xref: /openbmc/qemu/hw/ppc/spapr_events.c (revision 2f95279a)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * RTAS events handling
5  *
6  * Copyright (c) 2012 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/runstate.h"
32 
33 #include "hw/ppc/fdt.h"
34 #include "hw/ppc/spapr.h"
35 #include "hw/ppc/spapr_vio.h"
36 #include "hw/pci/pci.h"
37 #include "hw/irq.h"
38 #include "hw/pci-host/spapr.h"
39 #include "hw/ppc/spapr_drc.h"
40 #include "qemu/help_option.h"
41 #include "qemu/bcd.h"
42 #include "qemu/main-loop.h"
43 #include "hw/ppc/spapr_ovec.h"
44 #include <libfdt.h>
45 #include "migration/blocker.h"
46 
47 #define RTAS_LOG_VERSION_MASK                   0xff000000
48 #define   RTAS_LOG_VERSION_6                    0x06000000
49 #define RTAS_LOG_SEVERITY_MASK                  0x00e00000
50 #define   RTAS_LOG_SEVERITY_ALREADY_REPORTED    0x00c00000
51 #define   RTAS_LOG_SEVERITY_FATAL               0x00a00000
52 #define   RTAS_LOG_SEVERITY_ERROR               0x00800000
53 #define   RTAS_LOG_SEVERITY_ERROR_SYNC          0x00600000
54 #define   RTAS_LOG_SEVERITY_WARNING             0x00400000
55 #define   RTAS_LOG_SEVERITY_EVENT               0x00200000
56 #define   RTAS_LOG_SEVERITY_NO_ERROR            0x00000000
57 #define RTAS_LOG_DISPOSITION_MASK               0x00180000
58 #define   RTAS_LOG_DISPOSITION_FULLY_RECOVERED  0x00000000
59 #define   RTAS_LOG_DISPOSITION_LIMITED_RECOVERY 0x00080000
60 #define   RTAS_LOG_DISPOSITION_NOT_RECOVERED    0x00100000
61 #define RTAS_LOG_OPTIONAL_PART_PRESENT          0x00040000
62 #define RTAS_LOG_INITIATOR_MASK                 0x0000f000
63 #define   RTAS_LOG_INITIATOR_UNKNOWN            0x00000000
64 #define   RTAS_LOG_INITIATOR_CPU                0x00001000
65 #define   RTAS_LOG_INITIATOR_PCI                0x00002000
66 #define   RTAS_LOG_INITIATOR_MEMORY             0x00004000
67 #define   RTAS_LOG_INITIATOR_HOTPLUG            0x00006000
68 #define RTAS_LOG_TARGET_MASK                    0x00000f00
69 #define   RTAS_LOG_TARGET_UNKNOWN               0x00000000
70 #define   RTAS_LOG_TARGET_CPU                   0x00000100
71 #define   RTAS_LOG_TARGET_PCI                   0x00000200
72 #define   RTAS_LOG_TARGET_MEMORY                0x00000400
73 #define   RTAS_LOG_TARGET_HOTPLUG               0x00000600
74 #define RTAS_LOG_TYPE_MASK                      0x000000ff
75 #define   RTAS_LOG_TYPE_OTHER                   0x00000000
76 #define   RTAS_LOG_TYPE_RETRY                   0x00000001
77 #define   RTAS_LOG_TYPE_TCE_ERR                 0x00000002
78 #define   RTAS_LOG_TYPE_INTERN_DEV_FAIL         0x00000003
79 #define   RTAS_LOG_TYPE_TIMEOUT                 0x00000004
80 #define   RTAS_LOG_TYPE_DATA_PARITY             0x00000005
81 #define   RTAS_LOG_TYPE_ADDR_PARITY             0x00000006
82 #define   RTAS_LOG_TYPE_CACHE_PARITY            0x00000007
83 #define   RTAS_LOG_TYPE_ADDR_INVALID            0x00000008
84 #define   RTAS_LOG_TYPE_ECC_UNCORR              0x00000009
85 #define   RTAS_LOG_TYPE_ECC_CORR                0x0000000a
86 #define   RTAS_LOG_TYPE_EPOW                    0x00000040
87 #define   RTAS_LOG_TYPE_HOTPLUG                 0x000000e5
88 
89 struct rtas_error_log {
90     uint32_t summary;
91     uint32_t extended_length;
92 } QEMU_PACKED;
93 
94 struct rtas_event_log_v6 {
95     uint8_t b0;
96 #define RTAS_LOG_V6_B0_VALID                          0x80
97 #define RTAS_LOG_V6_B0_UNRECOVERABLE_ERROR            0x40
98 #define RTAS_LOG_V6_B0_RECOVERABLE_ERROR              0x20
99 #define RTAS_LOG_V6_B0_DEGRADED_OPERATION             0x10
100 #define RTAS_LOG_V6_B0_PREDICTIVE_ERROR               0x08
101 #define RTAS_LOG_V6_B0_NEW_LOG                        0x04
102 #define RTAS_LOG_V6_B0_BIGENDIAN                      0x02
103     uint8_t _resv1;
104     uint8_t b2;
105 #define RTAS_LOG_V6_B2_POWERPC_FORMAT                 0x80
106 #define RTAS_LOG_V6_B2_LOG_FORMAT_MASK                0x0f
107 #define   RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT    0x0e
108     uint8_t _resv2[9];
109     uint32_t company;
110 #define RTAS_LOG_V6_COMPANY_IBM                 0x49424d00 /* IBM<null> */
111 } QEMU_PACKED;
112 
113 struct rtas_event_log_v6_section_header {
114     uint16_t section_id;
115     uint16_t section_length;
116     uint8_t section_version;
117     uint8_t section_subtype;
118     uint16_t creator_component_id;
119 } QEMU_PACKED;
120 
121 struct rtas_event_log_v6_maina {
122 #define RTAS_LOG_V6_SECTION_ID_MAINA                0x5048 /* PH */
123     struct rtas_event_log_v6_section_header hdr;
124     uint32_t creation_date; /* BCD: YYYYMMDD */
125     uint32_t creation_time; /* BCD: HHMMSS00 */
126     uint8_t _platform1[8];
127     char creator_id;
128     uint8_t _resv1[2];
129     uint8_t section_count;
130     uint8_t _resv2[4];
131     uint8_t _platform2[8];
132     uint32_t plid;
133     uint8_t _platform3[4];
134 } QEMU_PACKED;
135 
136 struct rtas_event_log_v6_mainb {
137 #define RTAS_LOG_V6_SECTION_ID_MAINB                0x5548 /* UH */
138     struct rtas_event_log_v6_section_header hdr;
139     uint8_t subsystem_id;
140     uint8_t _platform1;
141     uint8_t event_severity;
142     uint8_t event_subtype;
143     uint8_t _platform2[4];
144     uint8_t _resv1[2];
145     uint16_t action_flags;
146     uint8_t _resv2[4];
147 } QEMU_PACKED;
148 
149 struct rtas_event_log_v6_epow {
150 #define RTAS_LOG_V6_SECTION_ID_EPOW                 0x4550 /* EP */
151     struct rtas_event_log_v6_section_header hdr;
152     uint8_t sensor_value;
153 #define RTAS_LOG_V6_EPOW_ACTION_RESET                    0
154 #define RTAS_LOG_V6_EPOW_ACTION_WARN_COOLING             1
155 #define RTAS_LOG_V6_EPOW_ACTION_WARN_POWER               2
156 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN          3
157 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_HALT              4
158 #define RTAS_LOG_V6_EPOW_ACTION_MAIN_ENCLOSURE           5
159 #define RTAS_LOG_V6_EPOW_ACTION_POWER_OFF                7
160     uint8_t event_modifier;
161 #define RTAS_LOG_V6_EPOW_MODIFIER_NORMAL                 1
162 #define RTAS_LOG_V6_EPOW_MODIFIER_ON_UPS                 2
163 #define RTAS_LOG_V6_EPOW_MODIFIER_CRITICAL               3
164 #define RTAS_LOG_V6_EPOW_MODIFIER_TEMPERATURE            4
165     uint8_t extended_modifier;
166 #define RTAS_LOG_V6_EPOW_XMODIFIER_SYSTEM_WIDE           0
167 #define RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC    1
168     uint8_t _resv;
169     uint64_t reason_code;
170 } QEMU_PACKED;
171 
172 struct epow_extended_log {
173     struct rtas_event_log_v6 v6hdr;
174     struct rtas_event_log_v6_maina maina;
175     struct rtas_event_log_v6_mainb mainb;
176     struct rtas_event_log_v6_epow epow;
177 } QEMU_PACKED;
178 
179 union drc_identifier {
180     uint32_t index;
181     uint32_t count;
182     struct {
183         uint32_t count;
184         uint32_t index;
185     } count_indexed;
186     char name[1];
187 } QEMU_PACKED;
188 
189 struct rtas_event_log_v6_hp {
190 #define RTAS_LOG_V6_SECTION_ID_HOTPLUG              0x4850 /* HP */
191     struct rtas_event_log_v6_section_header hdr;
192     uint8_t hotplug_type;
193 #define RTAS_LOG_V6_HP_TYPE_CPU                          1
194 #define RTAS_LOG_V6_HP_TYPE_MEMORY                       2
195 #define RTAS_LOG_V6_HP_TYPE_SLOT                         3
196 #define RTAS_LOG_V6_HP_TYPE_PHB                          4
197 #define RTAS_LOG_V6_HP_TYPE_PCI                          5
198 #define RTAS_LOG_V6_HP_TYPE_PMEM                         6
199     uint8_t hotplug_action;
200 #define RTAS_LOG_V6_HP_ACTION_ADD                        1
201 #define RTAS_LOG_V6_HP_ACTION_REMOVE                     2
202     uint8_t hotplug_identifier;
203 #define RTAS_LOG_V6_HP_ID_DRC_NAME                       1
204 #define RTAS_LOG_V6_HP_ID_DRC_INDEX                      2
205 #define RTAS_LOG_V6_HP_ID_DRC_COUNT                      3
206 #define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED              4
207     uint8_t reserved;
208     union drc_identifier drc_id;
209 } QEMU_PACKED;
210 
211 struct hp_extended_log {
212     struct rtas_event_log_v6 v6hdr;
213     struct rtas_event_log_v6_maina maina;
214     struct rtas_event_log_v6_mainb mainb;
215     struct rtas_event_log_v6_hp hp;
216 } QEMU_PACKED;
217 
218 struct rtas_event_log_v6_mc {
219 #define RTAS_LOG_V6_SECTION_ID_MC                   0x4D43 /* MC */
220     struct rtas_event_log_v6_section_header hdr;
221     uint32_t fru_id;
222     uint32_t proc_id;
223     uint8_t error_type;
224 #define RTAS_LOG_V6_MC_TYPE_UE                           0
225 #define RTAS_LOG_V6_MC_TYPE_SLB                          1
226 #define RTAS_LOG_V6_MC_TYPE_ERAT                         2
227 #define RTAS_LOG_V6_MC_TYPE_TLB                          4
228 #define RTAS_LOG_V6_MC_TYPE_D_CACHE                      5
229 #define RTAS_LOG_V6_MC_TYPE_I_CACHE                      7
230     uint8_t sub_err_type;
231 #define RTAS_LOG_V6_MC_UE_INDETERMINATE                  0
232 #define RTAS_LOG_V6_MC_UE_IFETCH                         1
233 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH         2
234 #define RTAS_LOG_V6_MC_UE_LOAD_STORE                     3
235 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE     4
236 #define RTAS_LOG_V6_MC_SLB_PARITY                        0
237 #define RTAS_LOG_V6_MC_SLB_MULTIHIT                      1
238 #define RTAS_LOG_V6_MC_SLB_INDETERMINATE                 2
239 #define RTAS_LOG_V6_MC_ERAT_PARITY                       1
240 #define RTAS_LOG_V6_MC_ERAT_MULTIHIT                     2
241 #define RTAS_LOG_V6_MC_ERAT_INDETERMINATE                3
242 #define RTAS_LOG_V6_MC_TLB_PARITY                        1
243 #define RTAS_LOG_V6_MC_TLB_MULTIHIT                      2
244 #define RTAS_LOG_V6_MC_TLB_INDETERMINATE                 3
245 /*
246  * Per PAPR,
247  * For UE error type, set bit 1 of sub_err_type to indicate effective addr is
248  * provided. For other error types (SLB/ERAT/TLB), set bit 0 to indicate
249  * same.
250  */
251 #define RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED               0x40
252 #define RTAS_LOG_V6_MC_EA_ADDR_PROVIDED                  0x80
253     uint8_t reserved_1[6];
254     uint64_t effective_address;
255     uint64_t logical_address;
256 } QEMU_PACKED;
257 
258 struct mc_extended_log {
259     struct rtas_event_log_v6 v6hdr;
260     struct rtas_event_log_v6_mc mc;
261 } QEMU_PACKED;
262 
263 struct MC_ierror_table {
264     unsigned long srr1_mask;
265     unsigned long srr1_value;
266     bool nip_valid; /* nip is a valid indicator of faulting address */
267     uint8_t error_type;
268     uint8_t error_subtype;
269     unsigned int initiator;
270     unsigned int severity;
271 };
272 
273 static const struct MC_ierror_table mc_ierror_table[] = {
274 { 0x00000000081c0000, 0x0000000000040000, true,
275   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_IFETCH,
276   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
277 { 0x00000000081c0000, 0x0000000000080000, true,
278   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
279   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
280 { 0x00000000081c0000, 0x00000000000c0000, true,
281   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT,
282   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
283 { 0x00000000081c0000, 0x0000000000100000, true,
284   RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
285   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
286 { 0x00000000081c0000, 0x0000000000140000, true,
287   RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
288   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
289 { 0x00000000081c0000, 0x0000000000180000, true,
290   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH,
291   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
292 
293 struct MC_derror_table {
294     unsigned long dsisr_value;
295     bool dar_valid; /* dar is a valid indicator of faulting address */
296     uint8_t error_type;
297     uint8_t error_subtype;
298     unsigned int initiator;
299     unsigned int severity;
300 };
301 
302 static const struct MC_derror_table mc_derror_table[] = {
303 { 0x00008000, false,
304   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_LOAD_STORE,
305   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
306 { 0x00004000, true,
307   RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE,
308   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
309 { 0x00000800, true,
310   RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
311   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
312 { 0x00000400, true,
313   RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
314   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
315 { 0x00000080, true,
316   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT,  /* Before PARITY */
317   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
318 { 0x00000100, true,
319   RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
320   RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
321 
322 #define SRR1_MC_LOADSTORE(srr1) ((srr1) & PPC_BIT(42))
323 
324 typedef enum EventClass {
325     EVENT_CLASS_INTERNAL_ERRORS     = 0,
326     EVENT_CLASS_EPOW                = 1,
327     EVENT_CLASS_RESERVED            = 2,
328     EVENT_CLASS_HOT_PLUG            = 3,
329     EVENT_CLASS_IO                  = 4,
330     EVENT_CLASS_MAX
331 } EventClassIndex;
332 #define EVENT_CLASS_MASK(index) (1 << (31 - index))
333 
334 static const char * const event_names[EVENT_CLASS_MAX] = {
335     [EVENT_CLASS_INTERNAL_ERRORS]       = "internal-errors",
336     [EVENT_CLASS_EPOW]                  = "epow-events",
337     [EVENT_CLASS_HOT_PLUG]              = "hot-plug-events",
338     [EVENT_CLASS_IO]                    = "ibm,io-events",
339 };
340 
341 struct SpaprEventSource {
342     int irq;
343     uint32_t mask;
344     bool enabled;
345 };
346 
347 static SpaprEventSource *spapr_event_sources_new(void)
348 {
349     return g_new0(SpaprEventSource, EVENT_CLASS_MAX);
350 }
351 
352 static void spapr_event_sources_register(SpaprEventSource *event_sources,
353                                         EventClassIndex index, int irq)
354 {
355     /* we only support 1 irq per event class at the moment */
356     g_assert(event_sources);
357     g_assert(!event_sources[index].enabled);
358     event_sources[index].irq = irq;
359     event_sources[index].mask = EVENT_CLASS_MASK(index);
360     event_sources[index].enabled = true;
361 }
362 
363 static const SpaprEventSource *
364 spapr_event_sources_get_source(SpaprEventSource *event_sources,
365                                EventClassIndex index)
366 {
367     g_assert(index < EVENT_CLASS_MAX);
368     g_assert(event_sources);
369 
370     return &event_sources[index];
371 }
372 
373 void spapr_dt_events(SpaprMachineState *spapr, void *fdt)
374 {
375     uint32_t irq_ranges[EVENT_CLASS_MAX * 2];
376     int i, count = 0, event_sources;
377     SpaprEventSource *events = spapr->event_sources;
378 
379     g_assert(events);
380 
381     _FDT(event_sources = fdt_add_subnode(fdt, 0, "event-sources"));
382 
383     for (i = 0, count = 0; i < EVENT_CLASS_MAX; i++) {
384         int node_offset;
385         uint32_t interrupts[2];
386         const SpaprEventSource *source =
387             spapr_event_sources_get_source(events, i);
388         const char *source_name = event_names[i];
389 
390         if (!source->enabled) {
391             continue;
392         }
393 
394         spapr_dt_irq(interrupts, source->irq, false);
395 
396         _FDT(node_offset = fdt_add_subnode(fdt, event_sources, source_name));
397         _FDT(fdt_setprop(fdt, node_offset, "interrupts", interrupts,
398                          sizeof(interrupts)));
399 
400         irq_ranges[count++] = interrupts[0];
401         irq_ranges[count++] = cpu_to_be32(1);
402     }
403 
404     _FDT((fdt_setprop(fdt, event_sources, "interrupt-controller", NULL, 0)));
405     _FDT((fdt_setprop_cell(fdt, event_sources, "#interrupt-cells", 2)));
406     _FDT((fdt_setprop(fdt, event_sources, "interrupt-ranges",
407                       irq_ranges, count * sizeof(uint32_t))));
408 }
409 
410 static const SpaprEventSource *
411 rtas_event_log_to_source(SpaprMachineState *spapr, int log_type)
412 {
413     const SpaprEventSource *source;
414 
415     g_assert(spapr->event_sources);
416 
417     switch (log_type) {
418     case RTAS_LOG_TYPE_HOTPLUG:
419         source = spapr_event_sources_get_source(spapr->event_sources,
420                                                 EVENT_CLASS_HOT_PLUG);
421         if (spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT)) {
422             g_assert(source->enabled);
423             break;
424         }
425         /* fall through back to epow for legacy hotplug interrupt source */
426     case RTAS_LOG_TYPE_EPOW:
427         source = spapr_event_sources_get_source(spapr->event_sources,
428                                                 EVENT_CLASS_EPOW);
429         break;
430     default:
431         source = NULL;
432     }
433 
434     return source;
435 }
436 
437 static int rtas_event_log_to_irq(SpaprMachineState *spapr, int log_type)
438 {
439     const SpaprEventSource *source;
440 
441     source = rtas_event_log_to_source(spapr, log_type);
442     g_assert(source);
443     g_assert(source->enabled);
444 
445     return source->irq;
446 }
447 
448 static uint32_t spapr_event_log_entry_type(SpaprEventLogEntry *entry)
449 {
450     return entry->summary & RTAS_LOG_TYPE_MASK;
451 }
452 
453 static void rtas_event_log_queue(SpaprMachineState *spapr,
454                                  SpaprEventLogEntry *entry)
455 {
456     QTAILQ_INSERT_TAIL(&spapr->pending_events, entry, next);
457 }
458 
459 static SpaprEventLogEntry *rtas_event_log_dequeue(SpaprMachineState *spapr,
460                                                   uint32_t event_mask)
461 {
462     SpaprEventLogEntry *entry = NULL;
463 
464     QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
465         const SpaprEventSource *source =
466             rtas_event_log_to_source(spapr,
467                                      spapr_event_log_entry_type(entry));
468 
469         g_assert(source);
470         if (source->mask & event_mask) {
471             break;
472         }
473     }
474 
475     if (entry) {
476         QTAILQ_REMOVE(&spapr->pending_events, entry, next);
477     }
478 
479     return entry;
480 }
481 
482 static bool rtas_event_log_contains(SpaprMachineState *spapr, uint32_t event_mask)
483 {
484     SpaprEventLogEntry *entry = NULL;
485 
486     QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
487         const SpaprEventSource *source =
488             rtas_event_log_to_source(spapr,
489                                      spapr_event_log_entry_type(entry));
490 
491         if (source->mask & event_mask) {
492             return true;
493         }
494     }
495 
496     return false;
497 }
498 
499 static uint32_t next_plid;
500 
501 static void spapr_init_v6hdr(struct rtas_event_log_v6 *v6hdr)
502 {
503     v6hdr->b0 = RTAS_LOG_V6_B0_VALID | RTAS_LOG_V6_B0_NEW_LOG
504         | RTAS_LOG_V6_B0_BIGENDIAN;
505     v6hdr->b2 = RTAS_LOG_V6_B2_POWERPC_FORMAT
506         | RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT;
507     v6hdr->company = cpu_to_be32(RTAS_LOG_V6_COMPANY_IBM);
508 }
509 
510 static void spapr_init_maina(SpaprMachineState *spapr,
511                              struct rtas_event_log_v6_maina *maina,
512                              int section_count)
513 {
514     struct tm tm;
515     int year;
516 
517     maina->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINA);
518     maina->hdr.section_length = cpu_to_be16(sizeof(*maina));
519     /* FIXME: section version, subtype and creator id? */
520     spapr_rtc_read(&spapr->rtc, &tm, NULL);
521     year = tm.tm_year + 1900;
522     maina->creation_date = cpu_to_be32((to_bcd(year / 100) << 24)
523                                        | (to_bcd(year % 100) << 16)
524                                        | (to_bcd(tm.tm_mon + 1) << 8)
525                                        | to_bcd(tm.tm_mday));
526     maina->creation_time = cpu_to_be32((to_bcd(tm.tm_hour) << 24)
527                                        | (to_bcd(tm.tm_min) << 16)
528                                        | (to_bcd(tm.tm_sec) << 8));
529     maina->creator_id = 'H'; /* Hypervisor */
530     maina->section_count = section_count;
531     maina->plid = next_plid++;
532 }
533 
534 static void spapr_powerdown_req(Notifier *n, void *opaque)
535 {
536     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
537     SpaprEventLogEntry *entry;
538     struct rtas_event_log_v6 *v6hdr;
539     struct rtas_event_log_v6_maina *maina;
540     struct rtas_event_log_v6_mainb *mainb;
541     struct rtas_event_log_v6_epow *epow;
542     struct epow_extended_log *new_epow;
543 
544     entry = g_new(SpaprEventLogEntry, 1);
545     new_epow = g_malloc0(sizeof(*new_epow));
546     entry->extended_log = new_epow;
547 
548     v6hdr = &new_epow->v6hdr;
549     maina = &new_epow->maina;
550     mainb = &new_epow->mainb;
551     epow = &new_epow->epow;
552 
553     entry->summary = RTAS_LOG_VERSION_6
554                        | RTAS_LOG_SEVERITY_EVENT
555                        | RTAS_LOG_DISPOSITION_NOT_RECOVERED
556                        | RTAS_LOG_OPTIONAL_PART_PRESENT
557                        | RTAS_LOG_TYPE_EPOW;
558     entry->extended_length = sizeof(*new_epow);
559 
560     spapr_init_v6hdr(v6hdr);
561     spapr_init_maina(spapr, maina, 3 /* Main-A, Main-B and EPOW */);
562 
563     mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
564     mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
565     /* FIXME: section version, subtype and creator id? */
566     mainb->subsystem_id = 0xa0; /* External environment */
567     mainb->event_severity = 0x00; /* Informational / non-error */
568     mainb->event_subtype = 0xd0; /* Normal shutdown */
569 
570     epow->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_EPOW);
571     epow->hdr.section_length = cpu_to_be16(sizeof(*epow));
572     epow->hdr.section_version = 2; /* includes extended modifier */
573     /* FIXME: section subtype and creator id? */
574     epow->sensor_value = RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN;
575     epow->event_modifier = RTAS_LOG_V6_EPOW_MODIFIER_NORMAL;
576     epow->extended_modifier = RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC;
577 
578     rtas_event_log_queue(spapr, entry);
579 
580     qemu_irq_pulse(spapr_qirq(spapr,
581                    rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_EPOW)));
582 }
583 
584 static void spapr_hotplug_req_event(uint8_t hp_id, uint8_t hp_action,
585                                     SpaprDrcType drc_type,
586                                     union drc_identifier *drc_id)
587 {
588     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
589     SpaprEventLogEntry *entry;
590     struct hp_extended_log *new_hp;
591     struct rtas_event_log_v6 *v6hdr;
592     struct rtas_event_log_v6_maina *maina;
593     struct rtas_event_log_v6_mainb *mainb;
594     struct rtas_event_log_v6_hp *hp;
595 
596     entry = g_new(SpaprEventLogEntry, 1);
597     new_hp = g_new0(struct hp_extended_log, 1);
598     entry->extended_log = new_hp;
599 
600     v6hdr = &new_hp->v6hdr;
601     maina = &new_hp->maina;
602     mainb = &new_hp->mainb;
603     hp = &new_hp->hp;
604 
605     entry->summary = RTAS_LOG_VERSION_6
606         | RTAS_LOG_SEVERITY_EVENT
607         | RTAS_LOG_DISPOSITION_NOT_RECOVERED
608         | RTAS_LOG_OPTIONAL_PART_PRESENT
609         | RTAS_LOG_INITIATOR_HOTPLUG
610         | RTAS_LOG_TYPE_HOTPLUG;
611     entry->extended_length = sizeof(*new_hp);
612 
613     spapr_init_v6hdr(v6hdr);
614     spapr_init_maina(spapr, maina, 3 /* Main-A, Main-B, HP */);
615 
616     mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
617     mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
618     mainb->subsystem_id = 0x80; /* External environment */
619     mainb->event_severity = 0x00; /* Informational / non-error */
620     mainb->event_subtype = 0x00; /* Normal shutdown */
621 
622     hp->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_HOTPLUG);
623     hp->hdr.section_length = cpu_to_be16(sizeof(*hp));
624     hp->hdr.section_version = 1; /* includes extended modifier */
625     hp->hotplug_action = hp_action;
626     hp->hotplug_identifier = hp_id;
627 
628     switch (drc_type) {
629     case SPAPR_DR_CONNECTOR_TYPE_PCI:
630         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PCI;
631         break;
632     case SPAPR_DR_CONNECTOR_TYPE_LMB:
633         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_MEMORY;
634         break;
635     case SPAPR_DR_CONNECTOR_TYPE_CPU:
636         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_CPU;
637         break;
638     case SPAPR_DR_CONNECTOR_TYPE_PHB:
639         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PHB;
640         break;
641     case SPAPR_DR_CONNECTOR_TYPE_PMEM:
642         hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PMEM;
643         break;
644     default:
645         /* we shouldn't be signaling hotplug events for resources
646          * that don't support them
647          */
648         g_assert(false);
649         return;
650     }
651 
652     if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT) {
653         hp->drc_id.count = cpu_to_be32(drc_id->count);
654     } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_INDEX) {
655         hp->drc_id.index = cpu_to_be32(drc_id->index);
656     } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED) {
657         /* we should not be using count_indexed value unless the guest
658          * supports dedicated hotplug event source
659          */
660         g_assert(spapr_memory_hot_unplug_supported(spapr));
661         hp->drc_id.count_indexed.count =
662             cpu_to_be32(drc_id->count_indexed.count);
663         hp->drc_id.count_indexed.index =
664             cpu_to_be32(drc_id->count_indexed.index);
665     }
666 
667     rtas_event_log_queue(spapr, entry);
668 
669     qemu_irq_pulse(spapr_qirq(spapr,
670                    rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_HOTPLUG)));
671 }
672 
673 void spapr_hotplug_req_add_by_index(SpaprDrc *drc)
674 {
675     SpaprDrcType drc_type = spapr_drc_type(drc);
676     union drc_identifier drc_id;
677 
678     drc_id.index = spapr_drc_index(drc);
679     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
680                             RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
681 }
682 
683 void spapr_hotplug_req_remove_by_index(SpaprDrc *drc)
684 {
685     SpaprDrcType drc_type = spapr_drc_type(drc);
686     union drc_identifier drc_id;
687 
688     drc_id.index = spapr_drc_index(drc);
689     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
690                             RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
691 }
692 
693 void spapr_hotplug_req_add_by_count(SpaprDrcType drc_type,
694                                        uint32_t count)
695 {
696     union drc_identifier drc_id;
697 
698     drc_id.count = count;
699     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
700                             RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
701 }
702 
703 void spapr_hotplug_req_remove_by_count(SpaprDrcType drc_type,
704                                           uint32_t count)
705 {
706     union drc_identifier drc_id;
707 
708     drc_id.count = count;
709     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
710                             RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
711 }
712 
713 void spapr_hotplug_req_add_by_count_indexed(SpaprDrcType drc_type,
714                                             uint32_t count, uint32_t index)
715 {
716     union drc_identifier drc_id;
717 
718     drc_id.count_indexed.count = count;
719     drc_id.count_indexed.index = index;
720     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
721                             RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
722 }
723 
724 void spapr_hotplug_req_remove_by_count_indexed(SpaprDrcType drc_type,
725                                                uint32_t count, uint32_t index)
726 {
727     union drc_identifier drc_id;
728 
729     drc_id.count_indexed.count = count;
730     drc_id.count_indexed.index = index;
731     spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
732                             RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
733 }
734 
735 static void spapr_mc_set_ea_provided_flag(struct mc_extended_log *ext_elog)
736 {
737     switch (ext_elog->mc.error_type) {
738     case RTAS_LOG_V6_MC_TYPE_UE:
739         ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED;
740         break;
741     case RTAS_LOG_V6_MC_TYPE_SLB:
742     case RTAS_LOG_V6_MC_TYPE_ERAT:
743     case RTAS_LOG_V6_MC_TYPE_TLB:
744         ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_EA_ADDR_PROVIDED;
745         break;
746     default:
747         break;
748     }
749 }
750 
751 static uint32_t spapr_mce_get_elog_type(PowerPCCPU *cpu, bool recovered,
752                                         struct mc_extended_log *ext_elog)
753 {
754     int i;
755     CPUPPCState *env = &cpu->env;
756     uint32_t summary;
757     uint64_t dsisr = env->spr[SPR_DSISR];
758 
759     summary = RTAS_LOG_VERSION_6 | RTAS_LOG_OPTIONAL_PART_PRESENT;
760     if (recovered) {
761         summary |= RTAS_LOG_DISPOSITION_FULLY_RECOVERED;
762     } else {
763         summary |= RTAS_LOG_DISPOSITION_NOT_RECOVERED;
764     }
765 
766     if (SRR1_MC_LOADSTORE(env->spr[SPR_SRR1])) {
767         for (i = 0; i < ARRAY_SIZE(mc_derror_table); i++) {
768             if (!(dsisr & mc_derror_table[i].dsisr_value)) {
769                 continue;
770             }
771 
772             ext_elog->mc.error_type = mc_derror_table[i].error_type;
773             ext_elog->mc.sub_err_type = mc_derror_table[i].error_subtype;
774             if (mc_derror_table[i].dar_valid) {
775                 ext_elog->mc.effective_address = cpu_to_be64(env->spr[SPR_DAR]);
776                 spapr_mc_set_ea_provided_flag(ext_elog);
777             }
778 
779             summary |= mc_derror_table[i].initiator
780                         | mc_derror_table[i].severity;
781 
782             return summary;
783         }
784     } else {
785         for (i = 0; i < ARRAY_SIZE(mc_ierror_table); i++) {
786             if ((env->spr[SPR_SRR1] & mc_ierror_table[i].srr1_mask) !=
787                     mc_ierror_table[i].srr1_value) {
788                 continue;
789             }
790 
791             ext_elog->mc.error_type = mc_ierror_table[i].error_type;
792             ext_elog->mc.sub_err_type = mc_ierror_table[i].error_subtype;
793             if (mc_ierror_table[i].nip_valid) {
794                 ext_elog->mc.effective_address = cpu_to_be64(env->nip);
795                 spapr_mc_set_ea_provided_flag(ext_elog);
796             }
797 
798             summary |= mc_ierror_table[i].initiator
799                         | mc_ierror_table[i].severity;
800 
801             return summary;
802         }
803     }
804 
805     summary |= RTAS_LOG_INITIATOR_CPU;
806     return summary;
807 }
808 
809 static void spapr_mce_dispatch_elog(SpaprMachineState *spapr, PowerPCCPU *cpu,
810                                     bool recovered)
811 {
812     CPUState *cs = CPU(cpu);
813     CPUPPCState *env = &cpu->env;
814     uint64_t rtas_addr;
815     struct rtas_error_log log;
816     struct mc_extended_log *ext_elog;
817     uint32_t summary;
818 
819     ext_elog = g_malloc0(sizeof(*ext_elog));
820     summary = spapr_mce_get_elog_type(cpu, recovered, ext_elog);
821 
822     log.summary = cpu_to_be32(summary);
823     log.extended_length = cpu_to_be32(sizeof(*ext_elog));
824 
825     spapr_init_v6hdr(&ext_elog->v6hdr);
826     ext_elog->mc.hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MC);
827     ext_elog->mc.hdr.section_length =
828                     cpu_to_be16(sizeof(struct rtas_event_log_v6_mc));
829     ext_elog->mc.hdr.section_version = 1;
830 
831     /* get rtas addr from fdt */
832     rtas_addr = spapr_get_rtas_addr();
833     if (!rtas_addr) {
834         if (!recovered) {
835             error_report(
836 "FWNMI: Unable to deliver machine check to guest: rtas_addr not found.");
837             qemu_system_guest_panicked(NULL);
838         } else {
839             warn_report(
840 "FWNMI: Unable to deliver machine check to guest: rtas_addr not found. "
841 "Machine check recovered.");
842         }
843         g_free(ext_elog);
844         return;
845     }
846 
847     /*
848      * By taking the interlock, we assume that the MCE will be
849      * delivered to the guest. CAUTION: don't add anything that could
850      * prevent the MCE to be delivered after this line, otherwise the
851      * guest won't be able to release the interlock and ultimately
852      * hang/crash?
853      */
854     spapr->fwnmi_machine_check_interlock = cpu->vcpu_id;
855 
856     stq_be_phys(&address_space_memory, rtas_addr + RTAS_ERROR_LOG_OFFSET,
857                 env->gpr[3]);
858     cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
859                               sizeof(env->gpr[3]), &log, sizeof(log));
860     cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
861                               sizeof(env->gpr[3]) + sizeof(log), ext_elog,
862                               sizeof(*ext_elog));
863     g_free(ext_elog);
864 
865     env->gpr[3] = rtas_addr + RTAS_ERROR_LOG_OFFSET;
866 
867     ppc_cpu_do_fwnmi_machine_check(cs, spapr->fwnmi_machine_check_addr);
868 }
869 
870 void spapr_mce_req_event(PowerPCCPU *cpu, bool recovered)
871 {
872     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
873     CPUState *cs = CPU(cpu);
874     int ret;
875 
876     if (spapr->fwnmi_machine_check_addr == -1) {
877         /* Non-FWNMI case, deliver it like an architected CPU interrupt. */
878         cs->exception_index = POWERPC_EXCP_MCHECK;
879         ppc_cpu_do_interrupt(cs);
880         return;
881     }
882 
883     /* Wait for FWNMI interlock. */
884     while (spapr->fwnmi_machine_check_interlock != -1) {
885         /*
886          * Check whether the same CPU got machine check error
887          * while still handling the mc error (i.e., before
888          * that CPU called "ibm,nmi-interlock")
889          */
890         if (spapr->fwnmi_machine_check_interlock == cpu->vcpu_id) {
891             if (!recovered) {
892                 error_report(
893 "FWNMI: Unable to deliver machine check to guest: nested machine check.");
894                 qemu_system_guest_panicked(NULL);
895             } else {
896                 warn_report(
897 "FWNMI: Unable to deliver machine check to guest: nested machine check. "
898 "Machine check recovered.");
899             }
900             return;
901         }
902         qemu_cond_wait_bql(&spapr->fwnmi_machine_check_interlock_cond);
903         if (spapr->fwnmi_machine_check_addr == -1) {
904             /*
905              * If the machine was reset while waiting for the interlock,
906              * abort the delivery. The machine check applies to a context
907              * that no longer exists, so it wouldn't make sense to deliver
908              * it now.
909              */
910             return;
911         }
912     }
913 
914     /*
915      * Try to block migration while FWNMI is being handled, so the
916      * machine check handler runs where the information passed to it
917      * actually makes sense.  This shouldn't actually block migration,
918      * only delay it slightly, assuming migration is retried.  If the
919      * attempt to block fails, carry on.  Unfortunately, it always
920      * fails when running with -only-migrate.  A proper interface to
921      * delay migration completion for a bit could avoid that.
922      */
923     error_setg(&spapr->fwnmi_migration_blocker,
924         "A machine check is being handled during migration. The handler"
925         "may run and log hardware error on the destination");
926 
927     ret = migrate_add_blocker(&spapr->fwnmi_migration_blocker, NULL);
928     if (ret == -EBUSY) {
929         warn_report("Received a fwnmi while migration was in progress");
930     }
931 
932     spapr_mce_dispatch_elog(spapr, cpu, recovered);
933 }
934 
935 static void check_exception(PowerPCCPU *cpu, SpaprMachineState *spapr,
936                             uint32_t token, uint32_t nargs,
937                             target_ulong args,
938                             uint32_t nret, target_ulong rets)
939 {
940     uint32_t mask, buf, len, event_len;
941     SpaprEventLogEntry *event;
942     struct rtas_error_log header;
943     int i;
944 
945     if ((nargs < 6) || (nargs > 7) || nret != 1) {
946         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
947         return;
948     }
949 
950     mask = rtas_ld(args, 2);
951     buf = rtas_ld(args, 4);
952     len = rtas_ld(args, 5);
953 
954     event = rtas_event_log_dequeue(spapr, mask);
955     if (!event) {
956         goto out_no_events;
957     }
958 
959     event_len = event->extended_length + sizeof(header);
960 
961     if (event_len < len) {
962         len = event_len;
963     }
964 
965     header.summary = cpu_to_be32(event->summary);
966     header.extended_length = cpu_to_be32(event->extended_length);
967     cpu_physical_memory_write(buf, &header, sizeof(header));
968     cpu_physical_memory_write(buf + sizeof(header), event->extended_log,
969                               event->extended_length);
970     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
971     g_free(event->extended_log);
972     g_free(event);
973 
974     /* according to PAPR+, the IRQ must be left asserted, or re-asserted, if
975      * there are still pending events to be fetched via check-exception. We
976      * do the latter here, since our code relies on edge-triggered
977      * interrupts.
978      */
979     for (i = 0; i < EVENT_CLASS_MAX; i++) {
980         if (rtas_event_log_contains(spapr, EVENT_CLASS_MASK(i))) {
981             const SpaprEventSource *source =
982                 spapr_event_sources_get_source(spapr->event_sources, i);
983 
984             g_assert(source->enabled);
985             qemu_irq_pulse(spapr_qirq(spapr, source->irq));
986         }
987     }
988 
989     return;
990 
991 out_no_events:
992     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
993 }
994 
995 static void event_scan(PowerPCCPU *cpu, SpaprMachineState *spapr,
996                        uint32_t token, uint32_t nargs,
997                        target_ulong args,
998                        uint32_t nret, target_ulong rets)
999 {
1000     int i;
1001     if (nargs != 4 || nret != 1) {
1002         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1003         return;
1004     }
1005 
1006     for (i = 0; i < EVENT_CLASS_MAX; i++) {
1007         if (rtas_event_log_contains(spapr, EVENT_CLASS_MASK(i))) {
1008             const SpaprEventSource *source =
1009                 spapr_event_sources_get_source(spapr->event_sources, i);
1010 
1011             g_assert(source->enabled);
1012             qemu_irq_pulse(spapr_qirq(spapr, source->irq));
1013         }
1014     }
1015 
1016     rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
1017 }
1018 
1019 void spapr_clear_pending_events(SpaprMachineState *spapr)
1020 {
1021     SpaprEventLogEntry *entry = NULL, *next_entry;
1022 
1023     QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
1024         QTAILQ_REMOVE(&spapr->pending_events, entry, next);
1025         g_free(entry->extended_log);
1026         g_free(entry);
1027     }
1028 }
1029 
1030 void spapr_clear_pending_hotplug_events(SpaprMachineState *spapr)
1031 {
1032     SpaprEventLogEntry *entry = NULL, *next_entry;
1033 
1034     QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
1035         if (spapr_event_log_entry_type(entry) == RTAS_LOG_TYPE_HOTPLUG) {
1036             QTAILQ_REMOVE(&spapr->pending_events, entry, next);
1037             g_free(entry->extended_log);
1038             g_free(entry);
1039         }
1040     }
1041 }
1042 
1043 void spapr_events_init(SpaprMachineState *spapr)
1044 {
1045     int epow_irq = SPAPR_IRQ_EPOW;
1046 
1047     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1048         epow_irq = spapr_irq_findone(spapr, &error_fatal);
1049     }
1050 
1051     spapr_irq_claim(spapr, epow_irq, false, &error_fatal);
1052 
1053     QTAILQ_INIT(&spapr->pending_events);
1054 
1055     spapr->event_sources = spapr_event_sources_new();
1056 
1057     spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_EPOW,
1058                                  epow_irq);
1059 
1060     /* NOTE: if machine supports modern/dedicated hotplug event source,
1061      * we add it to the device-tree unconditionally. This means we may
1062      * have cases where the source is enabled in QEMU, but unused by the
1063      * guest because it does not support modern hotplug events, so we
1064      * take care to rely on checking for negotiation of OV5_HP_EVT option
1065      * before attempting to use it to signal events, rather than simply
1066      * checking that it's enabled.
1067      */
1068     if (spapr->use_hotplug_event_source) {
1069         int hp_irq = SPAPR_IRQ_HOTPLUG;
1070 
1071         if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1072             hp_irq = spapr_irq_findone(spapr, &error_fatal);
1073         }
1074 
1075         spapr_irq_claim(spapr, hp_irq, false, &error_fatal);
1076 
1077         spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_HOT_PLUG,
1078                                      hp_irq);
1079     }
1080 
1081     spapr->epow_notifier.notify = spapr_powerdown_req;
1082     qemu_register_powerdown_notifier(&spapr->epow_notifier);
1083     spapr_rtas_register(RTAS_CHECK_EXCEPTION, "check-exception",
1084                         check_exception);
1085     spapr_rtas_register(RTAS_EVENT_SCAN, "event-scan", event_scan);
1086 }
1087