {
1009             PowerPCCPU *c = POWERPC_CPU(cs);
1010 
1011             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1012                 if (c == cpu) {
1013                     continue;
1014                 }
1015             }
1016             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1017         }
1018         return H_SUCCESS;
1019 
1020     } else {
1021         /* Unicast */
1022         cs = CPU(spapr_find_cpu(target));
1023         if (cs) {
1024             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1025             return H_SUCCESS;
1026         }
1027         return H_PARAMETER;
1028     }
1029 }
1030 
1031 /* Returns either a logical PVR or zero if none was found */
1032 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1033                               target_ulong *addr, bool *raw_mode_supported)
1034 {
1035     bool explicit_match = false; /* Matched the CPU's real PVR */
1036     uint32_t best_compat = 0;
1037     int i;
1038 
1039     /*
1040      * We scan the supplied table of PVRs looking for two things
1041      *   1. Is our real CPU PVR in the list?
1042      *   2. What's the "best" listed logical PVR
1043      */
1044     for (i = 0; i < 512; ++i) {
1045         uint32_t pvr, pvr_mask;
1046 
1047         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1048         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1049         *addr += 8;
1050 
1051         if (~pvr_mask & pvr) {
1052             break; /* Terminator record */
1053         }
1054 
1055         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1056             explicit_match = true;
1057         } else {
1058             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1059                 best_compat = pvr;
1060             }
1061         }
1062     }
1063 
1064     *raw_mode_supported = explicit_match;
1065 
1066     /* Parsing finished */
1067     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1068 
1069     return best_compat;
1070 }
1071 
1072 static
1073 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1074                                             SpaprMachineState *spapr,
1075                                             target_ulong vec,
1076                                             target_ulong fdt_bufsize)
1077 {
1078     target_ulong ov_table; /* Working address in data buffer */
1079     uint32_t cas_pvr;
1080     SpaprOptionVector *ov1_guest, *ov5_guest;
1081     bool guest_radix;
1082     bool raw_mode_supported = false;
1083     bool guest_xive;
1084     CPUState *cs;
1085     void *fdt;
1086     uint32_t max_compat = spapr->max_compat_pvr;
1087 
1088     /* CAS is supposed to be called early when only the boot vCPU is active. */
1089     CPU_FOREACH(cs) {
1090         if (cs == CPU(cpu)) {
1091             continue;
1092         }
1093         if (!cs->halted) {
1094             warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1095             return H_MULTI_THREADS_ACTIVE;
1096         }
1097     }
1098 
1099     cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1100     if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1101         /*
1102          * We couldn't find a suitable compatibility mode, and either
1103          * the guest doesn't support "raw" mode for this CPU, or "raw"
1104          * mode is disabled because a maximum compat mode is set.
1105          */
1106         error_report("Couldn't negotiate a suitable PVR during CAS");
1107         return H_HARDWARE;
1108     }
1109 
1110     /* Update CPUs */
1111     if (cpu->compat_pvr != cas_pvr) {
1112         Error *local_err = NULL;
1113 
1114         if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1115             /* We fail to set compat mode (likely because running with KVM PR),
1116              * but maybe we can fallback to raw mode if the guest supports it.
1117              */
1118             if (!raw_mode_supported) {
1119                 error_report_err(local_err);
1120                 return H_HARDWARE;
1121             }
1122             error_free(local_err);
1123         }
1124     }
1125 
1126     /* For the future use: here @ov_table points to the first option vector */
1127     ov_table = vec;
1128 
1129     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1130     if (!ov1_guest) {
1131         warn_report("guest didn't provide option vector 1");
1132         return H_PARAMETER;
1133     }
1134     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1135     if (!ov5_guest) {
1136         spapr_ovec_cleanup(ov1_guest);
1137         warn_report("guest didn't provide option vector 5");
1138         return H_PARAMETER;
1139     }
1140     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1141         error_report("guest requested hash and radix MMU, which is invalid.");
1142         exit(EXIT_FAILURE);
1143     }
1144     if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1145         error_report("guest requested an invalid interrupt mode");
1146         exit(EXIT_FAILURE);
1147     }
1148 
1149     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1150 
1151     guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1152 
1153     /*
1154      * HPT resizing is a bit of a special case, because when enabled
1155      * we assume an HPT guest will support it until it says it
1156      * doesn't, instead of assuming it won't support it until it says
1157      * it does.  Strictly speaking that approach could break for
1158      * guests which don't make a CAS call, but those are so old we
1159      * don't care about them.  Without that assumption we'd have to
1160      * make at least a temporary allocation of an HPT sized for max
1161      * memory, which could be impossibly difficult under KVM HV if
1162      * maxram is large.
1163      */
1164     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1165         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1166 
1167         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1168             error_report(
1169                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1170             exit(1);
1171         }
1172 
1173         if (spapr->htab_shift < maxshift) {
1174             /* Guest doesn't know about HPT resizing, so we
1175              * pre-emptively resize for the maximum permitted RAM.  At
1176              * the point this is called, nothing should have been
1177              * entered into the existing HPT */
1178             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1179             push_sregs_to_kvm_pr(spapr);
1180         }
1181     }
1182 
1183     /* NOTE: there are actually a number of ov5 bits where input from the
1184      * guest is always zero, and the platform/QEMU enables them independently
1185      * of guest input. To model these properly we'd want some sort of mask,
1186      * but since they only currently apply to memory migration as defined
1187      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1188      * to worry about this for now.
1189      */
1190 
1191     /* full range of negotiated ov5 capabilities */
1192     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1193     spapr_ovec_cleanup(ov5_guest);
1194 
1195     spapr_check_mmu_mode(guest_radix);
1196 
1197     spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1198     spapr_ovec_cleanup(ov1_guest);
1199 
1200     /*
1201      * Ensure the guest asks for an interrupt mode we support;
1202      * otherwise terminate the boot.
1203      */
1204     if (guest_xive) {
1205         if (!spapr->irq->xive) {
1206             error_report(
1207 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1208             exit(EXIT_FAILURE);
1209         }
1210     } else {
1211         if (!spapr->irq->xics) {
1212             error_report(
1213 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1214             exit(EXIT_FAILURE);
1215         }
1216     }
1217 
1218     spapr_irq_update_active_intc(spapr);
1219 
1220     /*
1221      * Process all pending hot-plug/unplug requests now. An updated full
1222      * rendered FDT will be returned to the guest.
1223      */
1224     spapr_drc_reset_all(spapr);
1225     spapr_clear_pending_hotplug_events(spapr);
1226 
1227     /*
1228      * If spapr_machine_reset() did not set up a HPT but one is necessary
1229      * (because the guest isn't going to use radix) then set it up here.
1230      */
1231     if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1232         /* legacy hash or new hash: */
1233         spapr_setup_hpt(spapr);
1234     }
1235 
1236     fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1237     g_free(spapr->fdt_blob);
1238     spapr->fdt_size = fdt_totalsize(fdt);
1239     spapr->fdt_initial_size = spapr->fdt_size;
1240     spapr->fdt_blob = fdt;
1241 
1242     return H_SUCCESS;
1243 }
1244 
1245 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1246                                                   SpaprMachineState *spapr,
1247                                                   target_ulong opcode,
1248                                                   target_ulong *args)
1249 {
1250     target_ulong vec = ppc64_phys_to_real(args[0]);
1251     target_ulong fdt_buf = args[1];
1252     target_ulong fdt_bufsize = args[2];
1253     target_ulong ret;
1254     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1255 
1256     if (fdt_bufsize < sizeof(hdr)) {
1257         error_report("SLOF provided insufficient CAS buffer "
1258                      TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1259         exit(EXIT_FAILURE);
1260     }
1261 
1262     fdt_bufsize -= sizeof(hdr);
1263 
1264     ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1265     if (ret == H_SUCCESS) {
1266         _FDT((fdt_pack(spapr->fdt_blob)));
1267         spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1268         spapr->fdt_initial_size = spapr->fdt_size;
1269 
1270         cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1271         cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1272                                   spapr->fdt_size);
1273         trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1274     }
1275 
1276     return ret;
1277 }
1278 
1279 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1280                                                    CPUState *cs,
1281                                                    target_ulong ovec_addr)
1282 {
1283     SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1284 
1285     target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1286                                                       ovec_addr, FDT_MAX_SIZE);
1287 
1288     /*
1289      * This adds stdout and generates phandles for boottime and CAS FDTs.
1290      * It is alright to update the FDT here as do_client_architecture_support()
1291      * does not pack it.
1292      */
1293     spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1294 
1295     return ret;
1296 }
1297 
1298 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1299                                               SpaprMachineState *spapr,
1300                                               target_ulong opcode,
1301                                               target_ulong *args)
1302 {
1303     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1304                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1305     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1306     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1307     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1308     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1309     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1310                                                      SPAPR_CAP_CCF_ASSIST);
1311 
1312     switch (safe_cache) {
1313     case SPAPR_CAP_WORKAROUND:
1314         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1315         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1316         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1317         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1318         break;
1319     case SPAPR_CAP_FIXED:
1320         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1321         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1322         break;
1323     default: /* broken */
1324         assert(safe_cache == SPAPR_CAP_BROKEN);
1325         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1326         break;
1327     }
1328 
1329     switch (safe_bounds_check) {
1330     case SPAPR_CAP_WORKAROUND:
1331         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1332         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1333         break;
1334     case SPAPR_CAP_FIXED:
1335         break;
1336     default: /* broken */
1337         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1338         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1339         break;
1340     }
1341 
1342     switch (safe_indirect_branch) {
1343     case SPAPR_CAP_FIXED_NA:
1344         break;
1345     case SPAPR_CAP_FIXED_CCD:
1346         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1347         break;
1348     case SPAPR_CAP_FIXED_IBS:
1349         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1350         break;
1351     case SPAPR_CAP_WORKAROUND:
1352         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1353         if (count_cache_flush_assist) {
1354             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1355         }
1356         break;
1357     default: /* broken */
1358         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1359         break;
1360     }
1361 
1362     args[0] = characteristics;
1363     args[1] = behaviour;
1364     return H_SUCCESS;
1365 }
1366 
1367 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1368                                 target_ulong opcode, target_ulong *args)
1369 {
1370     target_ulong dt = ppc64_phys_to_real(args[0]);
1371     struct fdt_header hdr = { 0 };
1372     unsigned cb;
1373     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1374     void *fdt;
1375 
1376     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1377     cb = fdt32_to_cpu(hdr.totalsize);
1378 
1379     if (!smc->update_dt_enabled) {
1380         return H_SUCCESS;
1381     }
1382 
1383     /* Check that the fdt did not grow out of proportion */
1384     if (cb > spapr->fdt_initial_size * 2) {
1385         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1386                                           fdt32_to_cpu(hdr.magic));
1387         return H_PARAMETER;
1388     }
1389 
1390     fdt = g_malloc0(cb);
1391     cpu_physical_memory_read(dt, fdt, cb);
1392 
1393     /* Check the fdt consistency */
1394     if (fdt_check_full(fdt, cb)) {
1395         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1396                                            fdt32_to_cpu(hdr.magic));
1397         return H_PARAMETER;
1398     }
1399 
1400     g_free(spapr->fdt_blob);
1401     spapr->fdt_size = cb;
1402     spapr->fdt_blob = fdt;
1403     trace_spapr_update_dt(cb);
1404 
1405     return H_SUCCESS;
1406 }
1407 
1408 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1409 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1410 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1411 
1412 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1413 {
1414     spapr_hcall_fn *slot;
1415 
1416     if (opcode <= MAX_HCALL_OPCODE) {
1417         assert((opcode & 0x3) == 0);
1418 
1419         slot = &papr_hypercall_table[opcode / 4];
1420     } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1421         /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1422         assert((opcode & 0x3) == 0);
1423 
1424         slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1425     } else {
1426         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1427 
1428         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1429     }
1430 
1431     assert(!(*slot));
1432     *slot = fn;
1433 }
1434 
1435 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1436                              target_ulong *args)
1437 {
1438     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1439 
1440     if ((opcode <= MAX_HCALL_OPCODE)
1441         && ((opcode & 0x3) == 0)) {
1442         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1443 
1444         if (fn) {
1445             return fn(cpu, spapr, opcode, args);
1446         }
1447     } else if ((opcode >= SVM_HCALL_BASE) &&
1448                (opcode <= SVM_HCALL_MAX)) {
1449         spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1450 
1451         if (fn) {
1452             return fn(cpu, spapr, opcode, args);
1453         }
1454     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1455                (opcode <= KVMPPC_HCALL_MAX)) {
1456         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1457 
1458         if (fn) {
1459             return fn(cpu, spapr, opcode, args);
1460         }
1461     }
1462 
1463     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1464                   opcode);
1465     return H_FUNCTION;
1466 }
1467 
1468 #ifndef CONFIG_TCG
1469 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1470                             target_ulong opcode, target_ulong *args)
1471 {
1472     g_assert_not_reached();
1473 }
1474 
1475 static void hypercall_register_softmmu(void)
1476 {
1477     /* hcall-pft */
1478     spapr_register_hypercall(H_ENTER, h_softmmu);
1479     spapr_register_hypercall(H_REMOVE, h_softmmu);
1480     spapr_register_hypercall(H_PROTECT, h_softmmu);
1481     spapr_register_hypercall(H_READ, h_softmmu);
1482 
1483     /* hcall-bulk */
1484     spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1485 }
1486 #else
1487 static void hypercall_register_softmmu(void)
1488 {
1489     /* DO NOTHING */
1490 }
1491 #endif
1492 
1493 static void hypercall_register_types(void)
1494 {
1495     hypercall_register_softmmu();
1496 
1497     /* hcall-hpt-resize */
1498     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1499     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1500 
1501     /* hcall-splpar */
1502     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1503     spapr_register_hypercall(H_CEDE, h_cede);
1504     spapr_register_hypercall(H_CONFER, h_confer);
1505     spapr_register_hypercall(H_PROD, h_prod);
1506 
1507     /* hcall-join */
1508     spapr_register_hypercall(H_JOIN, h_join);
1509 
1510     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1511 
1512     /* processor register resource access h-calls */
1513     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1514     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1515     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1516     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1517     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1518 
1519     /* In Memory Table MMU h-calls */
1520     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1521     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1522     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1523 
1524     /* hcall-get-cpu-characteristics */
1525     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1526                              h_get_cpu_characteristics);
1527 
1528     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1529      * here between the "CI" and the "CACHE" variants, they will use whatever
1530      * mapping attributes qemu is using. When using KVM, the kernel will
1531      * enforce the attributes more strongly
1532      */
1533     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1534     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1535     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1536     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1537     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1538     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1539     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1540 
1541     /* qemu/KVM-PPC specific hcalls */
1542     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1543 
1544     /* ibm,client-architecture-support support */
1545     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1546 
1547     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1548 }
1549 
1550 type_init(hypercall_register_types)
1551