xref: /openbmc/qemu/hw/ppc/spapr_hcall.c (revision 06831001)
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "exec/tb-flush.h"
12 #include "helper_regs.h"
13 #include "hw/ppc/ppc.h"
14 #include "hw/ppc/spapr.h"
15 #include "hw/ppc/spapr_cpu_core.h"
16 #include "mmu-hash64.h"
17 #include "cpu-models.h"
18 #include "trace.h"
19 #include "kvm_ppc.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr_ovec.h"
22 #include "hw/ppc/spapr_numa.h"
23 #include "mmu-book3s-v3.h"
24 #include "hw/mem/memory-device.h"
25 
26 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
27 {
28     MachineState *machine = MACHINE(spapr);
29     DeviceMemoryState *dms = machine->device_memory;
30 
31     if (addr < machine->ram_size) {
32         return true;
33     }
34     if ((addr >= dms->base)
35         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
36         return true;
37     }
38 
39     return false;
40 }
41 
42 /* Convert a return code from the KVM ioctl()s implementing resize HPT
43  * into a PAPR hypercall return code */
44 static target_ulong resize_hpt_convert_rc(int ret)
45 {
46     if (ret >= 100000) {
47         return H_LONG_BUSY_ORDER_100_SEC;
48     } else if (ret >= 10000) {
49         return H_LONG_BUSY_ORDER_10_SEC;
50     } else if (ret >= 1000) {
51         return H_LONG_BUSY_ORDER_1_SEC;
52     } else if (ret >= 100) {
53         return H_LONG_BUSY_ORDER_100_MSEC;
54     } else if (ret >= 10) {
55         return H_LONG_BUSY_ORDER_10_MSEC;
56     } else if (ret > 0) {
57         return H_LONG_BUSY_ORDER_1_MSEC;
58     }
59 
60     switch (ret) {
61     case 0:
62         return H_SUCCESS;
63     case -EPERM:
64         return H_AUTHORITY;
65     case -EINVAL:
66         return H_PARAMETER;
67     case -ENXIO:
68         return H_CLOSED;
69     case -ENOSPC:
70         return H_PTEG_FULL;
71     case -EBUSY:
72         return H_BUSY;
73     case -ENOMEM:
74         return H_NO_MEM;
75     default:
76         return H_HARDWARE;
77     }
78 }
79 
80 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
81                                          SpaprMachineState *spapr,
82                                          target_ulong opcode,
83                                          target_ulong *args)
84 {
85     target_ulong flags = args[0];
86     int shift = args[1];
87     uint64_t current_ram_size;
88     int rc;
89 
90     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
91         return H_AUTHORITY;
92     }
93 
94     if (!spapr->htab_shift) {
95         /* Radix guest, no HPT */
96         return H_NOT_AVAILABLE;
97     }
98 
99     trace_spapr_h_resize_hpt_prepare(flags, shift);
100 
101     if (flags != 0) {
102         return H_PARAMETER;
103     }
104 
105     if (shift && ((shift < 18) || (shift > 46))) {
106         return H_PARAMETER;
107     }
108 
109     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
110 
111     /* We only allow the guest to allocate an HPT one order above what
112      * we'd normally give them (to stop a small guest claiming a huge
113      * chunk of resources in the HPT */
114     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
115         return H_RESOURCE;
116     }
117 
118     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
119     if (rc != -ENOSYS) {
120         return resize_hpt_convert_rc(rc);
121     }
122 
123     if (kvm_enabled()) {
124         return H_HARDWARE;
125     }
126 
127     return softmmu_resize_hpt_prepare(cpu, spapr, shift);
128 }
129 
130 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
131 {
132     int ret;
133 
134     cpu_synchronize_state(cs);
135 
136     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
137     if (ret < 0) {
138         error_report("failed to push sregs to KVM: %s", strerror(-ret));
139         exit(1);
140     }
141 }
142 
143 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
144 {
145     CPUState *cs;
146 
147     /*
148      * This is a hack for the benefit of KVM PR - it abuses the SDR1
149      * slot in kvm_sregs to communicate the userspace address of the
150      * HPT
151      */
152     if (!kvm_enabled() || !spapr->htab) {
153         return;
154     }
155 
156     CPU_FOREACH(cs) {
157         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
158     }
159 }
160 
161 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
162                                         SpaprMachineState *spapr,
163                                         target_ulong opcode,
164                                         target_ulong *args)
165 {
166     target_ulong flags = args[0];
167     target_ulong shift = args[1];
168     int rc;
169 
170     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
171         return H_AUTHORITY;
172     }
173 
174     if (!spapr->htab_shift) {
175         /* Radix guest, no HPT */
176         return H_NOT_AVAILABLE;
177     }
178 
179     trace_spapr_h_resize_hpt_commit(flags, shift);
180 
181     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
182     if (rc != -ENOSYS) {
183         rc = resize_hpt_convert_rc(rc);
184         if (rc == H_SUCCESS) {
185             /* Need to set the new htab_shift in the machine state */
186             spapr->htab_shift = shift;
187         }
188         return rc;
189     }
190 
191     if (kvm_enabled()) {
192         return H_HARDWARE;
193     }
194 
195     return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
196 }
197 
198 
199 
200 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
201                                 target_ulong opcode, target_ulong *args)
202 {
203     cpu_synchronize_state(CPU(cpu));
204     cpu->env.spr[SPR_SPRG0] = args[0];
205 
206     return H_SUCCESS;
207 }
208 
209 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
210                                target_ulong opcode, target_ulong *args)
211 {
212     if (!ppc_has_spr(cpu, SPR_DABR)) {
213         return H_HARDWARE;              /* DABR register not available */
214     }
215     cpu_synchronize_state(CPU(cpu));
216 
217     if (ppc_has_spr(cpu, SPR_DABRX)) {
218         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
219     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
220         return H_RESERVED_DABR;
221     }
222 
223     cpu->env.spr[SPR_DABR] = args[0];
224     return H_SUCCESS;
225 }
226 
227 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
228                                 target_ulong opcode, target_ulong *args)
229 {
230     target_ulong dabrx = args[1];
231 
232     if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
233         return H_HARDWARE;
234     }
235 
236     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
237         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
238         return H_PARAMETER;
239     }
240 
241     cpu_synchronize_state(CPU(cpu));
242     cpu->env.spr[SPR_DABRX] = dabrx;
243     cpu->env.spr[SPR_DABR] = args[0];
244 
245     return H_SUCCESS;
246 }
247 
248 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
249                                 target_ulong opcode, target_ulong *args)
250 {
251     target_ulong flags = args[0];
252     hwaddr dst = args[1];
253     hwaddr src = args[2];
254     hwaddr len = TARGET_PAGE_SIZE;
255     uint8_t *pdst, *psrc;
256     target_long ret = H_SUCCESS;
257 
258     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
259                   | H_COPY_PAGE | H_ZERO_PAGE)) {
260         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
261                       flags);
262         return H_PARAMETER;
263     }
264 
265     /* Map-in destination */
266     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
267         return H_PARAMETER;
268     }
269     pdst = cpu_physical_memory_map(dst, &len, true);
270     if (!pdst || len != TARGET_PAGE_SIZE) {
271         return H_PARAMETER;
272     }
273 
274     if (flags & H_COPY_PAGE) {
275         /* Map-in source, copy to destination, and unmap source again */
276         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
277             ret = H_PARAMETER;
278             goto unmap_out;
279         }
280         psrc = cpu_physical_memory_map(src, &len, false);
281         if (!psrc || len != TARGET_PAGE_SIZE) {
282             ret = H_PARAMETER;
283             goto unmap_out;
284         }
285         memcpy(pdst, psrc, len);
286         cpu_physical_memory_unmap(psrc, len, 0, len);
287     } else if (flags & H_ZERO_PAGE) {
288         memset(pdst, 0, len);          /* Just clear the destination page */
289     }
290 
291     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
292         kvmppc_dcbst_range(cpu, pdst, len);
293     }
294     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
295         if (kvm_enabled()) {
296             kvmppc_icbi_range(cpu, pdst, len);
297         } else {
298             tb_flush(CPU(cpu));
299         }
300     }
301 
302 unmap_out:
303     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
304     return ret;
305 }
306 
307 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
308 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
309 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
310 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
311 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
312 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
313 
314 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
315 {
316     CPUState *cs = CPU(cpu);
317     CPUPPCState *env = &cpu->env;
318     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
319     uint16_t size;
320     uint8_t tmp;
321 
322     if (vpa == 0) {
323         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
324         return H_HARDWARE;
325     }
326 
327     if (vpa % env->dcache_line_size) {
328         return H_PARAMETER;
329     }
330     /* FIXME: bounds check the address */
331 
332     size = lduw_be_phys(cs->as, vpa + 0x4);
333 
334     if (size < VPA_MIN_SIZE) {
335         return H_PARAMETER;
336     }
337 
338     /* VPA is not allowed to cross a page boundary */
339     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
340         return H_PARAMETER;
341     }
342 
343     spapr_cpu->vpa_addr = vpa;
344 
345     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
346     tmp |= VPA_SHARED_PROC_VAL;
347     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
348 
349     return H_SUCCESS;
350 }
351 
352 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
353 {
354     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
355 
356     if (spapr_cpu->slb_shadow_addr) {
357         return H_RESOURCE;
358     }
359 
360     if (spapr_cpu->dtl_addr) {
361         return H_RESOURCE;
362     }
363 
364     spapr_cpu->vpa_addr = 0;
365     return H_SUCCESS;
366 }
367 
368 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
369 {
370     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
371     uint32_t size;
372 
373     if (addr == 0) {
374         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
375         return H_HARDWARE;
376     }
377 
378     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
379     if (size < 0x8) {
380         return H_PARAMETER;
381     }
382 
383     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
384         return H_PARAMETER;
385     }
386 
387     if (!spapr_cpu->vpa_addr) {
388         return H_RESOURCE;
389     }
390 
391     spapr_cpu->slb_shadow_addr = addr;
392     spapr_cpu->slb_shadow_size = size;
393 
394     return H_SUCCESS;
395 }
396 
397 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
398 {
399     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
400 
401     spapr_cpu->slb_shadow_addr = 0;
402     spapr_cpu->slb_shadow_size = 0;
403     return H_SUCCESS;
404 }
405 
406 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
407 {
408     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
409     uint32_t size;
410 
411     if (addr == 0) {
412         hcall_dprintf("Can't cope with DTL at logical 0\n");
413         return H_HARDWARE;
414     }
415 
416     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
417 
418     if (size < 48) {
419         return H_PARAMETER;
420     }
421 
422     if (!spapr_cpu->vpa_addr) {
423         return H_RESOURCE;
424     }
425 
426     spapr_cpu->dtl_addr = addr;
427     spapr_cpu->dtl_size = size;
428 
429     return H_SUCCESS;
430 }
431 
432 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
433 {
434     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
435 
436     spapr_cpu->dtl_addr = 0;
437     spapr_cpu->dtl_size = 0;
438 
439     return H_SUCCESS;
440 }
441 
442 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
443                                    target_ulong opcode, target_ulong *args)
444 {
445     target_ulong flags = args[0];
446     target_ulong procno = args[1];
447     target_ulong vpa = args[2];
448     target_ulong ret = H_PARAMETER;
449     PowerPCCPU *tcpu;
450 
451     tcpu = spapr_find_cpu(procno);
452     if (!tcpu) {
453         return H_PARAMETER;
454     }
455 
456     switch (flags) {
457     case FLAGS_REGISTER_VPA:
458         ret = register_vpa(tcpu, vpa);
459         break;
460 
461     case FLAGS_DEREGISTER_VPA:
462         ret = deregister_vpa(tcpu, vpa);
463         break;
464 
465     case FLAGS_REGISTER_SLBSHADOW:
466         ret = register_slb_shadow(tcpu, vpa);
467         break;
468 
469     case FLAGS_DEREGISTER_SLBSHADOW:
470         ret = deregister_slb_shadow(tcpu, vpa);
471         break;
472 
473     case FLAGS_REGISTER_DTL:
474         ret = register_dtl(tcpu, vpa);
475         break;
476 
477     case FLAGS_DEREGISTER_DTL:
478         ret = deregister_dtl(tcpu, vpa);
479         break;
480     }
481 
482     return ret;
483 }
484 
485 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
486                            target_ulong opcode, target_ulong *args)
487 {
488     CPUPPCState *env = &cpu->env;
489     CPUState *cs = CPU(cpu);
490     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
491 
492     env->msr |= (1ULL << MSR_EE);
493     hreg_compute_hflags(env);
494     ppc_maybe_interrupt(env);
495 
496     if (spapr_cpu->prod) {
497         spapr_cpu->prod = false;
498         return H_SUCCESS;
499     }
500 
501     if (!cpu_has_work(cs)) {
502         cs->halted = 1;
503         cs->exception_index = EXCP_HLT;
504         cs->exit_request = 1;
505         ppc_maybe_interrupt(env);
506     }
507 
508     return H_SUCCESS;
509 }
510 
511 /*
512  * Confer to self, aka join. Cede could use the same pattern as well, if
513  * EXCP_HLT can be changed to ECXP_HALTED.
514  */
515 static target_ulong h_confer_self(PowerPCCPU *cpu)
516 {
517     CPUState *cs = CPU(cpu);
518     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
519 
520     if (spapr_cpu->prod) {
521         spapr_cpu->prod = false;
522         return H_SUCCESS;
523     }
524     cs->halted = 1;
525     cs->exception_index = EXCP_HALTED;
526     cs->exit_request = 1;
527     ppc_maybe_interrupt(&cpu->env);
528 
529     return H_SUCCESS;
530 }
531 
532 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
533                            target_ulong opcode, target_ulong *args)
534 {
535     CPUPPCState *env = &cpu->env;
536     CPUState *cs;
537     bool last_unjoined = true;
538 
539     if (env->msr & (1ULL << MSR_EE)) {
540         return H_BAD_MODE;
541     }
542 
543     /*
544      * Must not join the last CPU running. Interestingly, no such restriction
545      * for H_CONFER-to-self, but that is probably not intended to be used
546      * when H_JOIN is available.
547      */
548     CPU_FOREACH(cs) {
549         PowerPCCPU *c = POWERPC_CPU(cs);
550         CPUPPCState *e = &c->env;
551         if (c == cpu) {
552             continue;
553         }
554 
555         /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
556         if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
557             last_unjoined = false;
558             break;
559         }
560     }
561     if (last_unjoined) {
562         return H_CONTINUE;
563     }
564 
565     return h_confer_self(cpu);
566 }
567 
568 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
569                            target_ulong opcode, target_ulong *args)
570 {
571     target_long target = args[0];
572     uint32_t dispatch = args[1];
573     CPUState *cs = CPU(cpu);
574     SpaprCpuState *spapr_cpu;
575 
576     /*
577      * -1 means confer to all other CPUs without dispatch counter check,
578      *  otherwise it's a targeted confer.
579      */
580     if (target != -1) {
581         PowerPCCPU *target_cpu = spapr_find_cpu(target);
582         uint32_t target_dispatch;
583 
584         if (!target_cpu) {
585             return H_PARAMETER;
586         }
587 
588         /*
589          * target == self is a special case, we wait until prodded, without
590          * dispatch counter check.
591          */
592         if (cpu == target_cpu) {
593             return h_confer_self(cpu);
594         }
595 
596         spapr_cpu = spapr_cpu_state(target_cpu);
597         if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
598             return H_SUCCESS;
599         }
600 
601         target_dispatch = ldl_be_phys(cs->as,
602                                   spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
603         if (target_dispatch != dispatch) {
604             return H_SUCCESS;
605         }
606 
607         /*
608          * The targeted confer does not do anything special beyond yielding
609          * the current vCPU, but even this should be better than nothing.
610          * At least for single-threaded tcg, it gives the target a chance to
611          * run before we run again. Multi-threaded tcg does not really do
612          * anything with EXCP_YIELD yet.
613          */
614     }
615 
616     cs->exception_index = EXCP_YIELD;
617     cs->exit_request = 1;
618     cpu_loop_exit(cs);
619 
620     return H_SUCCESS;
621 }
622 
623 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
624                            target_ulong opcode, target_ulong *args)
625 {
626     target_long target = args[0];
627     PowerPCCPU *tcpu;
628     CPUState *cs;
629     SpaprCpuState *spapr_cpu;
630 
631     tcpu = spapr_find_cpu(target);
632     cs = CPU(tcpu);
633     if (!cs) {
634         return H_PARAMETER;
635     }
636 
637     spapr_cpu = spapr_cpu_state(tcpu);
638     spapr_cpu->prod = true;
639     cs->halted = 0;
640     ppc_maybe_interrupt(&cpu->env);
641     qemu_cpu_kick(cs);
642 
643     return H_SUCCESS;
644 }
645 
646 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
647                            target_ulong opcode, target_ulong *args)
648 {
649     target_ulong rtas_r3 = args[0];
650     uint32_t token = rtas_ld(rtas_r3, 0);
651     uint32_t nargs = rtas_ld(rtas_r3, 1);
652     uint32_t nret = rtas_ld(rtas_r3, 2);
653 
654     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
655                            nret, rtas_r3 + 12 + 4*nargs);
656 }
657 
658 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
659                                    target_ulong opcode, target_ulong *args)
660 {
661     CPUState *cs = CPU(cpu);
662     target_ulong size = args[0];
663     target_ulong addr = args[1];
664 
665     switch (size) {
666     case 1:
667         args[0] = ldub_phys(cs->as, addr);
668         return H_SUCCESS;
669     case 2:
670         args[0] = lduw_phys(cs->as, addr);
671         return H_SUCCESS;
672     case 4:
673         args[0] = ldl_phys(cs->as, addr);
674         return H_SUCCESS;
675     case 8:
676         args[0] = ldq_phys(cs->as, addr);
677         return H_SUCCESS;
678     }
679     return H_PARAMETER;
680 }
681 
682 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
683                                     target_ulong opcode, target_ulong *args)
684 {
685     CPUState *cs = CPU(cpu);
686 
687     target_ulong size = args[0];
688     target_ulong addr = args[1];
689     target_ulong val  = args[2];
690 
691     switch (size) {
692     case 1:
693         stb_phys(cs->as, addr, val);
694         return H_SUCCESS;
695     case 2:
696         stw_phys(cs->as, addr, val);
697         return H_SUCCESS;
698     case 4:
699         stl_phys(cs->as, addr, val);
700         return H_SUCCESS;
701     case 8:
702         stq_phys(cs->as, addr, val);
703         return H_SUCCESS;
704     }
705     return H_PARAMETER;
706 }
707 
708 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
709                                     target_ulong opcode, target_ulong *args)
710 {
711     CPUState *cs = CPU(cpu);
712 
713     target_ulong dst   = args[0]; /* Destination address */
714     target_ulong src   = args[1]; /* Source address */
715     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
716     target_ulong count = args[3]; /* Element count */
717     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
718     uint64_t tmp;
719     unsigned int mask = (1 << esize) - 1;
720     int step = 1 << esize;
721 
722     if (count > 0x80000000) {
723         return H_PARAMETER;
724     }
725 
726     if ((dst & mask) || (src & mask) || (op > 1)) {
727         return H_PARAMETER;
728     }
729 
730     if (dst >= src && dst < (src + (count << esize))) {
731             dst = dst + ((count - 1) << esize);
732             src = src + ((count - 1) << esize);
733             step = -step;
734     }
735 
736     while (count--) {
737         switch (esize) {
738         case 0:
739             tmp = ldub_phys(cs->as, src);
740             break;
741         case 1:
742             tmp = lduw_phys(cs->as, src);
743             break;
744         case 2:
745             tmp = ldl_phys(cs->as, src);
746             break;
747         case 3:
748             tmp = ldq_phys(cs->as, src);
749             break;
750         default:
751             return H_PARAMETER;
752         }
753         if (op == 1) {
754             tmp = ~tmp;
755         }
756         switch (esize) {
757         case 0:
758             stb_phys(cs->as, dst, tmp);
759             break;
760         case 1:
761             stw_phys(cs->as, dst, tmp);
762             break;
763         case 2:
764             stl_phys(cs->as, dst, tmp);
765             break;
766         case 3:
767             stq_phys(cs->as, dst, tmp);
768             break;
769         }
770         dst = dst + step;
771         src = src + step;
772     }
773 
774     return H_SUCCESS;
775 }
776 
777 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
778                                    target_ulong opcode, target_ulong *args)
779 {
780     /* Nothing to do on emulation, KVM will trap this in the kernel */
781     return H_SUCCESS;
782 }
783 
784 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
785                                    target_ulong opcode, target_ulong *args)
786 {
787     /* Nothing to do on emulation, KVM will trap this in the kernel */
788     return H_SUCCESS;
789 }
790 
791 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
792                                            SpaprMachineState *spapr,
793                                            target_ulong mflags,
794                                            target_ulong value1,
795                                            target_ulong value2)
796 {
797     if (value1) {
798         return H_P3;
799     }
800     if (value2) {
801         return H_P4;
802     }
803 
804     switch (mflags) {
805     case H_SET_MODE_ENDIAN_BIG:
806         spapr_set_all_lpcrs(0, LPCR_ILE);
807         spapr_pci_switch_vga(spapr, true);
808         return H_SUCCESS;
809 
810     case H_SET_MODE_ENDIAN_LITTLE:
811         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
812         spapr_pci_switch_vga(spapr, false);
813         return H_SUCCESS;
814     }
815 
816     return H_UNSUPPORTED_FLAG;
817 }
818 
819 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
820                                                         SpaprMachineState *spapr,
821                                                         target_ulong mflags,
822                                                         target_ulong value1,
823                                                         target_ulong value2)
824 {
825     if (value1) {
826         return H_P3;
827     }
828 
829     if (value2) {
830         return H_P4;
831     }
832 
833     /*
834      * AIL-1 is not architected, and AIL-2 is not supported by QEMU spapr.
835      * It is supported for faithful emulation of bare metal systems, but for
836      * compatibility concerns we leave it out of the pseries machine.
837      */
838     if (mflags != 0 && mflags != 3) {
839         return H_UNSUPPORTED_FLAG;
840     }
841 
842     if (mflags == 3) {
843         if (!spapr_get_cap(spapr, SPAPR_CAP_AIL_MODE_3)) {
844             return H_UNSUPPORTED_FLAG;
845         }
846     }
847 
848     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
849 
850     return H_SUCCESS;
851 }
852 
853 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
854                                target_ulong opcode, target_ulong *args)
855 {
856     target_ulong resource = args[1];
857     target_ulong ret = H_P2;
858 
859     switch (resource) {
860     case H_SET_MODE_RESOURCE_LE:
861         ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
862         break;
863     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
864         ret = h_set_mode_resource_addr_trans_mode(cpu, spapr, args[0],
865                                                   args[2], args[3]);
866         break;
867     }
868 
869     return ret;
870 }
871 
872 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
873                                 target_ulong opcode, target_ulong *args)
874 {
875     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
876                   opcode, " (H_CLEAN_SLB)");
877     return H_FUNCTION;
878 }
879 
880 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
881                                      target_ulong opcode, target_ulong *args)
882 {
883     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
884                   opcode, " (H_INVALIDATE_PID)");
885     return H_FUNCTION;
886 }
887 
888 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
889                                        uint64_t patbe_old, uint64_t patbe_new)
890 {
891     /*
892      * We have 4 Options:
893      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
894      * HASH->RADIX                                  : Free HPT
895      * RADIX->HASH                                  : Allocate HPT
896      * NOTHING->HASH                                : Allocate HPT
897      * Note: NOTHING implies the case where we said the guest could choose
898      *       later and so assumed radix and now it's called H_REG_PROC_TBL
899      */
900 
901     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
902         /* We assume RADIX, so this catches all the "Do Nothing" cases */
903     } else if (!(patbe_old & PATE1_GR)) {
904         /* HASH->RADIX : Free HPT */
905         spapr_free_hpt(spapr);
906     } else if (!(patbe_new & PATE1_GR)) {
907         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
908         spapr_setup_hpt(spapr);
909     }
910     return;
911 }
912 
913 #define FLAGS_MASK              0x01FULL
914 #define FLAG_MODIFY             0x10
915 #define FLAG_REGISTER           0x08
916 #define FLAG_RADIX              0x04
917 #define FLAG_HASH_PROC_TBL      0x02
918 #define FLAG_GTSE               0x01
919 
920 static target_ulong h_register_process_table(PowerPCCPU *cpu,
921                                              SpaprMachineState *spapr,
922                                              target_ulong opcode,
923                                              target_ulong *args)
924 {
925     target_ulong flags = args[0];
926     target_ulong proc_tbl = args[1];
927     target_ulong page_size = args[2];
928     target_ulong table_size = args[3];
929     target_ulong update_lpcr = 0;
930     target_ulong table_byte_size;
931     uint64_t cproc;
932 
933     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
934         return H_PARAMETER;
935     }
936     if (flags & FLAG_MODIFY) {
937         if (flags & FLAG_REGISTER) {
938             /* Check process table alignment */
939             table_byte_size = 1ULL << (table_size + 12);
940             if (proc_tbl & (table_byte_size - 1)) {
941                 qemu_log_mask(LOG_GUEST_ERROR,
942                     "%s: process table not properly aligned: proc_tbl 0x"
943                     TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
944                     __func__, proc_tbl, table_byte_size);
945             }
946             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
947                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
948                     return H_P2;
949                 } else if (page_size) {
950                     return H_P3;
951                 } else if (table_size > 24) {
952                     return H_P4;
953                 }
954                 cproc = PATE1_GR | proc_tbl | table_size;
955             } else { /* Register new HPT process table */
956                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
957                     /* TODO - Not Supported */
958                     /* Technically caused by flag bits => H_PARAMETER */
959                     return H_PARAMETER;
960                 } else { /* Hash with SLB */
961                     if (proc_tbl >> 38) {
962                         return H_P2;
963                     } else if (page_size & ~0x7) {
964                         return H_P3;
965                     } else if (table_size > 24) {
966                         return H_P4;
967                     }
968                 }
969                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
970             }
971 
972         } else { /* Deregister current process table */
973             /*
974              * Set to benign value: (current GR) | 0. This allows
975              * deregistration in KVM to succeed even if the radix bit
976              * in flags doesn't match the radix bit in the old PATE.
977              */
978             cproc = spapr->patb_entry & PATE1_GR;
979         }
980     } else { /* Maintain current registration */
981         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
982             /* Technically caused by flag bits => H_PARAMETER */
983             return H_PARAMETER; /* Existing Process Table Mismatch */
984         }
985         cproc = spapr->patb_entry;
986     }
987 
988     /* Check if we need to setup OR free the hpt */
989     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
990 
991     spapr->patb_entry = cproc; /* Save new process table */
992 
993     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
994     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
995         update_lpcr |= (LPCR_UPRT | LPCR_HR);
996     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
997         update_lpcr |= LPCR_UPRT;
998     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
999         update_lpcr |= LPCR_GTSE;
1000 
1001     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1002 
1003     if (kvm_enabled()) {
1004         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1005                                        flags & FLAG_GTSE, cproc);
1006     }
1007     return H_SUCCESS;
1008 }
1009 
1010 #define H_SIGNAL_SYS_RESET_ALL         -1
1011 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1012 
1013 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1014                                        SpaprMachineState *spapr,
1015                                        target_ulong opcode, target_ulong *args)
1016 {
1017     target_long target = args[0];
1018     CPUState *cs;
1019 
1020     if (target < 0) {
1021         /* Broadcast */
1022         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1023             return H_PARAMETER;
1024         }
1025 
1026         CPU_FOREACH(cs) {
1027             PowerPCCPU *c = POWERPC_CPU(cs);
1028 
1029             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1030                 if (c == cpu) {
1031                     continue;
1032                 }
1033             }
1034             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1035         }
1036         return H_SUCCESS;
1037 
1038     } else {
1039         /* Unicast */
1040         cs = CPU(spapr_find_cpu(target));
1041         if (cs) {
1042             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1043             return H_SUCCESS;
1044         }
1045         return H_PARAMETER;
1046     }
1047 }
1048 
1049 /* Returns either a logical PVR or zero if none was found */
1050 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1051                               target_ulong *addr, bool *raw_mode_supported)
1052 {
1053     bool explicit_match = false; /* Matched the CPU's real PVR */
1054     uint32_t best_compat = 0;
1055     int i;
1056 
1057     /*
1058      * We scan the supplied table of PVRs looking for two things
1059      *   1. Is our real CPU PVR in the list?
1060      *   2. What's the "best" listed logical PVR
1061      */
1062     for (i = 0; i < 512; ++i) {
1063         uint32_t pvr, pvr_mask;
1064 
1065         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1066         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1067         *addr += 8;
1068 
1069         if (~pvr_mask & pvr) {
1070             break; /* Terminator record */
1071         }
1072 
1073         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1074             explicit_match = true;
1075         } else {
1076             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1077                 best_compat = pvr;
1078             }
1079         }
1080     }
1081 
1082     *raw_mode_supported = explicit_match;
1083 
1084     /* Parsing finished */
1085     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1086 
1087     return best_compat;
1088 }
1089 
1090 static
1091 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1092                                             SpaprMachineState *spapr,
1093                                             target_ulong vec,
1094                                             target_ulong fdt_bufsize)
1095 {
1096     target_ulong ov_table; /* Working address in data buffer */
1097     uint32_t cas_pvr;
1098     SpaprOptionVector *ov1_guest, *ov5_guest;
1099     bool guest_radix;
1100     bool raw_mode_supported = false;
1101     bool guest_xive;
1102     CPUState *cs;
1103     void *fdt;
1104     uint32_t max_compat = spapr->max_compat_pvr;
1105 
1106     /* CAS is supposed to be called early when only the boot vCPU is active. */
1107     CPU_FOREACH(cs) {
1108         if (cs == CPU(cpu)) {
1109             continue;
1110         }
1111         if (!cs->halted) {
1112             warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1113             return H_MULTI_THREADS_ACTIVE;
1114         }
1115     }
1116 
1117     cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1118     if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1119         /*
1120          * We couldn't find a suitable compatibility mode, and either
1121          * the guest doesn't support "raw" mode for this CPU, or "raw"
1122          * mode is disabled because a maximum compat mode is set.
1123          */
1124         error_report("Couldn't negotiate a suitable PVR during CAS");
1125         return H_HARDWARE;
1126     }
1127 
1128     /* Update CPUs */
1129     if (cpu->compat_pvr != cas_pvr) {
1130         Error *local_err = NULL;
1131 
1132         if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1133             /* We fail to set compat mode (likely because running with KVM PR),
1134              * but maybe we can fallback to raw mode if the guest supports it.
1135              */
1136             if (!raw_mode_supported) {
1137                 error_report_err(local_err);
1138                 return H_HARDWARE;
1139             }
1140             error_free(local_err);
1141         }
1142     }
1143 
1144     /* For the future use: here @ov_table points to the first option vector */
1145     ov_table = vec;
1146 
1147     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1148     if (!ov1_guest) {
1149         warn_report("guest didn't provide option vector 1");
1150         return H_PARAMETER;
1151     }
1152     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1153     if (!ov5_guest) {
1154         spapr_ovec_cleanup(ov1_guest);
1155         warn_report("guest didn't provide option vector 5");
1156         return H_PARAMETER;
1157     }
1158     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1159         error_report("guest requested hash and radix MMU, which is invalid.");
1160         exit(EXIT_FAILURE);
1161     }
1162     if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1163         error_report("guest requested an invalid interrupt mode");
1164         exit(EXIT_FAILURE);
1165     }
1166 
1167     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1168 
1169     guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1170 
1171     /*
1172      * HPT resizing is a bit of a special case, because when enabled
1173      * we assume an HPT guest will support it until it says it
1174      * doesn't, instead of assuming it won't support it until it says
1175      * it does.  Strictly speaking that approach could break for
1176      * guests which don't make a CAS call, but those are so old we
1177      * don't care about them.  Without that assumption we'd have to
1178      * make at least a temporary allocation of an HPT sized for max
1179      * memory, which could be impossibly difficult under KVM HV if
1180      * maxram is large.
1181      */
1182     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1183         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1184 
1185         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1186             error_report(
1187                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1188             exit(1);
1189         }
1190 
1191         if (spapr->htab_shift < maxshift) {
1192             /* Guest doesn't know about HPT resizing, so we
1193              * pre-emptively resize for the maximum permitted RAM.  At
1194              * the point this is called, nothing should have been
1195              * entered into the existing HPT */
1196             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1197             push_sregs_to_kvm_pr(spapr);
1198         }
1199     }
1200 
1201     /* NOTE: there are actually a number of ov5 bits where input from the
1202      * guest is always zero, and the platform/QEMU enables them independently
1203      * of guest input. To model these properly we'd want some sort of mask,
1204      * but since they only currently apply to memory migration as defined
1205      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1206      * to worry about this for now.
1207      */
1208 
1209     /* full range of negotiated ov5 capabilities */
1210     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1211     spapr_ovec_cleanup(ov5_guest);
1212 
1213     spapr_check_mmu_mode(guest_radix);
1214 
1215     spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1216     spapr_ovec_cleanup(ov1_guest);
1217 
1218     /*
1219      * Check for NUMA affinity conditions now that we know which NUMA
1220      * affinity the guest will use.
1221      */
1222     spapr_numa_associativity_check(spapr);
1223 
1224     /*
1225      * Ensure the guest asks for an interrupt mode we support;
1226      * otherwise terminate the boot.
1227      */
1228     if (guest_xive) {
1229         if (!spapr->irq->xive) {
1230             error_report(
1231 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1232             exit(EXIT_FAILURE);
1233         }
1234     } else {
1235         if (!spapr->irq->xics) {
1236             error_report(
1237 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1238             exit(EXIT_FAILURE);
1239         }
1240     }
1241 
1242     spapr_irq_update_active_intc(spapr);
1243 
1244     /*
1245      * Process all pending hot-plug/unplug requests now. An updated full
1246      * rendered FDT will be returned to the guest.
1247      */
1248     spapr_drc_reset_all(spapr);
1249     spapr_clear_pending_hotplug_events(spapr);
1250 
1251     /*
1252      * If spapr_machine_reset() did not set up a HPT but one is necessary
1253      * (because the guest isn't going to use radix) then set it up here.
1254      */
1255     if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1256         /* legacy hash or new hash: */
1257         spapr_setup_hpt(spapr);
1258     }
1259 
1260     fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1261     g_free(spapr->fdt_blob);
1262     spapr->fdt_size = fdt_totalsize(fdt);
1263     spapr->fdt_initial_size = spapr->fdt_size;
1264     spapr->fdt_blob = fdt;
1265 
1266     /*
1267      * Set the machine->fdt pointer again since we just freed
1268      * it above (by freeing spapr->fdt_blob). We set this
1269      * pointer to enable support for the 'dumpdtb' QMP/HMP
1270      * command.
1271      */
1272     MACHINE(spapr)->fdt = fdt;
1273 
1274     return H_SUCCESS;
1275 }
1276 
1277 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1278                                                   SpaprMachineState *spapr,
1279                                                   target_ulong opcode,
1280                                                   target_ulong *args)
1281 {
1282     target_ulong vec = ppc64_phys_to_real(args[0]);
1283     target_ulong fdt_buf = args[1];
1284     target_ulong fdt_bufsize = args[2];
1285     target_ulong ret;
1286     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1287 
1288     if (fdt_bufsize < sizeof(hdr)) {
1289         error_report("SLOF provided insufficient CAS buffer "
1290                      TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1291         exit(EXIT_FAILURE);
1292     }
1293 
1294     fdt_bufsize -= sizeof(hdr);
1295 
1296     ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1297     if (ret == H_SUCCESS) {
1298         _FDT((fdt_pack(spapr->fdt_blob)));
1299         spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1300         spapr->fdt_initial_size = spapr->fdt_size;
1301 
1302         cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1303         cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1304                                   spapr->fdt_size);
1305         trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1306     }
1307 
1308     return ret;
1309 }
1310 
1311 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1312                                                    CPUState *cs,
1313                                                    target_ulong ovec_addr)
1314 {
1315     SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1316 
1317     target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1318                                                       ovec_addr, FDT_MAX_SIZE);
1319 
1320     /*
1321      * This adds stdout and generates phandles for boottime and CAS FDTs.
1322      * It is alright to update the FDT here as do_client_architecture_support()
1323      * does not pack it.
1324      */
1325     spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1326 
1327     return ret;
1328 }
1329 
1330 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1331                                               SpaprMachineState *spapr,
1332                                               target_ulong opcode,
1333                                               target_ulong *args)
1334 {
1335     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1336                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1337     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1338     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1339     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1340     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1341     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1342                                                      SPAPR_CAP_CCF_ASSIST);
1343 
1344     switch (safe_cache) {
1345     case SPAPR_CAP_WORKAROUND:
1346         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1347         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1348         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1349         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1350         break;
1351     case SPAPR_CAP_FIXED:
1352         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1353         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1354         break;
1355     default: /* broken */
1356         assert(safe_cache == SPAPR_CAP_BROKEN);
1357         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1358         break;
1359     }
1360 
1361     switch (safe_bounds_check) {
1362     case SPAPR_CAP_WORKAROUND:
1363         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1364         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1365         break;
1366     case SPAPR_CAP_FIXED:
1367         break;
1368     default: /* broken */
1369         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1370         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1371         break;
1372     }
1373 
1374     switch (safe_indirect_branch) {
1375     case SPAPR_CAP_FIXED_NA:
1376         break;
1377     case SPAPR_CAP_FIXED_CCD:
1378         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1379         break;
1380     case SPAPR_CAP_FIXED_IBS:
1381         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1382         break;
1383     case SPAPR_CAP_WORKAROUND:
1384         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1385         if (count_cache_flush_assist) {
1386             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1387         }
1388         break;
1389     default: /* broken */
1390         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1391         break;
1392     }
1393 
1394     args[0] = characteristics;
1395     args[1] = behaviour;
1396     return H_SUCCESS;
1397 }
1398 
1399 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1400                                 target_ulong opcode, target_ulong *args)
1401 {
1402     target_ulong dt = ppc64_phys_to_real(args[0]);
1403     struct fdt_header hdr = { 0 };
1404     unsigned cb;
1405     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1406     void *fdt;
1407 
1408     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1409     cb = fdt32_to_cpu(hdr.totalsize);
1410 
1411     if (!smc->update_dt_enabled) {
1412         return H_SUCCESS;
1413     }
1414 
1415     /* Check that the fdt did not grow out of proportion */
1416     if (cb > spapr->fdt_initial_size * 2) {
1417         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1418                                           fdt32_to_cpu(hdr.magic));
1419         return H_PARAMETER;
1420     }
1421 
1422     fdt = g_malloc0(cb);
1423     cpu_physical_memory_read(dt, fdt, cb);
1424 
1425     /* Check the fdt consistency */
1426     if (fdt_check_full(fdt, cb)) {
1427         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1428                                            fdt32_to_cpu(hdr.magic));
1429         return H_PARAMETER;
1430     }
1431 
1432     g_free(spapr->fdt_blob);
1433     spapr->fdt_size = cb;
1434     spapr->fdt_blob = fdt;
1435     trace_spapr_update_dt(cb);
1436 
1437     return H_SUCCESS;
1438 }
1439 
1440 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1441 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1442 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1443 
1444 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1445 {
1446     spapr_hcall_fn *slot;
1447 
1448     if (opcode <= MAX_HCALL_OPCODE) {
1449         assert((opcode & 0x3) == 0);
1450 
1451         slot = &papr_hypercall_table[opcode / 4];
1452     } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1453         /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1454         assert((opcode & 0x3) == 0);
1455 
1456         slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1457     } else {
1458         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1459 
1460         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1461     }
1462 
1463     assert(!(*slot));
1464     *slot = fn;
1465 }
1466 
1467 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1468                              target_ulong *args)
1469 {
1470     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1471 
1472     if ((opcode <= MAX_HCALL_OPCODE)
1473         && ((opcode & 0x3) == 0)) {
1474         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1475 
1476         if (fn) {
1477             return fn(cpu, spapr, opcode, args);
1478         }
1479     } else if ((opcode >= SVM_HCALL_BASE) &&
1480                (opcode <= SVM_HCALL_MAX)) {
1481         spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1482 
1483         if (fn) {
1484             return fn(cpu, spapr, opcode, args);
1485         }
1486     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1487                (opcode <= KVMPPC_HCALL_MAX)) {
1488         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1489 
1490         if (fn) {
1491             return fn(cpu, spapr, opcode, args);
1492         }
1493     }
1494 
1495     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1496                   opcode);
1497     return H_FUNCTION;
1498 }
1499 
1500 #ifdef CONFIG_TCG
1501 #define PRTS_MASK      0x1f
1502 
1503 static target_ulong h_set_ptbl(PowerPCCPU *cpu,
1504                                SpaprMachineState *spapr,
1505                                target_ulong opcode,
1506                                target_ulong *args)
1507 {
1508     target_ulong ptcr = args[0];
1509 
1510     if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
1511         return H_FUNCTION;
1512     }
1513 
1514     if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
1515         return H_PARAMETER;
1516     }
1517 
1518     spapr->nested_ptcr = ptcr; /* Save new partition table */
1519 
1520     return H_SUCCESS;
1521 }
1522 
1523 static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
1524                                      SpaprMachineState *spapr,
1525                                      target_ulong opcode,
1526                                      target_ulong *args)
1527 {
1528     /*
1529      * The spapr virtual hypervisor nested HV implementation retains no L2
1530      * translation state except for TLB. And the TLB is always invalidated
1531      * across L1<->L2 transitions, so nothing is required here.
1532      */
1533 
1534     return H_SUCCESS;
1535 }
1536 
1537 static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
1538                                         SpaprMachineState *spapr,
1539                                         target_ulong opcode,
1540                                         target_ulong *args)
1541 {
1542     /*
1543      * This HCALL is not required, L1 KVM will take a slow path and walk the
1544      * page tables manually to do the data copy.
1545      */
1546     return H_FUNCTION;
1547 }
1548 
1549 /*
1550  * When this handler returns, the environment is switched to the L2 guest
1551  * and TCG begins running that. spapr_exit_nested() performs the switch from
1552  * L2 back to L1 and returns from the H_ENTER_NESTED hcall.
1553  */
1554 static target_ulong h_enter_nested(PowerPCCPU *cpu,
1555                                    SpaprMachineState *spapr,
1556                                    target_ulong opcode,
1557                                    target_ulong *args)
1558 {
1559     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1560     CPUState *cs = CPU(cpu);
1561     CPUPPCState *env = &cpu->env;
1562     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1563     target_ulong hv_ptr = args[0];
1564     target_ulong regs_ptr = args[1];
1565     target_ulong hdec, now = cpu_ppc_load_tbl(env);
1566     target_ulong lpcr, lpcr_mask;
1567     struct kvmppc_hv_guest_state *hvstate;
1568     struct kvmppc_hv_guest_state hv_state;
1569     struct kvmppc_pt_regs *regs;
1570     hwaddr len;
1571 
1572     if (spapr->nested_ptcr == 0) {
1573         return H_NOT_AVAILABLE;
1574     }
1575 
1576     len = sizeof(*hvstate);
1577     hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
1578                                 MEMTXATTRS_UNSPECIFIED);
1579     if (len != sizeof(*hvstate)) {
1580         address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
1581         return H_PARAMETER;
1582     }
1583 
1584     memcpy(&hv_state, hvstate, len);
1585 
1586     address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
1587 
1588     /*
1589      * We accept versions 1 and 2. Version 2 fields are unused because TCG
1590      * does not implement DAWR*.
1591      */
1592     if (hv_state.version > HV_GUEST_STATE_VERSION) {
1593         return H_PARAMETER;
1594     }
1595 
1596     spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
1597     if (!spapr_cpu->nested_host_state) {
1598         return H_NO_MEM;
1599     }
1600 
1601     memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
1602 
1603     len = sizeof(*regs);
1604     regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
1605                                 MEMTXATTRS_UNSPECIFIED);
1606     if (!regs || len != sizeof(*regs)) {
1607         address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
1608         g_free(spapr_cpu->nested_host_state);
1609         return H_P2;
1610     }
1611 
1612     len = sizeof(env->gpr);
1613     assert(len == sizeof(regs->gpr));
1614     memcpy(env->gpr, regs->gpr, len);
1615 
1616     env->lr = regs->link;
1617     env->ctr = regs->ctr;
1618     cpu_write_xer(env, regs->xer);
1619     ppc_set_cr(env, regs->ccr);
1620 
1621     env->msr = regs->msr;
1622     env->nip = regs->nip;
1623 
1624     address_space_unmap(CPU(cpu)->as, regs, len, len, false);
1625 
1626     env->cfar = hv_state.cfar;
1627 
1628     assert(env->spr[SPR_LPIDR] == 0);
1629     env->spr[SPR_LPIDR] = hv_state.lpid;
1630 
1631     lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
1632     lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
1633     lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
1634     lpcr &= ~LPCR_LPES0;
1635     env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
1636 
1637     env->spr[SPR_PCR] = hv_state.pcr;
1638     /* hv_state.amor is not used */
1639     env->spr[SPR_DPDES] = hv_state.dpdes;
1640     env->spr[SPR_HFSCR] = hv_state.hfscr;
1641     hdec = hv_state.hdec_expiry - now;
1642     spapr_cpu->nested_tb_offset = hv_state.tb_offset;
1643     /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
1644     env->spr[SPR_SRR0] = hv_state.srr0;
1645     env->spr[SPR_SRR1] = hv_state.srr1;
1646     env->spr[SPR_SPRG0] = hv_state.sprg[0];
1647     env->spr[SPR_SPRG1] = hv_state.sprg[1];
1648     env->spr[SPR_SPRG2] = hv_state.sprg[2];
1649     env->spr[SPR_SPRG3] = hv_state.sprg[3];
1650     env->spr[SPR_BOOKS_PID] = hv_state.pidr;
1651     env->spr[SPR_PPR] = hv_state.ppr;
1652 
1653     cpu_ppc_hdecr_init(env);
1654     cpu_ppc_store_hdecr(env, hdec);
1655 
1656     /*
1657      * The hv_state.vcpu_token is not needed. It is used by the KVM
1658      * implementation to remember which L2 vCPU last ran on which physical
1659      * CPU so as to invalidate process scope translations if it is moved
1660      * between physical CPUs. For now TLBs are always flushed on L1<->L2
1661      * transitions so this is not a problem.
1662      *
1663      * Could validate that the same vcpu_token does not attempt to run on
1664      * different L1 vCPUs at the same time, but that would be a L1 KVM bug
1665      * and it's not obviously worth a new data structure to do it.
1666      */
1667 
1668     env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
1669     spapr_cpu->in_nested = true;
1670 
1671     hreg_compute_hflags(env);
1672     ppc_maybe_interrupt(env);
1673     tlb_flush(cs);
1674     env->reserve_addr = -1; /* Reset the reservation */
1675 
1676     /*
1677      * The spapr hcall helper sets env->gpr[3] to the return value, but at
1678      * this point the L1 is not returning from the hcall but rather we
1679      * start running the L2, so r3 must not be clobbered, so return env->gpr[3]
1680      * to leave it unchanged.
1681      */
1682     return env->gpr[3];
1683 }
1684 
1685 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1686 {
1687     CPUState *cs = CPU(cpu);
1688     CPUPPCState *env = &cpu->env;
1689     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1690     target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
1691     target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
1692     target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
1693     struct kvmppc_hv_guest_state *hvstate;
1694     struct kvmppc_pt_regs *regs;
1695     hwaddr len;
1696 
1697     assert(spapr_cpu->in_nested);
1698 
1699     cpu_ppc_hdecr_exit(env);
1700 
1701     len = sizeof(*hvstate);
1702     hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
1703                                 MEMTXATTRS_UNSPECIFIED);
1704     if (len != sizeof(*hvstate)) {
1705         address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
1706         r3_return = H_PARAMETER;
1707         goto out_restore_l1;
1708     }
1709 
1710     hvstate->cfar = env->cfar;
1711     hvstate->lpcr = env->spr[SPR_LPCR];
1712     hvstate->pcr = env->spr[SPR_PCR];
1713     hvstate->dpdes = env->spr[SPR_DPDES];
1714     hvstate->hfscr = env->spr[SPR_HFSCR];
1715 
1716     if (excp == POWERPC_EXCP_HDSI) {
1717         hvstate->hdar = env->spr[SPR_HDAR];
1718         hvstate->hdsisr = env->spr[SPR_HDSISR];
1719         hvstate->asdr = env->spr[SPR_ASDR];
1720     } else if (excp == POWERPC_EXCP_HISI) {
1721         hvstate->asdr = env->spr[SPR_ASDR];
1722     }
1723 
1724     /* HEIR should be implemented for HV mode and saved here. */
1725     hvstate->srr0 = env->spr[SPR_SRR0];
1726     hvstate->srr1 = env->spr[SPR_SRR1];
1727     hvstate->sprg[0] = env->spr[SPR_SPRG0];
1728     hvstate->sprg[1] = env->spr[SPR_SPRG1];
1729     hvstate->sprg[2] = env->spr[SPR_SPRG2];
1730     hvstate->sprg[3] = env->spr[SPR_SPRG3];
1731     hvstate->pidr = env->spr[SPR_BOOKS_PID];
1732     hvstate->ppr = env->spr[SPR_PPR];
1733 
1734     /* Is it okay to specify write length larger than actual data written? */
1735     address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
1736 
1737     len = sizeof(*regs);
1738     regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
1739                                 MEMTXATTRS_UNSPECIFIED);
1740     if (!regs || len != sizeof(*regs)) {
1741         address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
1742         r3_return = H_P2;
1743         goto out_restore_l1;
1744     }
1745 
1746     len = sizeof(env->gpr);
1747     assert(len == sizeof(regs->gpr));
1748     memcpy(regs->gpr, env->gpr, len);
1749 
1750     regs->link = env->lr;
1751     regs->ctr = env->ctr;
1752     regs->xer = cpu_read_xer(env);
1753     regs->ccr = ppc_get_cr(env);
1754 
1755     if (excp == POWERPC_EXCP_MCHECK ||
1756         excp == POWERPC_EXCP_RESET ||
1757         excp == POWERPC_EXCP_SYSCALL) {
1758         regs->nip = env->spr[SPR_SRR0];
1759         regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
1760     } else {
1761         regs->nip = env->spr[SPR_HSRR0];
1762         regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
1763     }
1764 
1765     /* Is it okay to specify write length larger than actual data written? */
1766     address_space_unmap(CPU(cpu)->as, regs, len, len, true);
1767 
1768 out_restore_l1:
1769     memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
1770     env->lr = spapr_cpu->nested_host_state->lr;
1771     env->ctr = spapr_cpu->nested_host_state->ctr;
1772     memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
1773     env->cfar = spapr_cpu->nested_host_state->cfar;
1774     env->xer = spapr_cpu->nested_host_state->xer;
1775     env->so = spapr_cpu->nested_host_state->so;
1776     env->ov = spapr_cpu->nested_host_state->ov;
1777     env->ov32 = spapr_cpu->nested_host_state->ov32;
1778     env->ca32 = spapr_cpu->nested_host_state->ca32;
1779     env->msr = spapr_cpu->nested_host_state->msr;
1780     env->nip = spapr_cpu->nested_host_state->nip;
1781 
1782     assert(env->spr[SPR_LPIDR] != 0);
1783     env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
1784     env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
1785     env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
1786     env->spr[SPR_DPDES] = 0;
1787     env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
1788     env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
1789     env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
1790     env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
1791     env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
1792     env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
1793     env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
1794     env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
1795     env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
1796 
1797     /*
1798      * Return the interrupt vector address from H_ENTER_NESTED to the L1
1799      * (or error code).
1800      */
1801     env->gpr[3] = r3_return;
1802 
1803     env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
1804     spapr_cpu->in_nested = false;
1805 
1806     hreg_compute_hflags(env);
1807     ppc_maybe_interrupt(env);
1808     tlb_flush(cs);
1809     env->reserve_addr = -1; /* Reset the reservation */
1810 
1811     g_free(spapr_cpu->nested_host_state);
1812     spapr_cpu->nested_host_state = NULL;
1813 }
1814 
1815 static void hypercall_register_nested(void)
1816 {
1817     spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
1818     spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
1819     spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
1820     spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
1821 }
1822 
1823 static void hypercall_register_softmmu(void)
1824 {
1825     /* DO NOTHING */
1826 }
1827 #else
1828 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1829 {
1830     g_assert_not_reached();
1831 }
1832 
1833 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1834                             target_ulong opcode, target_ulong *args)
1835 {
1836     g_assert_not_reached();
1837 }
1838 
1839 static void hypercall_register_nested(void)
1840 {
1841     /* DO NOTHING */
1842 }
1843 
1844 static void hypercall_register_softmmu(void)
1845 {
1846     /* hcall-pft */
1847     spapr_register_hypercall(H_ENTER, h_softmmu);
1848     spapr_register_hypercall(H_REMOVE, h_softmmu);
1849     spapr_register_hypercall(H_PROTECT, h_softmmu);
1850     spapr_register_hypercall(H_READ, h_softmmu);
1851 
1852     /* hcall-bulk */
1853     spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1854 }
1855 #endif
1856 
1857 static void hypercall_register_types(void)
1858 {
1859     hypercall_register_softmmu();
1860 
1861     /* hcall-hpt-resize */
1862     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1863     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1864 
1865     /* hcall-splpar */
1866     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1867     spapr_register_hypercall(H_CEDE, h_cede);
1868     spapr_register_hypercall(H_CONFER, h_confer);
1869     spapr_register_hypercall(H_PROD, h_prod);
1870 
1871     /* hcall-join */
1872     spapr_register_hypercall(H_JOIN, h_join);
1873 
1874     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1875 
1876     /* processor register resource access h-calls */
1877     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1878     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1879     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1880     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1881     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1882 
1883     /* In Memory Table MMU h-calls */
1884     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1885     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1886     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1887 
1888     /* hcall-get-cpu-characteristics */
1889     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1890                              h_get_cpu_characteristics);
1891 
1892     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1893      * here between the "CI" and the "CACHE" variants, they will use whatever
1894      * mapping attributes qemu is using. When using KVM, the kernel will
1895      * enforce the attributes more strongly
1896      */
1897     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1898     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1899     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1900     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1901     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1902     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1903     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1904 
1905     /* qemu/KVM-PPC specific hcalls */
1906     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1907 
1908     /* ibm,client-architecture-support support */
1909     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1910 
1911     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1912 
1913     hypercall_register_nested();
1914 }
1915 
1916 type_init(hypercall_register_types)
1917