xref: /openbmc/qemu/hw/ppc/spapr_events.c (revision 979a8902)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * RTAS events handling
5  *
6  * Copyright (c) 2012 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "cpu.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/runstate.h"
33 
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_vio.h"
37 #include "hw/pci/pci.h"
38 #include "hw/irq.h"
39 #include "hw/pci-host/spapr.h"
40 #include "hw/ppc/spapr_drc.h"
41 #include "qemu/help_option.h"
42 #include "qemu/bcd.h"
43 #include "qemu/main-loop.h"
44 #include "hw/ppc/spapr_ovec.h"
45 #include <libfdt.h>
46 #include "migration/blocker.h"
47 
48 #define RTAS_LOG_VERSION_MASK                   0xff000000
49 #define   RTAS_LOG_VERSION_6                    0x06000000
50 #define RTAS_LOG_SEVERITY_MASK                  0x00e00000
51 #define   RTAS_LOG_SEVERITY_ALREADY_REPORTED    0x00c00000
52 #define   RTAS_LOG_SEVERITY_FATAL               0x00a00000
53 #define   RTAS_LOG_SEVERITY_ERROR               0x00800000
54 #define   RTAS_LOG_SEVERITY_ERROR_SYNC          0x00600000
55 #define   RTAS_LOG_SEVERITY_WARNING             0x00400000
56 #define   RTAS_LOG_SEVERITY_EVENT               0x00200000
57 #define   RTAS_LOG_SEVERITY_NO_ERROR            0x00000000
58 #define RTAS_LOG_DISPOSITION_MASK               0x00180000
59 #define   RTAS_LOG_DISPOSITION_FULLY_RECOVERED  0x00000000
60 #define   RTAS_LOG_DISPOSITION_LIMITED_RECOVERY 0x00080000
61 #define   RTAS_LOG_DISPOSITION_NOT_RECOVERED    0x00100000
62 #define RTAS_LOG_OPTIONAL_PART_PRESENT          0x00040000
63 #define RTAS_LOG_INITIATOR_MASK                 0x0000f000
64 #define   RTAS_LOG_INITIATOR_UNKNOWN            0x00000000
65 #define   RTAS_LOG_INITIATOR_CPU                0x00001000
66 #define   RTAS_LOG_INITIATOR_PCI                0x00002000
67 #define   RTAS_LOG_INITIATOR_MEMORY             0x00004000
68 #define   RTAS_LOG_INITIATOR_HOTPLUG            0x00006000
69 #define RTAS_LOG_TARGET_MASK                    0x00000f00
70 #define   RTAS_LOG_TARGET_UNKNOWN               0x00000000
71 #define   RTAS_LOG_TARGET_CPU                   0x00000100
72 #define   RTAS_LOG_TARGET_PCI                   0x00000200
73 #define   RTAS_LOG_TARGET_MEMORY                0x00000400
74 #define   RTAS_LOG_TARGET_HOTPLUG               0x00000600
75 #define RTAS_LOG_TYPE_MASK                      0x000000ff
76 #define   RTAS_LOG_TYPE_OTHER                   0x00000000
77 #define   RTAS_LOG_TYPE_RETRY                   0x00000001
78 #define   RTAS_LOG_TYPE_TCE_ERR                 0x00000002
79 #define   RTAS_LOG_TYPE_INTERN_DEV_FAIL         0x00000003
80 #define   RTAS_LOG_TYPE_TIMEOUT                 0x00000004
81 #define   RTAS_LOG_TYPE_DATA_PARITY             0x00000005
82 #define   RTAS_LOG_TYPE_ADDR_PARITY             0x00000006
83 #define   RTAS_LOG_TYPE_CACHE_PARITY            0x00000007
84 #define   RTAS_LOG_TYPE_ADDR_INVALID            0x00000008
85 #define   RTAS_LOG_TYPE_ECC_UNCORR              0x00000009
86 #define   RTAS_LOG_TYPE_ECC_CORR                0x0000000a
87 #define   RTAS_LOG_TYPE_EPOW                    0x00000040
88 #define   RTAS_LOG_TYPE_HOTPLUG                 0x000000e5
89 
90 struct rtas_error_log {
91     uint32_t summary;
92     uint32_t extended_length;
93 } QEMU_PACKED;
94 
95 struct rtas_event_log_v6 {
96     uint8_t b0;
97 #define RTAS_LOG_V6_B0_VALID                          0x80
98 #define RTAS_LOG_V6_B0_UNRECOVERABLE_ERROR            0x40
99 #define RTAS_LOG_V6_B0_RECOVERABLE_ERROR              0x20
100 #define RTAS_LOG_V6_B0_DEGRADED_OPERATION             0x10
101 #define RTAS_LOG_V6_B0_PREDICTIVE_ERROR               0x08
102 #define RTAS_LOG_V6_B0_NEW_LOG                        0x04
103 #define RTAS_LOG_V6_B0_BIGENDIAN                      0x02
104     uint8_t _resv1;
105     uint8_t b2;
106 #define RTAS_LOG_V6_B2_POWERPC_FORMAT                 0x80
107 #define RTAS_LOG_V6_B2_LOG_FORMAT_MASK                0x0f
108 #define   RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT    0x0e
109     uint8_t _resv2[9];
110     uint32_t company;
111 #define RTAS_LOG_V6_COMPANY_IBM                 0x49424d00 /* IBM<null> */
112 } QEMU_PACKED;
113 
114 struct rtas_event_log_v6_section_header {
115     uint16_t section_id;
116     uint16_t section_length;
117     uint8_t section_version;
118     uint8_t section_subtype;
119     uint16_t creator_component_id;
120 } QEMU_PACKED;
121 
122 struct rtas_event_log_v6_maina {
123 #define RTAS_LOG_V6_SECTION_ID_MAINA                0x5048 /* PH */
124     struct rtas_event_log_v6_section_header hdr;
125     uint32_t creation_date; /* BCD: YYYYMMDD */
126     uint32_t creation_time; /* BCD: HHMMSS00 */
127     uint8_t _platform1[8];
128     char creator_id;
129     uint8_t _resv1[2];
130     uint8_t section_count;
131     uint8_t _resv2[4];
132     uint8_t _platform2[8];
133     uint32_t plid;
134     uint8_t _platform3[4];
135 } QEMU_PACKED;
136 
137 struct rtas_event_log_v6_mainb {
138 #define RTAS_LOG_V6_SECTION_ID_MAINB                0x5548 /* UH */
139     struct rtas_event_log_v6_section_header hdr;
140     uint8_t subsystem_id;
141     uint8_t _platform1;
142     uint8_t event_severity;
143     uint8_t event_subtype;
144     uint8_t _platform2[4];
145     uint8_t _resv1[2];
146     uint16_t action_flags;
147     uint8_t _resv2[4];
148 } QEMU_PACKED;
149 
150 struct rtas_event_log_v6_epow {
151 #define RTAS_LOG_V6_SECTION_ID_EPOW                 0x4550 /* EP */
152     struct rtas_event_log_v6_section_header hdr;
153     uint8_t sensor_value;
154 #define RTAS_LOG_V6_EPOW_ACTION_RESET                    0
155 #define RTAS_LOG_V6_EPOW_ACTION_WARN_COOLING             1
156 #define RTAS_LOG_V6_EPOW_ACTION_WARN_POWER               2
157 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN          3
158 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_HALT              4
159 #define RTAS_LOG_V6_EPOW_ACTION_MAIN_ENCLOSURE           5
160 #define RTAS_LOG_V6_EPOW_ACTION_POWER_OFF                7
161     uint8_t event_modifier;
162 #define RTAS_LOG_V6_EPOW_MODIFIER_NORMAL                 1
163 #define RTAS_LOG_V6_EPOW_MODIFIER_ON_UPS                 2
164 #define RTAS_LOG_V6_EPOW_MODIFIER_CRITICAL               3
165 #define RTAS_LOG_V6_EPOW_MODIFIER_TEMPERATURE            4
166     uint8_t extended_modifier;
167 #define RTAS_LOG_V6_EPOW_XMODIFIER_SYSTEM_WIDE           0
168 #define RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC    1
169     uint8_t _resv;
170     uint64_t reason_code;
171 } QEMU_PACKED;
172 
173 struct epow_extended_log {
174     struct rtas_event_log_v6 v6hdr;
175     struct rtas_event_log_v6_maina maina;
176     struct rtas_event_log_v6_mainb mainb;
177     struct rtas_event_log_v6_epow epow;
178 } QEMU_PACKED;
179 
180 union drc_identifier {
181     uint32_t index;
182     uint32_t count;
183     struct {
184         uint32_t count;
185         uint32_t index;
186     } count_indexed;
187     char name[1];
188 } QEMU_PACKED;
189 
190 struct rtas_event_log_v6_hp {
191 #define RTAS_LOG_V6_SECTION_ID_HOTPLUG              0x4850 /* HP */
192     struct rtas_event_log_v6_section_header hdr;
193     uint8_t hotplug_type;
194 #define RTAS_LOG_V6_HP_TYPE_CPU                          1
195 #define RTAS_LOG_V6_HP_TYPE_MEMORY                       2
196 #define RTAS_LOG_V6_HP_TYPE_SLOT                         3
197 #define RTAS_LOG_V6_HP_TYPE_PHB                          4
198 #define RTAS_LOG_V6_HP_TYPE_PCI                          5
199     uint8_t hotplug_action;
200 #define RTAS_LOG_V6_HP_ACTION_ADD                        1
201 #define RTAS_LOG_V6_HP_ACTION_REMOVE                     2
202     uint8_t hotplug_identifier;
203 #define RTAS_LOG_V6_HP_ID_DRC_NAME                       1
204 #define RTAS_LOG_V6_HP_ID_DRC_INDEX                      2
205 #define RTAS_LOG_V6_HP_ID_DRC_COUNT                      3
206 #define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED              4
207     uint8_t reserved;
208     union drc_identifier drc_id;
209 } QEMU_PACKED;
210 
211 struct hp_extended_log {
212     struct rtas_event_log_v6 v6hdr;
213     struct rtas_event_log_v6_maina maina;
214     struct rtas_event_log_v6_mainb mainb;
215     struct rtas_event_log_v6_hp hp;
216 } QEMU_PACKED;
217 
218 struct rtas_event_log_v6_mc {
219 #define RTAS_LOG_V6_SECTION_ID_MC                   0x4D43 /* MC */
220     struct rtas_event_log_v6_section_header hdr;
221     uint32_t fru_id;
222     uint32_t proc_id;
223     uint8_t error_type;
224 #define RTAS_LOG_V6_MC_TYPE_UE                           0
225 #define RTAS_LOG_V6_MC_TYPE_SLB                          1
226 #define RTAS_LOG_V6_MC_TYPE_ERAT                         2
227 #define RTAS_LOG_V6_MC_TYPE_TLB                          4
228 #define RTAS_LOG_V6_MC_TYPE_D_CACHE                      5
229 #define RTAS_LOG_V6_MC_TYPE_I_CACHE                      7
230     uint8_t sub_err_type;
231 #define RTAS_LOG_V6_MC_UE_INDETERMINATE                  0
232 #define RTAS_LOG_V6_MC_UE_IFETCH                         1
233 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH         2
234 #define RTAS_LOG_V6_MC_UE_LOAD_STORE                     3
235 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE     4
236 #define RTAS_LOG_V6_MC_SLB_PARITY                        0
237 #define RTAS_LOG_V6_MC_SLB_MULTIHIT                      1
238 #define RTAS_LOG_V6_MC_SLB_INDETERMINATE                 2
239 #define RTAS_LOG_V6_MC_ERAT_PARITY                       1
240 #define RTAS_LOG_V6_MC_ERAT_MULTIHIT                     2
241 #define RTAS_LOG_V6_MC_ERAT_INDETERMINATE                3
242 #define RTAS_LOG_V6_MC_TLB_PARITY                        1
243 #define RTAS_LOG_V6_MC_TLB_MULTIHIT                      2
244 #define RTAS_LOG_V6_MC_TLB_INDETERMINATE                 3
245     uint8_t reserved_1[6];
246     uint64_t effective_address;
247     uint64_t logical_address;
248 } QEMU_PACKED;
249 
250 struct mc_extended_log {
251     struct rtas_event_log_v6 v6hdr;
252     struct rtas_event_log_v6_mc mc;
253 } QEMU_PACKED;
254 
255 struct MC_ierror_table {
256     unsigned long srr1_mask;
257     unsigned long srr1_value;
258     bool nip_valid; /* nip is a valid indicator of faulting address */
259     uint8_t error_type;
260     uint8_t error_subtype;
261     unsigned int initiator;
262     unsigned int severity;
263 };
264 
265 static const struct MC_ierror_table mc_ierror_table[] = {
266 { 0x00000000081c0000, 0x0000000000040000, true,
267   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_IFETCH,
268   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
269 { 0x00000000081c0000, 0x0000000000080000, true,
270   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
271   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
272 { 0x00000000081c0000, 0x00000000000c0000, true,
273   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT,
274   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
275 { 0x00000000081c0000, 0x0000000000100000, true,
276   RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
277   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
278 { 0x00000000081c0000, 0x0000000000140000, true,
279   RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
280   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
281 { 0x00000000081c0000, 0x0000000000180000, true,
282   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH,
283   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
284 
285 struct MC_derror_table {
286     unsigned long dsisr_value;
287     bool dar_valid; /* dar is a valid indicator of faulting address */
288     uint8_t error_type;
289     uint8_t error_subtype;
290     unsigned int initiator;
291     unsigned int severity;
292 };
293 
294 static const struct MC_derror_table mc_derror_table[] = {
295 { 0x00008000, false,
296   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_LOAD_STORE,
297   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
298 { 0x00004000, true,
299   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE,
300   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
301 { 0x00000800, true,
302   RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
303   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
304 { 0x00000400, true,
305   RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
306   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
307 { 0x00000080, true,
308   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT,  /* Before PARITY */
309   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
310 { 0x00000100, true,
311   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
312   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
313 
314 #define SRR1_MC_LOADSTORE(srr1) ((srr1) & PPC_BIT(42))
315 
316 typedef enum EventClass {
317     EVENT_CLASS_INTERNAL_ERRORS     = 0,
318     EVENT_CLASS_EPOW                = 1,
319     EVENT_CLASS_RESERVED            = 2,
320     EVENT_CLASS_HOT_PLUG            = 3,
321     EVENT_CLASS_IO                  = 4,
322     EVENT_CLASS_MAX
323 } EventClassIndex;
324 #define EVENT_CLASS_MASK(index) (1 << (31 - index))
325 
326 static const char * const event_names[EVENT_CLASS_MAX] = {
327     [EVENT_CLASS_INTERNAL_ERRORS]       = "internal-errors",
328     [EVENT_CLASS_EPOW]                  = "epow-events",
329     [EVENT_CLASS_HOT_PLUG]              = "hot-plug-events",
330     [EVENT_CLASS_IO]                    = "ibm,io-events",
331 };
332 
333 struct SpaprEventSource {
334     int irq;
335     uint32_t mask;
336     bool enabled;
337 };
338 
339 static SpaprEventSource *spapr_event_sources_new(void)
340 {
341     return g_new0(SpaprEventSource, EVENT_CLASS_MAX);
342 }
343 
344 static void spapr_event_sources_register(SpaprEventSource *event_sources,
345                                         EventClassIndex index, int irq)
346 {
347     /* we only support 1 irq per event class at the moment */
348     g_assert(event_sources);
349     g_assert(!event_sources[index].enabled);
350     event_sources[index].irq = irq;
351     event_sources[index].mask = EVENT_CLASS_MASK(index);
352     event_sources[index].enabled = true;
353 }
354 
355 static const SpaprEventSource *
356 spapr_event_sources_get_source(SpaprEventSource *event_sources,
357                                EventClassIndex index)
358 {
359     g_assert(index < EVENT_CLASS_MAX);
360     g_assert(event_sources);
361 
362     return &event_sources[index];
363 }
364 
365 void spapr_dt_events(SpaprMachineState *spapr, void *fdt)
366 {
367     uint32_t irq_ranges[EVENT_CLASS_MAX * 2];
368     int i, count = 0, event_sources;
369     SpaprEventSource *events = spapr->event_sources;
370 
371     g_assert(events);
372 
373     _FDT(event_sources = fdt_add_subnode(fdt, 0, "event-sources"));
374 
375     for (i = 0, count = 0; i < EVENT_CLASS_MAX; i++) {
376         int node_offset;
377         uint32_t interrupts[2];
378         const SpaprEventSource *source =
379             spapr_event_sources_get_source(events, i);
380         const char *source_name = event_names[i];
381 
382         if (!source->enabled) {
383             continue;
384         }
385 
386         spapr_dt_irq(interrupts, source->irq, false);
387 
388         _FDT(node_offset = fdt_add_subnode(fdt, event_sources, source_name));
389         _FDT(fdt_setprop(fdt, node_offset, "interrupts", interrupts,
390                          sizeof(interrupts)));
391 
392         irq_ranges[count++] = interrupts[0];
393         irq_ranges[count++] = cpu_to_be32(1);
394     }
395 
396     _FDT((fdt_setprop(fdt, event_sources, "interrupt-controller", NULL, 0)));
397     _FDT((fdt_setprop_cell(fdt, event_sources, "#interrupt-cells", 2)));
398     _FDT((fdt_setprop(fdt, event_sources, "interrupt-ranges",
399                       irq_ranges, count * sizeof(uint32_t))));
400 }
401 
402 static const SpaprEventSource *
403 rtas_event_log_to_source(SpaprMachineState *spapr, int log_type)
404 {
405     const SpaprEventSource *source;
406 
407     g_assert(spapr->event_sources);
408 
409     switch (log_type) {
410     case RTAS_LOG_TYPE_HOTPLUG:
411         source = spapr_event_sources_get_source(spapr->event_sources,
412                                                 EVENT_CLASS_HOT_PLUG);
413         if (spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT)) {
414             g_assert(source->enabled);
415             break;
416         }
417         /* fall through back to epow for legacy hotplug interrupt source */
418     case RTAS_LOG_TYPE_EPOW:
419         source = spapr_event_sources_get_source(spapr->event_sources,
420                                                 EVENT_CLASS_EPOW);
421         break;
422     default:
423         source = NULL;
424     }
425 
426     return source;
427 }
428 
429 static int rtas_event_log_to_irq(SpaprMachineState *spapr, int log_type)
430 {
431     const SpaprEventSource *source;
432 
433     source = rtas_event_log_to_source(spapr, log_type);
434     g_assert(source);
435     g_assert(source->enabled);
436 
437     return source->irq;
438 }
439 
440 static uint32_t spapr_event_log_entry_type(SpaprEventLogEntry *entry)
441 {
442     return entry->summary & RTAS_LOG_TYPE_MASK;
443 }
444 
445 static void rtas_event_log_queue(SpaprMachineState *spapr,
446                                  SpaprEventLogEntry *entry)
447 {
448     QTAILQ_INSERT_TAIL(&spapr->pending_events, entry, next);
449 }
450 
451 static SpaprEventLogEntry *rtas_event_log_dequeue(SpaprMachineState *spapr,
452                                                   uint32_t event_mask)
453 {
454     SpaprEventLogEntry *entry = NULL;
455 
456     QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
457         const SpaprEventSource *source =
458             rtas_event_log_to_source(spapr,
459                                      spapr_event_log_entry_type(entry));
460 
461         g_assert(source);
462         if (source->mask & event_mask) {
463             break;
464         }
465     }
466 
467     if (entry) {
468         QTAILQ_REMOVE(&spapr->pending_events, entry, next);
469     }
470 
471     return entry;
472 }
473 
474 static bool rtas_event_log_contains(uint32_t event_mask)
475 {
476     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
477     SpaprEventLogEntry *entry = NULL;
478 
479     QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
480         const SpaprEventSource *source =
481             rtas_event_log_to_source(spapr,
482                                      spapr_event_log_entry_type(entry));
483 
484         if (source->mask & event_mask) {
485             return true;
486         }
487     }
488 
489     return false;
490 }
491 
492 static uint32_t next_plid;
493 
494 static void spapr_init_v6hdr(struct rtas_event_log_v6 *v6hdr)
495 {
496     v6hdr->b0 = RTAS_LOG_V6_B0_VALID | RTAS_LOG_V6_B0_NEW_LOG
497         | RTAS_LOG_V6_B0_BIGENDIAN;
498     v6hdr->b2 = RTAS_LOG_V6_B2_POWERPC_FORMAT
499         | RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT;
500     v6hdr->company = cpu_to_be32(RTAS_LOG_V6_COMPANY_IBM);
501 }
502 
503 static void spapr_init_maina(struct rtas_event_log_v6_maina *maina,
504                              int section_count)
505 {
506     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
507     struct tm tm;
508     int year;
509 
510     maina->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINA);
511     maina->hdr.section_length = cpu_to_be16(sizeof(*maina));
512     /* FIXME: section version, subtype and creator id? */
513     spapr_rtc_read(&spapr->rtc, &tm, NULL);
514     year = tm.tm_year + 1900;
515     maina->creation_date = cpu_to_be32((to_bcd(year / 100) << 24)
516                                        | (to_bcd(year % 100) << 16)
517                                        | (to_bcd(tm.tm_mon + 1) << 8)
518                                        | to_bcd(tm.tm_mday));
519     maina->creation_time = cpu_to_be32((to_bcd(tm.tm_hour) << 24)
520                                        | (to_bcd(tm.tm_min) << 16)
521                                        | (to_bcd(tm.tm_sec) << 8));
522     maina->creator_id = 'H'; /* Hypervisor */
523     maina->section_count = section_count;
524     maina->plid = next_plid++;
525 }
526 
527 static void spapr_powerdown_req(Notifier *n, void *opaque)
528 {
529     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
530     SpaprEventLogEntry *entry;
531     struct rtas_event_log_v6 *v6hdr;
532     struct rtas_event_log_v6_maina *maina;
533     struct rtas_event_log_v6_mainb *mainb;
534     struct rtas_event_log_v6_epow *epow;
535     struct epow_extended_log *new_epow;
536 
537     entry = g_new(SpaprEventLogEntry, 1);
538     new_epow = g_malloc0(sizeof(*new_epow));
539     entry->extended_log = new_epow;
540 
541     v6hdr = &new_epow->v6hdr;
542     maina = &new_epow->maina;
543     mainb = &new_epow->mainb;
544     epow = &new_epow->epow;
545 
546     entry->summary = RTAS_LOG_VERSION_6
547                        | RTAS_LOG_SEVERITY_EVENT
548                        | RTAS_LOG_DISPOSITION_NOT_RECOVERED
549                        | RTAS_LOG_OPTIONAL_PART_PRESENT
550                        | RTAS_LOG_TYPE_EPOW;
551     entry->extended_length = sizeof(*new_epow);
552 
553     spapr_init_v6hdr(v6hdr);
554     spapr_init_maina(maina, 3 /* Main-A, Main-B and EPOW */);
555 
556     mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
557     mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
558     /* FIXME: section version, subtype and creator id? */
559     mainb->subsystem_id = 0xa0; /* External environment */
560     mainb->event_severity = 0x00; /* Informational / non-error */
561     mainb->event_subtype = 0xd0; /* Normal shutdown */
562 
563     epow->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_EPOW);
564     epow->hdr.section_length = cpu_to_be16(sizeof(*epow));
565     epow->hdr.section_version = 2; /* includes extended modifier */
566     /* FIXME: section subtype and creator id? */
567     epow->sensor_value = RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN;
568     epow->event_modifier = RTAS_LOG_V6_EPOW_MODIFIER_NORMAL;
569     epow->extended_modifier = RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC;
570 
571     rtas_event_log_queue(spapr, entry);
572 
573     qemu_irq_pulse(spapr_qirq(spapr,
574                    rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_EPOW)));
575 }
576 
577 static void spapr_hotplug_req_event(uint8_t hp_id, uint8_t hp_action,
578                                     SpaprDrcType drc_type,
579                                     union drc_identifier *drc_id)
580 {
581     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
582     SpaprEventLogEntry *entry;
583     struct hp_extended_log *new_hp;
584     struct rtas_event_log_v6 *v6hdr;
585     struct rtas_event_log_v6_maina *maina;
586     struct rtas_event_log_v6_mainb *mainb;
587     struct rtas_event_log_v6_hp *hp;
588 
589     entry = g_new(SpaprEventLogEntry, 1);
590     new_hp = g_malloc0(sizeof(struct hp_extended_log));
591     entry->extended_log = new_hp;
592 
593     v6hdr = &new_hp->v6hdr;
594     maina = &new_hp->maina;
595     mainb = &new_hp->mainb;
596     hp = &new_hp->hp;
597 
598     entry->summary = RTAS_LOG_VERSION_6
599         | RTAS_LOG_SEVERITY_EVENT
600         | RTAS_LOG_DISPOSITION_NOT_RECOVERED
601         | RTAS_LOG_OPTIONAL_PART_PRESENT
602         | RTAS_LOG_INITIATOR_HOTPLUG
603         | RTAS_LOG_TYPE_HOTPLUG;
604     entry->extended_length = sizeof(*new_hp);
605 
606     spapr_init_v6hdr(v6hdr);
607     spapr_init_maina(maina, 3 /* Main-A, Main-B, HP */);
608 
609     mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
610     mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
611     mainb->subsystem_id = 0x80; /* External environment */
612     mainb->event_severity = 0x00; /* Informational / non-error */
613     mainb->event_subtype = 0x00; /* Normal shutdown */
614 
615     hp->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_HOTPLUG);
616     hp->hdr.section_length = cpu_to_be16(sizeof(*hp));
617     hp->hdr.section_version = 1; /* includes extended modifier */
618     hp->hotplug_action = hp_action;
619     hp->hotplug_identifier = hp_id;
620 
621     switch (drc_type) {
622     case SPAPR_DR_CONNECTOR_TYPE_PCI:
623         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PCI;
624         break;
625     case SPAPR_DR_CONNECTOR_TYPE_LMB:
626         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_MEMORY;
627         break;
628     case SPAPR_DR_CONNECTOR_TYPE_CPU:
629         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_CPU;
630         break;
631     case SPAPR_DR_CONNECTOR_TYPE_PHB:
632         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PHB;
633         break;
634     default:
635         /* we shouldn't be signaling hotplug events for resources
636          * that don't support them
637          */
638         g_assert(false);
639         return;
640     }
641 
642     if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT) {
643         hp->drc_id.count = cpu_to_be32(drc_id->count);
644     } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_INDEX) {
645         hp->drc_id.index = cpu_to_be32(drc_id->index);
646     } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED) {
647         /* we should not be using count_indexed value unless the guest
648          * supports dedicated hotplug event source
649          */
650         g_assert(spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT));
651         hp->drc_id.count_indexed.count =
652             cpu_to_be32(drc_id->count_indexed.count);
653         hp->drc_id.count_indexed.index =
654             cpu_to_be32(drc_id->count_indexed.index);
655     }
656 
657     rtas_event_log_queue(spapr, entry);
658 
659     qemu_irq_pulse(spapr_qirq(spapr,
660                    rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_HOTPLUG)));
661 }
662 
663 void spapr_hotplug_req_add_by_index(SpaprDrc *drc)
664 {
665     SpaprDrcType drc_type = spapr_drc_type(drc);
666     union drc_identifier drc_id;
667 
668     drc_id.index = spapr_drc_index(drc);
669     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
670                             RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
671 }
672 
673 void spapr_hotplug_req_remove_by_index(SpaprDrc *drc)
674 {
675     SpaprDrcType drc_type = spapr_drc_type(drc);
676     union drc_identifier drc_id;
677 
678     drc_id.index = spapr_drc_index(drc);
679     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
680                             RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
681 }
682 
683 void spapr_hotplug_req_add_by_count(SpaprDrcType drc_type,
684                                        uint32_t count)
685 {
686     union drc_identifier drc_id;
687 
688     drc_id.count = count;
689     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
690                             RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
691 }
692 
693 void spapr_hotplug_req_remove_by_count(SpaprDrcType drc_type,
694                                           uint32_t count)
695 {
696     union drc_identifier drc_id;
697 
698     drc_id.count = count;
699     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
700                             RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
701 }
702 
703 void spapr_hotplug_req_add_by_count_indexed(SpaprDrcType drc_type,
704                                             uint32_t count, uint32_t index)
705 {
706     union drc_identifier drc_id;
707 
708     drc_id.count_indexed.count = count;
709     drc_id.count_indexed.index = index;
710     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
711                             RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
712 }
713 
714 void spapr_hotplug_req_remove_by_count_indexed(SpaprDrcType drc_type,
715                                                uint32_t count, uint32_t index)
716 {
717     union drc_identifier drc_id;
718 
719     drc_id.count_indexed.count = count;
720     drc_id.count_indexed.index = index;
721     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
722                             RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
723 }
724 
725 static uint32_t spapr_mce_get_elog_type(PowerPCCPU *cpu, bool recovered,
726                                         struct mc_extended_log *ext_elog)
727 {
728     int i;
729     CPUPPCState *env = &cpu->env;
730     uint32_t summary;
731     uint64_t dsisr = env->spr[SPR_DSISR];
732 
733     summary = RTAS_LOG_VERSION_6 | RTAS_LOG_OPTIONAL_PART_PRESENT;
734     if (recovered) {
735         summary |= RTAS_LOG_DISPOSITION_FULLY_RECOVERED;
736     } else {
737         summary |= RTAS_LOG_DISPOSITION_NOT_RECOVERED;
738     }
739 
740     if (SRR1_MC_LOADSTORE(env->spr[SPR_SRR1])) {
741         for (i = 0; i < ARRAY_SIZE(mc_derror_table); i++) {
742             if (!(dsisr & mc_derror_table[i].dsisr_value)) {
743                 continue;
744             }
745 
746             ext_elog->mc.error_type = mc_derror_table[i].error_type;
747             ext_elog->mc.sub_err_type = mc_derror_table[i].error_subtype;
748             if (mc_derror_table[i].dar_valid) {
749                 ext_elog->mc.effective_address = cpu_to_be64(env->spr[SPR_DAR]);
750             }
751 
752             summary |= mc_derror_table[i].initiator
753                         | mc_derror_table[i].severity;
754 
755             return summary;
756         }
757     } else {
758         for (i = 0; i < ARRAY_SIZE(mc_ierror_table); i++) {
759             if ((env->spr[SPR_SRR1] & mc_ierror_table[i].srr1_mask) !=
760                     mc_ierror_table[i].srr1_value) {
761                 continue;
762             }
763 
764             ext_elog->mc.error_type = mc_ierror_table[i].error_type;
765             ext_elog->mc.sub_err_type = mc_ierror_table[i].error_subtype;
766             if (mc_ierror_table[i].nip_valid) {
767                 ext_elog->mc.effective_address = cpu_to_be64(env->nip);
768             }
769 
770             summary |= mc_ierror_table[i].initiator
771                         | mc_ierror_table[i].severity;
772 
773             return summary;
774         }
775     }
776 
777     summary |= RTAS_LOG_INITIATOR_CPU;
778     return summary;
779 }
780 
781 static void spapr_mce_dispatch_elog(PowerPCCPU *cpu, bool recovered)
782 {
783     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
784     CPUState *cs = CPU(cpu);
785     uint64_t rtas_addr;
786     CPUPPCState *env = &cpu->env;
787     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
788     target_ulong msr = 0;
789     struct rtas_error_log log;
790     struct mc_extended_log *ext_elog;
791     uint32_t summary;
792 
793     /*
794      * Properly set bits in MSR before we invoke the handler.
795      * SRR0/1, DAR and DSISR are properly set by KVM
796      */
797     if (!(*pcc->interrupts_big_endian)(cpu)) {
798         msr |= (1ULL << MSR_LE);
799     }
800 
801     if (env->msr & (1ULL << MSR_SF)) {
802         msr |= (1ULL << MSR_SF);
803     }
804 
805     msr |= (1ULL << MSR_ME);
806 
807     ext_elog = g_malloc0(sizeof(*ext_elog));
808     summary = spapr_mce_get_elog_type(cpu, recovered, ext_elog);
809 
810     log.summary = cpu_to_be32(summary);
811     log.extended_length = cpu_to_be32(sizeof(*ext_elog));
812 
813     spapr_init_v6hdr(&ext_elog->v6hdr);
814     ext_elog->mc.hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MC);
815     ext_elog->mc.hdr.section_length =
816                     cpu_to_be16(sizeof(struct rtas_event_log_v6_mc));
817     ext_elog->mc.hdr.section_version = 1;
818 
819     /* get rtas addr from fdt */
820     rtas_addr = spapr_get_rtas_addr();
821     if (!rtas_addr) {
822         /* Unable to fetch rtas_addr. Hence reset the guest */
823         ppc_cpu_do_system_reset(cs);
824         g_free(ext_elog);
825         return;
826     }
827 
828     stq_be_phys(&address_space_memory, rtas_addr + RTAS_ERROR_LOG_OFFSET,
829                 env->gpr[3]);
830     cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
831                               sizeof(env->gpr[3]), &log, sizeof(log));
832     cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
833                               sizeof(env->gpr[3]) + sizeof(log), ext_elog,
834                               sizeof(*ext_elog));
835 
836     env->gpr[3] = rtas_addr + RTAS_ERROR_LOG_OFFSET;
837     env->msr = msr;
838     env->nip = spapr->guest_machine_check_addr;
839 
840     g_free(ext_elog);
841 }
842 
843 void spapr_mce_req_event(PowerPCCPU *cpu, bool recovered)
844 {
845     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
846     CPUState *cs = CPU(cpu);
847     int ret;
848     Error *local_err = NULL;
849 
850     if (spapr->guest_machine_check_addr == -1) {
851         /*
852          * This implies that we have hit a machine check either when the
853          * guest has not registered FWNMI (i.e., "ibm,nmi-register" not
854          * called) or between system reset and "ibm,nmi-register".
855          * Fall back to the old machine check behavior in such cases.
856          */
857         cs->exception_index = POWERPC_EXCP_MCHECK;
858         ppc_cpu_do_interrupt(cs);
859         return;
860     }
861 
862     while (spapr->mc_status != -1) {
863         /*
864          * Check whether the same CPU got machine check error
865          * while still handling the mc error (i.e., before
866          * that CPU called "ibm,nmi-interlock")
867          */
868         if (spapr->mc_status == cpu->vcpu_id) {
869             qemu_system_guest_panicked(NULL);
870             return;
871         }
872         qemu_cond_wait_iothread(&spapr->mc_delivery_cond);
873         /* Meanwhile if the system is reset, then just return */
874         if (spapr->guest_machine_check_addr == -1) {
875             return;
876         }
877     }
878 
879     ret = migrate_add_blocker(spapr->fwnmi_migration_blocker, &local_err);
880     if (ret == -EBUSY) {
881         /*
882          * We don't want to abort so we let the migration to continue.
883          * In a rare case, the machine check handler will run on the target.
884          * Though this is not preferable, it is better than aborting
885          * the migration or killing the VM.
886          */
887         warn_report("Received a fwnmi while migration was in progress");
888     }
889 
890     spapr->mc_status = cpu->vcpu_id;
891     spapr_mce_dispatch_elog(cpu, recovered);
892 }
893 
894 static void check_exception(PowerPCCPU *cpu, SpaprMachineState *spapr,
895                             uint32_t token, uint32_t nargs,
896                             target_ulong args,
897                             uint32_t nret, target_ulong rets)
898 {
899     uint32_t mask, buf, len, event_len;
900     uint64_t xinfo;
901     SpaprEventLogEntry *event;
902     struct rtas_error_log header;
903     int i;
904 
905     if ((nargs < 6) || (nargs > 7) || nret != 1) {
906         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
907         return;
908     }
909 
910     xinfo = rtas_ld(args, 1);
911     mask = rtas_ld(args, 2);
912     buf = rtas_ld(args, 4);
913     len = rtas_ld(args, 5);
914     if (nargs == 7) {
915         xinfo |= (uint64_t)rtas_ld(args, 6) << 32;
916     }
917 
918     event = rtas_event_log_dequeue(spapr, mask);
919     if (!event) {
920         goto out_no_events;
921     }
922 
923     event_len = event->extended_length + sizeof(header);
924 
925     if (event_len < len) {
926         len = event_len;
927     }
928 
929     header.summary = cpu_to_be32(event->summary);
930     header.extended_length = cpu_to_be32(event->extended_length);
931     cpu_physical_memory_write(buf, &header, sizeof(header));
932     cpu_physical_memory_write(buf + sizeof(header), event->extended_log,
933                               event->extended_length);
934     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
935     g_free(event->extended_log);
936     g_free(event);
937 
938     /* according to PAPR+, the IRQ must be left asserted, or re-asserted, if
939      * there are still pending events to be fetched via check-exception. We
940      * do the latter here, since our code relies on edge-triggered
941      * interrupts.
942      */
943     for (i = 0; i < EVENT_CLASS_MAX; i++) {
944         if (rtas_event_log_contains(EVENT_CLASS_MASK(i))) {
945             const SpaprEventSource *source =
946                 spapr_event_sources_get_source(spapr->event_sources, i);
947 
948             g_assert(source->enabled);
949             qemu_irq_pulse(spapr_qirq(spapr, source->irq));
950         }
951     }
952 
953     return;
954 
955 out_no_events:
956     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
957 }
958 
959 static void event_scan(PowerPCCPU *cpu, SpaprMachineState *spapr,
960                        uint32_t token, uint32_t nargs,
961                        target_ulong args,
962                        uint32_t nret, target_ulong rets)
963 {
964     if (nargs != 4 || nret != 1) {
965         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
966         return;
967     }
968     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
969 }
970 
971 void spapr_clear_pending_events(SpaprMachineState *spapr)
972 {
973     SpaprEventLogEntry *entry = NULL, *next_entry;
974 
975     QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
976         QTAILQ_REMOVE(&spapr->pending_events, entry, next);
977         g_free(entry->extended_log);
978         g_free(entry);
979     }
980 }
981 
982 void spapr_events_init(SpaprMachineState *spapr)
983 {
984     int epow_irq = SPAPR_IRQ_EPOW;
985 
986     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
987         epow_irq = spapr_irq_findone(spapr, &error_fatal);
988     }
989 
990     spapr_irq_claim(spapr, epow_irq, false, &error_fatal);
991 
992     QTAILQ_INIT(&spapr->pending_events);
993 
994     spapr->event_sources = spapr_event_sources_new();
995 
996     spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_EPOW,
997                                  epow_irq);
998 
999     /* NOTE: if machine supports modern/dedicated hotplug event source,
1000      * we add it to the device-tree unconditionally. This means we may
1001      * have cases where the source is enabled in QEMU, but unused by the
1002      * guest because it does not support modern hotplug events, so we
1003      * take care to rely on checking for negotiation of OV5_HP_EVT option
1004      * before attempting to use it to signal events, rather than simply
1005      * checking that it's enabled.
1006      */
1007     if (spapr->use_hotplug_event_source) {
1008         int hp_irq = SPAPR_IRQ_HOTPLUG;
1009 
1010         if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1011             hp_irq = spapr_irq_findone(spapr, &error_fatal);
1012         }
1013 
1014         spapr_irq_claim(spapr, hp_irq, false, &error_fatal);
1015 
1016         spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_HOT_PLUG,
1017                                      hp_irq);
1018     }
1019 
1020     spapr->epow_notifier.notify = spapr_powerdown_req;
1021     qemu_register_powerdown_notifier(&spapr->epow_notifier);
1022     spapr_rtas_register(RTAS_CHECK_EXCEPTION, "check-exception",
1023                         check_exception);
1024     spapr_rtas_register(RTAS_EVENT_SCAN, "event-scan", event_scan);
1025 }
1026