xref: /openbmc/qemu/hw/ppc/spapr_events.c (revision 64c9a921)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * RTAS events handling
5  *
6  * Copyright (c) 2012 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "cpu.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/runstate.h"
33 
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/ppc/spapr_vio.h"
37 #include "hw/pci/pci.h"
38 #include "hw/irq.h"
39 #include "hw/pci-host/spapr.h"
40 #include "hw/ppc/spapr_drc.h"
41 #include "qemu/help_option.h"
42 #include "qemu/bcd.h"
43 #include "qemu/main-loop.h"
44 #include "hw/ppc/spapr_ovec.h"
45 #include <libfdt.h>
46 #include "migration/blocker.h"
47 
48 #define RTAS_LOG_VERSION_MASK                   0xff000000
49 #define   RTAS_LOG_VERSION_6                    0x06000000
50 #define RTAS_LOG_SEVERITY_MASK                  0x00e00000
51 #define   RTAS_LOG_SEVERITY_ALREADY_REPORTED    0x00c00000
52 #define   RTAS_LOG_SEVERITY_FATAL               0x00a00000
53 #define   RTAS_LOG_SEVERITY_ERROR               0x00800000
54 #define   RTAS_LOG_SEVERITY_ERROR_SYNC          0x00600000
55 #define   RTAS_LOG_SEVERITY_WARNING             0x00400000
56 #define   RTAS_LOG_SEVERITY_EVENT               0x00200000
57 #define   RTAS_LOG_SEVERITY_NO_ERROR            0x00000000
58 #define RTAS_LOG_DISPOSITION_MASK               0x00180000
59 #define   RTAS_LOG_DISPOSITION_FULLY_RECOVERED  0x00000000
60 #define   RTAS_LOG_DISPOSITION_LIMITED_RECOVERY 0x00080000
61 #define   RTAS_LOG_DISPOSITION_NOT_RECOVERED    0x00100000
62 #define RTAS_LOG_OPTIONAL_PART_PRESENT          0x00040000
63 #define RTAS_LOG_INITIATOR_MASK                 0x0000f000
64 #define   RTAS_LOG_INITIATOR_UNKNOWN            0x00000000
65 #define   RTAS_LOG_INITIATOR_CPU                0x00001000
66 #define   RTAS_LOG_INITIATOR_PCI                0x00002000
67 #define   RTAS_LOG_INITIATOR_MEMORY             0x00004000
68 #define   RTAS_LOG_INITIATOR_HOTPLUG            0x00006000
69 #define RTAS_LOG_TARGET_MASK                    0x00000f00
70 #define   RTAS_LOG_TARGET_UNKNOWN               0x00000000
71 #define   RTAS_LOG_TARGET_CPU                   0x00000100
72 #define   RTAS_LOG_TARGET_PCI                   0x00000200
73 #define   RTAS_LOG_TARGET_MEMORY                0x00000400
74 #define   RTAS_LOG_TARGET_HOTPLUG               0x00000600
75 #define RTAS_LOG_TYPE_MASK                      0x000000ff
76 #define   RTAS_LOG_TYPE_OTHER                   0x00000000
77 #define   RTAS_LOG_TYPE_RETRY                   0x00000001
78 #define   RTAS_LOG_TYPE_TCE_ERR                 0x00000002
79 #define   RTAS_LOG_TYPE_INTERN_DEV_FAIL         0x00000003
80 #define   RTAS_LOG_TYPE_TIMEOUT                 0x00000004
81 #define   RTAS_LOG_TYPE_DATA_PARITY             0x00000005
82 #define   RTAS_LOG_TYPE_ADDR_PARITY             0x00000006
83 #define   RTAS_LOG_TYPE_CACHE_PARITY            0x00000007
84 #define   RTAS_LOG_TYPE_ADDR_INVALID            0x00000008
85 #define   RTAS_LOG_TYPE_ECC_UNCORR              0x00000009
86 #define   RTAS_LOG_TYPE_ECC_CORR                0x0000000a
87 #define   RTAS_LOG_TYPE_EPOW                    0x00000040
88 #define   RTAS_LOG_TYPE_HOTPLUG                 0x000000e5
89 
90 struct rtas_error_log {
91     uint32_t summary;
92     uint32_t extended_length;
93 } QEMU_PACKED;
94 
95 struct rtas_event_log_v6 {
96     uint8_t b0;
97 #define RTAS_LOG_V6_B0_VALID                          0x80
98 #define RTAS_LOG_V6_B0_UNRECOVERABLE_ERROR            0x40
99 #define RTAS_LOG_V6_B0_RECOVERABLE_ERROR              0x20
100 #define RTAS_LOG_V6_B0_DEGRADED_OPERATION             0x10
101 #define RTAS_LOG_V6_B0_PREDICTIVE_ERROR               0x08
102 #define RTAS_LOG_V6_B0_NEW_LOG                        0x04
103 #define RTAS_LOG_V6_B0_BIGENDIAN                      0x02
104     uint8_t _resv1;
105     uint8_t b2;
106 #define RTAS_LOG_V6_B2_POWERPC_FORMAT                 0x80
107 #define RTAS_LOG_V6_B2_LOG_FORMAT_MASK                0x0f
108 #define   RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT    0x0e
109     uint8_t _resv2[9];
110     uint32_t company;
111 #define RTAS_LOG_V6_COMPANY_IBM                 0x49424d00 /* IBM<null> */
112 } QEMU_PACKED;
113 
114 struct rtas_event_log_v6_section_header {
115     uint16_t section_id;
116     uint16_t section_length;
117     uint8_t section_version;
118     uint8_t section_subtype;
119     uint16_t creator_component_id;
120 } QEMU_PACKED;
121 
122 struct rtas_event_log_v6_maina {
123 #define RTAS_LOG_V6_SECTION_ID_MAINA                0x5048 /* PH */
124     struct rtas_event_log_v6_section_header hdr;
125     uint32_t creation_date; /* BCD: YYYYMMDD */
126     uint32_t creation_time; /* BCD: HHMMSS00 */
127     uint8_t _platform1[8];
128     char creator_id;
129     uint8_t _resv1[2];
130     uint8_t section_count;
131     uint8_t _resv2[4];
132     uint8_t _platform2[8];
133     uint32_t plid;
134     uint8_t _platform3[4];
135 } QEMU_PACKED;
136 
137 struct rtas_event_log_v6_mainb {
138 #define RTAS_LOG_V6_SECTION_ID_MAINB                0x5548 /* UH */
139     struct rtas_event_log_v6_section_header hdr;
140     uint8_t subsystem_id;
141     uint8_t _platform1;
142     uint8_t event_severity;
143     uint8_t event_subtype;
144     uint8_t _platform2[4];
145     uint8_t _resv1[2];
146     uint16_t action_flags;
147     uint8_t _resv2[4];
148 } QEMU_PACKED;
149 
150 struct rtas_event_log_v6_epow {
151 #define RTAS_LOG_V6_SECTION_ID_EPOW                 0x4550 /* EP */
152     struct rtas_event_log_v6_section_header hdr;
153     uint8_t sensor_value;
154 #define RTAS_LOG_V6_EPOW_ACTION_RESET                    0
155 #define RTAS_LOG_V6_EPOW_ACTION_WARN_COOLING             1
156 #define RTAS_LOG_V6_EPOW_ACTION_WARN_POWER               2
157 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN          3
158 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_HALT              4
159 #define RTAS_LOG_V6_EPOW_ACTION_MAIN_ENCLOSURE           5
160 #define RTAS_LOG_V6_EPOW_ACTION_POWER_OFF                7
161     uint8_t event_modifier;
162 #define RTAS_LOG_V6_EPOW_MODIFIER_NORMAL                 1
163 #define RTAS_LOG_V6_EPOW_MODIFIER_ON_UPS                 2
164 #define RTAS_LOG_V6_EPOW_MODIFIER_CRITICAL               3
165 #define RTAS_LOG_V6_EPOW_MODIFIER_TEMPERATURE            4
166     uint8_t extended_modifier;
167 #define RTAS_LOG_V6_EPOW_XMODIFIER_SYSTEM_WIDE           0
168 #define RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC    1
169     uint8_t _resv;
170     uint64_t reason_code;
171 } QEMU_PACKED;
172 
173 struct epow_extended_log {
174     struct rtas_event_log_v6 v6hdr;
175     struct rtas_event_log_v6_maina maina;
176     struct rtas_event_log_v6_mainb mainb;
177     struct rtas_event_log_v6_epow epow;
178 } QEMU_PACKED;
179 
180 union drc_identifier {
181     uint32_t index;
182     uint32_t count;
183     struct {
184         uint32_t count;
185         uint32_t index;
186     } count_indexed;
187     char name[1];
188 } QEMU_PACKED;
189 
190 struct rtas_event_log_v6_hp {
191 #define RTAS_LOG_V6_SECTION_ID_HOTPLUG              0x4850 /* HP */
192     struct rtas_event_log_v6_section_header hdr;
193     uint8_t hotplug_type;
194 #define RTAS_LOG_V6_HP_TYPE_CPU                          1
195 #define RTAS_LOG_V6_HP_TYPE_MEMORY                       2
196 #define RTAS_LOG_V6_HP_TYPE_SLOT                         3
197 #define RTAS_LOG_V6_HP_TYPE_PHB                          4
198 #define RTAS_LOG_V6_HP_TYPE_PCI                          5
199 #define RTAS_LOG_V6_HP_TYPE_PMEM                         6
200     uint8_t hotplug_action;
201 #define RTAS_LOG_V6_HP_ACTION_ADD                        1
202 #define RTAS_LOG_V6_HP_ACTION_REMOVE                     2
203     uint8_t hotplug_identifier;
204 #define RTAS_LOG_V6_HP_ID_DRC_NAME                       1
205 #define RTAS_LOG_V6_HP_ID_DRC_INDEX                      2
206 #define RTAS_LOG_V6_HP_ID_DRC_COUNT                      3
207 #define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED              4
208     uint8_t reserved;
209     union drc_identifier drc_id;
210 } QEMU_PACKED;
211 
212 struct hp_extended_log {
213     struct rtas_event_log_v6 v6hdr;
214     struct rtas_event_log_v6_maina maina;
215     struct rtas_event_log_v6_mainb mainb;
216     struct rtas_event_log_v6_hp hp;
217 } QEMU_PACKED;
218 
219 struct rtas_event_log_v6_mc {
220 #define RTAS_LOG_V6_SECTION_ID_MC                   0x4D43 /* MC */
221     struct rtas_event_log_v6_section_header hdr;
222     uint32_t fru_id;
223     uint32_t proc_id;
224     uint8_t error_type;
225 #define RTAS_LOG_V6_MC_TYPE_UE                           0
226 #define RTAS_LOG_V6_MC_TYPE_SLB                          1
227 #define RTAS_LOG_V6_MC_TYPE_ERAT                         2
228 #define RTAS_LOG_V6_MC_TYPE_TLB                          4
229 #define RTAS_LOG_V6_MC_TYPE_D_CACHE                      5
230 #define RTAS_LOG_V6_MC_TYPE_I_CACHE                      7
231     uint8_t sub_err_type;
232 #define RTAS_LOG_V6_MC_UE_INDETERMINATE                  0
233 #define RTAS_LOG_V6_MC_UE_IFETCH                         1
234 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH         2
235 #define RTAS_LOG_V6_MC_UE_LOAD_STORE                     3
236 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE     4
237 #define RTAS_LOG_V6_MC_SLB_PARITY                        0
238 #define RTAS_LOG_V6_MC_SLB_MULTIHIT                      1
239 #define RTAS_LOG_V6_MC_SLB_INDETERMINATE                 2
240 #define RTAS_LOG_V6_MC_ERAT_PARITY                       1
241 #define RTAS_LOG_V6_MC_ERAT_MULTIHIT                     2
242 #define RTAS_LOG_V6_MC_ERAT_INDETERMINATE                3
243 #define RTAS_LOG_V6_MC_TLB_PARITY                        1
244 #define RTAS_LOG_V6_MC_TLB_MULTIHIT                      2
245 #define RTAS_LOG_V6_MC_TLB_INDETERMINATE                 3
246 /*
247  * Per PAPR,
248  * For UE error type, set bit 1 of sub_err_type to indicate effective addr is
249  * provided. For other error types (SLB/ERAT/TLB), set bit 0 to indicate
250  * same.
251  */
252 #define RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED               0x40
253 #define RTAS_LOG_V6_MC_EA_ADDR_PROVIDED                  0x80
254     uint8_t reserved_1[6];
255     uint64_t effective_address;
256     uint64_t logical_address;
257 } QEMU_PACKED;
258 
259 struct mc_extended_log {
260     struct rtas_event_log_v6 v6hdr;
261     struct rtas_event_log_v6_mc mc;
262 } QEMU_PACKED;
263 
264 struct MC_ierror_table {
265     unsigned long srr1_mask;
266     unsigned long srr1_value;
267     bool nip_valid; /* nip is a valid indicator of faulting address */
268     uint8_t error_type;
269     uint8_t error_subtype;
270     unsigned int initiator;
271     unsigned int severity;
272 };
273 
274 static const struct MC_ierror_table mc_ierror_table[] = {
275 { 0x00000000081c0000, 0x0000000000040000, true,
276   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_IFETCH,
277   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
278 { 0x00000000081c0000, 0x0000000000080000, true,
279   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
280   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
281 { 0x00000000081c0000, 0x00000000000c0000, true,
282   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT,
283   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
284 { 0x00000000081c0000, 0x0000000000100000, true,
285   RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
286   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
287 { 0x00000000081c0000, 0x0000000000140000, true,
288   RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
289   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
290 { 0x00000000081c0000, 0x0000000000180000, true,
291   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH,
292   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
293 
294 struct MC_derror_table {
295     unsigned long dsisr_value;
296     bool dar_valid; /* dar is a valid indicator of faulting address */
297     uint8_t error_type;
298     uint8_t error_subtype;
299     unsigned int initiator;
300     unsigned int severity;
301 };
302 
303 static const struct MC_derror_table mc_derror_table[] = {
304 { 0x00008000, false,
305   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_LOAD_STORE,
306   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
307 { 0x00004000, true,
308   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE,
309   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
310 { 0x00000800, true,
311   RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
312   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
313 { 0x00000400, true,
314   RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
315   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
316 { 0x00000080, true,
317   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT,  /* Before PARITY */
318   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
319 { 0x00000100, true,
320   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
321   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
322 
323 #define SRR1_MC_LOADSTORE(srr1) ((srr1) & PPC_BIT(42))
324 
325 typedef enum EventClass {
326     EVENT_CLASS_INTERNAL_ERRORS     = 0,
327     EVENT_CLASS_EPOW                = 1,
328     EVENT_CLASS_RESERVED            = 2,
329     EVENT_CLASS_HOT_PLUG            = 3,
330     EVENT_CLASS_IO                  = 4,
331     EVENT_CLASS_MAX
332 } EventClassIndex;
333 #define EVENT_CLASS_MASK(index) (1 << (31 - index))
334 
335 static const char * const event_names[EVENT_CLASS_MAX] = {
336     [EVENT_CLASS_INTERNAL_ERRORS]       = "internal-errors",
337     [EVENT_CLASS_EPOW]                  = "epow-events",
338     [EVENT_CLASS_HOT_PLUG]              = "hot-plug-events",
339     [EVENT_CLASS_IO]                    = "ibm,io-events",
340 };
341 
342 struct SpaprEventSource {
343     int irq;
344     uint32_t mask;
345     bool enabled;
346 };
347 
348 static SpaprEventSource *spapr_event_sources_new(void)
349 {
350     return g_new0(SpaprEventSource, EVENT_CLASS_MAX);
351 }
352 
353 static void spapr_event_sources_register(SpaprEventSource *event_sources,
354                                         EventClassIndex index, int irq)
355 {
356     /* we only support 1 irq per event class at the moment */
357     g_assert(event_sources);
358     g_assert(!event_sources[index].enabled);
359     event_sources[index].irq = irq;
360     event_sources[index].mask = EVENT_CLASS_MASK(index);
361     event_sources[index].enabled = true;
362 }
363 
364 static const SpaprEventSource *
365 spapr_event_sources_get_source(SpaprEventSource *event_sources,
366                                EventClassIndex index)
367 {
368     g_assert(index < EVENT_CLASS_MAX);
369     g_assert(event_sources);
370 
371     return &event_sources[index];
372 }
373 
374 void spapr_dt_events(SpaprMachineState *spapr, void *fdt)
375 {
376     uint32_t irq_ranges[EVENT_CLASS_MAX * 2];
377     int i, count = 0, event_sources;
378     SpaprEventSource *events = spapr->event_sources;
379 
380     g_assert(events);
381 
382     _FDT(event_sources = fdt_add_subnode(fdt, 0, "event-sources"));
383 
384     for (i = 0, count = 0; i < EVENT_CLASS_MAX; i++) {
385         int node_offset;
386         uint32_t interrupts[2];
387         const SpaprEventSource *source =
388             spapr_event_sources_get_source(events, i);
389         const char *source_name = event_names[i];
390 
391         if (!source->enabled) {
392             continue;
393         }
394 
395         spapr_dt_irq(interrupts, source->irq, false);
396 
397         _FDT(node_offset = fdt_add_subnode(fdt, event_sources, source_name));
398         _FDT(fdt_setprop(fdt, node_offset, "interrupts", interrupts,
399                          sizeof(interrupts)));
400 
401         irq_ranges[count++] = interrupts[0];
402         irq_ranges[count++] = cpu_to_be32(1);
403     }
404 
405     _FDT((fdt_setprop(fdt, event_sources, "interrupt-controller", NULL, 0)));
406     _FDT((fdt_setprop_cell(fdt, event_sources, "#interrupt-cells", 2)));
407     _FDT((fdt_setprop(fdt, event_sources, "interrupt-ranges",
408                       irq_ranges, count * sizeof(uint32_t))));
409 }
410 
411 static const SpaprEventSource *
412 rtas_event_log_to_source(SpaprMachineState *spapr, int log_type)
413 {
414     const SpaprEventSource *source;
415 
416     g_assert(spapr->event_sources);
417 
418     switch (log_type) {
419     case RTAS_LOG_TYPE_HOTPLUG:
420         source = spapr_event_sources_get_source(spapr->event_sources,
421                                                 EVENT_CLASS_HOT_PLUG);
422         if (spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT)) {
423             g_assert(source->enabled);
424             break;
425         }
426         /* fall through back to epow for legacy hotplug interrupt source */
427     case RTAS_LOG_TYPE_EPOW:
428         source = spapr_event_sources_get_source(spapr->event_sources,
429                                                 EVENT_CLASS_EPOW);
430         break;
431     default:
432         source = NULL;
433     }
434 
435     return source;
436 }
437 
438 static int rtas_event_log_to_irq(SpaprMachineState *spapr, int log_type)
439 {
440     const SpaprEventSource *source;
441 
442     source = rtas_event_log_to_source(spapr, log_type);
443     g_assert(source);
444     g_assert(source->enabled);
445 
446     return source->irq;
447 }
448 
449 static uint32_t spapr_event_log_entry_type(SpaprEventLogEntry *entry)
450 {
451     return entry->summary & RTAS_LOG_TYPE_MASK;
452 }
453 
454 static void rtas_event_log_queue(SpaprMachineState *spapr,
455                                  SpaprEventLogEntry *entry)
456 {
457     QTAILQ_INSERT_TAIL(&spapr->pending_events, entry, next);
458 }
459 
460 static SpaprEventLogEntry *rtas_event_log_dequeue(SpaprMachineState *spapr,
461                                                   uint32_t event_mask)
462 {
463     SpaprEventLogEntry *entry = NULL;
464 
465     QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
466         const SpaprEventSource *source =
467             rtas_event_log_to_source(spapr,
468                                      spapr_event_log_entry_type(entry));
469 
470         g_assert(source);
471         if (source->mask & event_mask) {
472             break;
473         }
474     }
475 
476     if (entry) {
477         QTAILQ_REMOVE(&spapr->pending_events, entry, next);
478     }
479 
480     return entry;
481 }
482 
483 static bool rtas_event_log_contains(SpaprMachineState *spapr, uint32_t event_mask)
484 {
485     SpaprEventLogEntry *entry = NULL;
486 
487     QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
488         const SpaprEventSource *source =
489             rtas_event_log_to_source(spapr,
490                                      spapr_event_log_entry_type(entry));
491 
492         if (source->mask & event_mask) {
493             return true;
494         }
495     }
496 
497     return false;
498 }
499 
500 static uint32_t next_plid;
501 
502 static void spapr_init_v6hdr(struct rtas_event_log_v6 *v6hdr)
503 {
504     v6hdr->b0 = RTAS_LOG_V6_B0_VALID | RTAS_LOG_V6_B0_NEW_LOG
505         | RTAS_LOG_V6_B0_BIGENDIAN;
506     v6hdr->b2 = RTAS_LOG_V6_B2_POWERPC_FORMAT
507         | RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT;
508     v6hdr->company = cpu_to_be32(RTAS_LOG_V6_COMPANY_IBM);
509 }
510 
511 static void spapr_init_maina(SpaprMachineState *spapr,
512                              struct rtas_event_log_v6_maina *maina,
513                              int section_count)
514 {
515     struct tm tm;
516     int year;
517 
518     maina->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINA);
519     maina->hdr.section_length = cpu_to_be16(sizeof(*maina));
520     /* FIXME: section version, subtype and creator id? */
521     spapr_rtc_read(&spapr->rtc, &tm, NULL);
522     year = tm.tm_year + 1900;
523     maina->creation_date = cpu_to_be32((to_bcd(year / 100) << 24)
524                                        | (to_bcd(year % 100) << 16)
525                                        | (to_bcd(tm.tm_mon + 1) << 8)
526                                        | to_bcd(tm.tm_mday));
527     maina->creation_time = cpu_to_be32((to_bcd(tm.tm_hour) << 24)
528                                        | (to_bcd(tm.tm_min) << 16)
529                                        | (to_bcd(tm.tm_sec) << 8));
530     maina->creator_id = 'H'; /* Hypervisor */
531     maina->section_count = section_count;
532     maina->plid = next_plid++;
533 }
534 
535 static void spapr_powerdown_req(Notifier *n, void *opaque)
536 {
537     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
538     SpaprEventLogEntry *entry;
539     struct rtas_event_log_v6 *v6hdr;
540     struct rtas_event_log_v6_maina *maina;
541     struct rtas_event_log_v6_mainb *mainb;
542     struct rtas_event_log_v6_epow *epow;
543     struct epow_extended_log *new_epow;
544 
545     entry = g_new(SpaprEventLogEntry, 1);
546     new_epow = g_malloc0(sizeof(*new_epow));
547     entry->extended_log = new_epow;
548 
549     v6hdr = &new_epow->v6hdr;
550     maina = &new_epow->maina;
551     mainb = &new_epow->mainb;
552     epow = &new_epow->epow;
553 
554     entry->summary = RTAS_LOG_VERSION_6
555                        | RTAS_LOG_SEVERITY_EVENT
556                        | RTAS_LOG_DISPOSITION_NOT_RECOVERED
557                        | RTAS_LOG_OPTIONAL_PART_PRESENT
558                        | RTAS_LOG_TYPE_EPOW;
559     entry->extended_length = sizeof(*new_epow);
560 
561     spapr_init_v6hdr(v6hdr);
562     spapr_init_maina(spapr, maina, 3 /* Main-A, Main-B and EPOW */);
563 
564     mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
565     mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
566     /* FIXME: section version, subtype and creator id? */
567     mainb->subsystem_id = 0xa0; /* External environment */
568     mainb->event_severity = 0x00; /* Informational / non-error */
569     mainb->event_subtype = 0xd0; /* Normal shutdown */
570 
571     epow->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_EPOW);
572     epow->hdr.section_length = cpu_to_be16(sizeof(*epow));
573     epow->hdr.section_version = 2; /* includes extended modifier */
574     /* FIXME: section subtype and creator id? */
575     epow->sensor_value = RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN;
576     epow->event_modifier = RTAS_LOG_V6_EPOW_MODIFIER_NORMAL;
577     epow->extended_modifier = RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC;
578 
579     rtas_event_log_queue(spapr, entry);
580 
581     qemu_irq_pulse(spapr_qirq(spapr,
582                    rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_EPOW)));
583 }
584 
585 static void spapr_hotplug_req_event(uint8_t hp_id, uint8_t hp_action,
586                                     SpaprDrcType drc_type,
587                                     union drc_identifier *drc_id)
588 {
589     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
590     SpaprEventLogEntry *entry;
591     struct hp_extended_log *new_hp;
592     struct rtas_event_log_v6 *v6hdr;
593     struct rtas_event_log_v6_maina *maina;
594     struct rtas_event_log_v6_mainb *mainb;
595     struct rtas_event_log_v6_hp *hp;
596 
597     entry = g_new(SpaprEventLogEntry, 1);
598     new_hp = g_malloc0(sizeof(struct hp_extended_log));
599     entry->extended_log = new_hp;
600 
601     v6hdr = &new_hp->v6hdr;
602     maina = &new_hp->maina;
603     mainb = &new_hp->mainb;
604     hp = &new_hp->hp;
605 
606     entry->summary = RTAS_LOG_VERSION_6
607         | RTAS_LOG_SEVERITY_EVENT
608         | RTAS_LOG_DISPOSITION_NOT_RECOVERED
609         | RTAS_LOG_OPTIONAL_PART_PRESENT
610         | RTAS_LOG_INITIATOR_HOTPLUG
611         | RTAS_LOG_TYPE_HOTPLUG;
612     entry->extended_length = sizeof(*new_hp);
613 
614     spapr_init_v6hdr(v6hdr);
615     spapr_init_maina(spapr, maina, 3 /* Main-A, Main-B, HP */);
616 
617     mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
618     mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
619     mainb->subsystem_id = 0x80; /* External environment */
620     mainb->event_severity = 0x00; /* Informational / non-error */
621     mainb->event_subtype = 0x00; /* Normal shutdown */
622 
623     hp->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_HOTPLUG);
624     hp->hdr.section_length = cpu_to_be16(sizeof(*hp));
625     hp->hdr.section_version = 1; /* includes extended modifier */
626     hp->hotplug_action = hp_action;
627     hp->hotplug_identifier = hp_id;
628 
629     switch (drc_type) {
630     case SPAPR_DR_CONNECTOR_TYPE_PCI:
631         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PCI;
632         break;
633     case SPAPR_DR_CONNECTOR_TYPE_LMB:
634         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_MEMORY;
635         break;
636     case SPAPR_DR_CONNECTOR_TYPE_CPU:
637         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_CPU;
638         break;
639     case SPAPR_DR_CONNECTOR_TYPE_PHB:
640         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PHB;
641         break;
642     case SPAPR_DR_CONNECTOR_TYPE_PMEM:
643         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PMEM;
644         break;
645     default:
646         /* we shouldn't be signaling hotplug events for resources
647          * that don't support them
648          */
649         g_assert(false);
650         return;
651     }
652 
653     if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT) {
654         hp->drc_id.count = cpu_to_be32(drc_id->count);
655     } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_INDEX) {
656         hp->drc_id.index = cpu_to_be32(drc_id->index);
657     } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED) {
658         /* we should not be using count_indexed value unless the guest
659          * supports dedicated hotplug event source
660          */
661         g_assert(spapr_memory_hot_unplug_supported(spapr));
662         hp->drc_id.count_indexed.count =
663             cpu_to_be32(drc_id->count_indexed.count);
664         hp->drc_id.count_indexed.index =
665             cpu_to_be32(drc_id->count_indexed.index);
666     }
667 
668     rtas_event_log_queue(spapr, entry);
669 
670     qemu_irq_pulse(spapr_qirq(spapr,
671                    rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_HOTPLUG)));
672 }
673 
674 void spapr_hotplug_req_add_by_index(SpaprDrc *drc)
675 {
676     SpaprDrcType drc_type = spapr_drc_type(drc);
677     union drc_identifier drc_id;
678 
679     drc_id.index = spapr_drc_index(drc);
680     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
681                             RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
682 }
683 
684 void spapr_hotplug_req_remove_by_index(SpaprDrc *drc)
685 {
686     SpaprDrcType drc_type = spapr_drc_type(drc);
687     union drc_identifier drc_id;
688 
689     drc_id.index = spapr_drc_index(drc);
690     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
691                             RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
692 }
693 
694 void spapr_hotplug_req_add_by_count(SpaprDrcType drc_type,
695                                        uint32_t count)
696 {
697     union drc_identifier drc_id;
698 
699     drc_id.count = count;
700     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
701                             RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
702 }
703 
704 void spapr_hotplug_req_remove_by_count(SpaprDrcType drc_type,
705                                           uint32_t count)
706 {
707     union drc_identifier drc_id;
708 
709     drc_id.count = count;
710     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
711                             RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
712 }
713 
714 void spapr_hotplug_req_add_by_count_indexed(SpaprDrcType drc_type,
715                                             uint32_t count, uint32_t index)
716 {
717     union drc_identifier drc_id;
718 
719     drc_id.count_indexed.count = count;
720     drc_id.count_indexed.index = index;
721     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
722                             RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
723 }
724 
725 void spapr_hotplug_req_remove_by_count_indexed(SpaprDrcType drc_type,
726                                                uint32_t count, uint32_t index)
727 {
728     union drc_identifier drc_id;
729 
730     drc_id.count_indexed.count = count;
731     drc_id.count_indexed.index = index;
732     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
733                             RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
734 }
735 
736 static void spapr_mc_set_ea_provided_flag(struct mc_extended_log *ext_elog)
737 {
738     switch (ext_elog->mc.error_type) {
739     case RTAS_LOG_V6_MC_TYPE_UE:
740         ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED;
741         break;
742     case RTAS_LOG_V6_MC_TYPE_SLB:
743     case RTAS_LOG_V6_MC_TYPE_ERAT:
744     case RTAS_LOG_V6_MC_TYPE_TLB:
745         ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_EA_ADDR_PROVIDED;
746         break;
747     default:
748         break;
749     }
750 }
751 
752 static uint32_t spapr_mce_get_elog_type(PowerPCCPU *cpu, bool recovered,
753                                         struct mc_extended_log *ext_elog)
754 {
755     int i;
756     CPUPPCState *env = &cpu->env;
757     uint32_t summary;
758     uint64_t dsisr = env->spr[SPR_DSISR];
759 
760     summary = RTAS_LOG_VERSION_6 | RTAS_LOG_OPTIONAL_PART_PRESENT;
761     if (recovered) {
762         summary |= RTAS_LOG_DISPOSITION_FULLY_RECOVERED;
763     } else {
764         summary |= RTAS_LOG_DISPOSITION_NOT_RECOVERED;
765     }
766 
767     if (SRR1_MC_LOADSTORE(env->spr[SPR_SRR1])) {
768         for (i = 0; i < ARRAY_SIZE(mc_derror_table); i++) {
769             if (!(dsisr & mc_derror_table[i].dsisr_value)) {
770                 continue;
771             }
772 
773             ext_elog->mc.error_type = mc_derror_table[i].error_type;
774             ext_elog->mc.sub_err_type = mc_derror_table[i].error_subtype;
775             if (mc_derror_table[i].dar_valid) {
776                 ext_elog->mc.effective_address = cpu_to_be64(env->spr[SPR_DAR]);
777                 spapr_mc_set_ea_provided_flag(ext_elog);
778             }
779 
780             summary |= mc_derror_table[i].initiator
781                         | mc_derror_table[i].severity;
782 
783             return summary;
784         }
785     } else {
786         for (i = 0; i < ARRAY_SIZE(mc_ierror_table); i++) {
787             if ((env->spr[SPR_SRR1] & mc_ierror_table[i].srr1_mask) !=
788                     mc_ierror_table[i].srr1_value) {
789                 continue;
790             }
791 
792             ext_elog->mc.error_type = mc_ierror_table[i].error_type;
793             ext_elog->mc.sub_err_type = mc_ierror_table[i].error_subtype;
794             if (mc_ierror_table[i].nip_valid) {
795                 ext_elog->mc.effective_address = cpu_to_be64(env->nip);
796                 spapr_mc_set_ea_provided_flag(ext_elog);
797             }
798 
799             summary |= mc_ierror_table[i].initiator
800                         | mc_ierror_table[i].severity;
801 
802             return summary;
803         }
804     }
805 
806     summary |= RTAS_LOG_INITIATOR_CPU;
807     return summary;
808 }
809 
810 static void spapr_mce_dispatch_elog(SpaprMachineState *spapr, PowerPCCPU *cpu,
811                                     bool recovered)
812 {
813     CPUState *cs = CPU(cpu);
814     CPUPPCState *env = &cpu->env;
815     uint64_t rtas_addr;
816     struct rtas_error_log log;
817     struct mc_extended_log *ext_elog;
818     uint32_t summary;
819 
820     ext_elog = g_malloc0(sizeof(*ext_elog));
821     summary = spapr_mce_get_elog_type(cpu, recovered, ext_elog);
822 
823     log.summary = cpu_to_be32(summary);
824     log.extended_length = cpu_to_be32(sizeof(*ext_elog));
825 
826     spapr_init_v6hdr(&ext_elog->v6hdr);
827     ext_elog->mc.hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MC);
828     ext_elog->mc.hdr.section_length =
829                     cpu_to_be16(sizeof(struct rtas_event_log_v6_mc));
830     ext_elog->mc.hdr.section_version = 1;
831 
832     /* get rtas addr from fdt */
833     rtas_addr = spapr_get_rtas_addr();
834     if (!rtas_addr) {
835         if (!recovered) {
836             error_report(
837 "FWNMI: Unable to deliver machine check to guest: rtas_addr not found.");
838             qemu_system_guest_panicked(NULL);
839         } else {
840             warn_report(
841 "FWNMI: Unable to deliver machine check to guest: rtas_addr not found. "
842 "Machine check recovered.");
843         }
844         g_free(ext_elog);
845         return;
846     }
847 
848     /*
849      * By taking the interlock, we assume that the MCE will be
850      * delivered to the guest. CAUTION: don't add anything that could
851      * prevent the MCE to be delivered after this line, otherwise the
852      * guest won't be able to release the interlock and ultimately
853      * hang/crash?
854      */
855     spapr->fwnmi_machine_check_interlock = cpu->vcpu_id;
856 
857     stq_be_phys(&address_space_memory, rtas_addr + RTAS_ERROR_LOG_OFFSET,
858                 env->gpr[3]);
859     cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
860                               sizeof(env->gpr[3]), &log, sizeof(log));
861     cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
862                               sizeof(env->gpr[3]) + sizeof(log), ext_elog,
863                               sizeof(*ext_elog));
864     g_free(ext_elog);
865 
866     env->gpr[3] = rtas_addr + RTAS_ERROR_LOG_OFFSET;
867 
868     ppc_cpu_do_fwnmi_machine_check(cs, spapr->fwnmi_machine_check_addr);
869 }
870 
871 void spapr_mce_req_event(PowerPCCPU *cpu, bool recovered)
872 {
873     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
874     CPUState *cs = CPU(cpu);
875     int ret;
876     Error *local_err = NULL;
877 
878     if (spapr->fwnmi_machine_check_addr == -1) {
879         /* Non-FWNMI case, deliver it like an architected CPU interrupt. */
880         cs->exception_index = POWERPC_EXCP_MCHECK;
881         ppc_cpu_do_interrupt(cs);
882         return;
883     }
884 
885     /* Wait for FWNMI interlock. */
886     while (spapr->fwnmi_machine_check_interlock != -1) {
887         /*
888          * Check whether the same CPU got machine check error
889          * while still handling the mc error (i.e., before
890          * that CPU called "ibm,nmi-interlock")
891          */
892         if (spapr->fwnmi_machine_check_interlock == cpu->vcpu_id) {
893             if (!recovered) {
894                 error_report(
895 "FWNMI: Unable to deliver machine check to guest: nested machine check.");
896                 qemu_system_guest_panicked(NULL);
897             } else {
898                 warn_report(
899 "FWNMI: Unable to deliver machine check to guest: nested machine check. "
900 "Machine check recovered.");
901             }
902             return;
903         }
904         qemu_cond_wait_iothread(&spapr->fwnmi_machine_check_interlock_cond);
905         if (spapr->fwnmi_machine_check_addr == -1) {
906             /*
907              * If the machine was reset while waiting for the interlock,
908              * abort the delivery. The machine check applies to a context
909              * that no longer exists, so it wouldn't make sense to deliver
910              * it now.
911              */
912             return;
913         }
914     }
915 
916     ret = migrate_add_blocker(spapr->fwnmi_migration_blocker, &local_err);
917     if (ret == -EBUSY) {
918         /*
919          * We don't want to abort so we let the migration to continue.
920          * In a rare case, the machine check handler will run on the target.
921          * Though this is not preferable, it is better than aborting
922          * the migration or killing the VM. It is okay to call
923          * migrate_del_blocker on a blocker that was not added (which the
924          * nmi-interlock handler would do when it's called after this).
925          */
926         warn_report("Received a fwnmi while migration was in progress");
927     }
928 
929     spapr_mce_dispatch_elog(spapr, cpu, recovered);
930 }
931 
932 static void check_exception(PowerPCCPU *cpu, SpaprMachineState *spapr,
933                             uint32_t token, uint32_t nargs,
934                             target_ulong args,
935                             uint32_t nret, target_ulong rets)
936 {
937     uint32_t mask, buf, len, event_len;
938     uint64_t xinfo;
939     SpaprEventLogEntry *event;
940     struct rtas_error_log header;
941     int i;
942 
943     if ((nargs < 6) || (nargs > 7) || nret != 1) {
944         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
945         return;
946     }
947 
948     xinfo = rtas_ld(args, 1);
949     mask = rtas_ld(args, 2);
950     buf = rtas_ld(args, 4);
951     len = rtas_ld(args, 5);
952     if (nargs == 7) {
953         xinfo |= (uint64_t)rtas_ld(args, 6) << 32;
954     }
955 
956     event = rtas_event_log_dequeue(spapr, mask);
957     if (!event) {
958         goto out_no_events;
959     }
960 
961     event_len = event->extended_length + sizeof(header);
962 
963     if (event_len < len) {
964         len = event_len;
965     }
966 
967     header.summary = cpu_to_be32(event->summary);
968     header.extended_length = cpu_to_be32(event->extended_length);
969     cpu_physical_memory_write(buf, &header, sizeof(header));
970     cpu_physical_memory_write(buf + sizeof(header), event->extended_log,
971                               event->extended_length);
972     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
973     g_free(event->extended_log);
974     g_free(event);
975 
976     /* according to PAPR+, the IRQ must be left asserted, or re-asserted, if
977      * there are still pending events to be fetched via check-exception. We
978      * do the latter here, since our code relies on edge-triggered
979      * interrupts.
980      */
981     for (i = 0; i < EVENT_CLASS_MAX; i++) {
982         if (rtas_event_log_contains(spapr, EVENT_CLASS_MASK(i))) {
983             const SpaprEventSource *source =
984                 spapr_event_sources_get_source(spapr->event_sources, i);
985 
986             g_assert(source->enabled);
987             qemu_irq_pulse(spapr_qirq(spapr, source->irq));
988         }
989     }
990 
991     return;
992 
993 out_no_events:
994     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
995 }
996 
997 static void event_scan(PowerPCCPU *cpu, SpaprMachineState *spapr,
998                        uint32_t token, uint32_t nargs,
999                        target_ulong args,
1000                        uint32_t nret, target_ulong rets)
1001 {
1002     int i;
1003     if (nargs != 4 || nret != 1) {
1004         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1005         return;
1006     }
1007 
1008     for (i = 0; i < EVENT_CLASS_MAX; i++) {
1009         if (rtas_event_log_contains(spapr, EVENT_CLASS_MASK(i))) {
1010             const SpaprEventSource *source =
1011                 spapr_event_sources_get_source(spapr->event_sources, i);
1012 
1013             g_assert(source->enabled);
1014             qemu_irq_pulse(spapr_qirq(spapr, source->irq));
1015         }
1016     }
1017 
1018     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
1019 }
1020 
1021 void spapr_clear_pending_events(SpaprMachineState *spapr)
1022 {
1023     SpaprEventLogEntry *entry = NULL, *next_entry;
1024 
1025     QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
1026         QTAILQ_REMOVE(&spapr->pending_events, entry, next);
1027         g_free(entry->extended_log);
1028         g_free(entry);
1029     }
1030 }
1031 
1032 void spapr_clear_pending_hotplug_events(SpaprMachineState *spapr)
1033 {
1034     SpaprEventLogEntry *entry = NULL, *next_entry;
1035 
1036     QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
1037         if (spapr_event_log_entry_type(entry) == RTAS_LOG_TYPE_HOTPLUG) {
1038             QTAILQ_REMOVE(&spapr->pending_events, entry, next);
1039             g_free(entry->extended_log);
1040             g_free(entry);
1041         }
1042     }
1043 }
1044 
1045 void spapr_events_init(SpaprMachineState *spapr)
1046 {
1047     int epow_irq = SPAPR_IRQ_EPOW;
1048 
1049     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1050         epow_irq = spapr_irq_findone(spapr, &error_fatal);
1051     }
1052 
1053     spapr_irq_claim(spapr, epow_irq, false, &error_fatal);
1054 
1055     QTAILQ_INIT(&spapr->pending_events);
1056 
1057     spapr->event_sources = spapr_event_sources_new();
1058 
1059     spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_EPOW,
1060                                  epow_irq);
1061 
1062     /* NOTE: if machine supports modern/dedicated hotplug event source,
1063      * we add it to the device-tree unconditionally. This means we may
1064      * have cases where the source is enabled in QEMU, but unused by the
1065      * guest because it does not support modern hotplug events, so we
1066      * take care to rely on checking for negotiation of OV5_HP_EVT option
1067      * before attempting to use it to signal events, rather than simply
1068      * checking that it's enabled.
1069      */
1070     if (spapr->use_hotplug_event_source) {
1071         int hp_irq = SPAPR_IRQ_HOTPLUG;
1072 
1073         if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1074             hp_irq = spapr_irq_findone(spapr, &error_fatal);
1075         }
1076 
1077         spapr_irq_claim(spapr, hp_irq, false, &error_fatal);
1078 
1079         spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_HOT_PLUG,
1080                                      hp_irq);
1081     }
1082 
1083     spapr->epow_notifier.notify = spapr_powerdown_req;
1084     qemu_register_powerdown_notifier(&spapr->epow_notifier);
1085     spapr_rtas_register(RTAS_CHECK_EXCEPTION, "check-exception",
1086                         check_exception);
1087     spapr_rtas_register(RTAS_EVENT_SCAN, "event-scan", event_scan);
1088 }
1089