xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision f76b348e)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29 
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33 
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37 
38     return 1 << drck->typeshift;
39 }
40 
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44 
45     /* no set format for a drc index: it only needs to be globally
46      * unique. this is how we encode the DRC type on bare-metal
47      * however, so might as well do that here
48      */
49     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50         | (drc->id & DRC_INDEX_ID_MASK);
51 }
52 
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
54 {
55     switch (drc->state) {
56     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57         return RTAS_OUT_SUCCESS; /* Nothing to do */
58     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59         break; /* see below */
60     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61         return RTAS_OUT_PARAM_ERROR; /* not allowed */
62     default:
63         g_assert_not_reached();
64     }
65 
66     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
67 
68     if (drc->unplug_requested) {
69         uint32_t drc_index = spapr_drc_index(drc);
70         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71         spapr_drc_detach(drc);
72     }
73 
74     return RTAS_OUT_SUCCESS;
75 }
76 
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
78 {
79     switch (drc->state) {
80     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82         return RTAS_OUT_SUCCESS; /* Nothing to do */
83     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84         break; /* see below */
85     default:
86         g_assert_not_reached();
87     }
88 
89     /* cannot unisolate a non-existent resource, and, or resources
90      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91      * 13.5.3.5)
92      */
93     if (!drc->dev) {
94         return RTAS_OUT_NO_SUCH_INDICATOR;
95     }
96 
97     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98     drc->ccs_offset = drc->fdt_start_offset;
99     drc->ccs_depth = 0;
100 
101     return RTAS_OUT_SUCCESS;
102 }
103 
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
105 {
106     switch (drc->state) {
107     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109         return RTAS_OUT_SUCCESS; /* Nothing to do */
110     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111         break; /* see below */
112     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113         return RTAS_OUT_PARAM_ERROR; /* not allowed */
114     default:
115         g_assert_not_reached();
116     }
117 
118     /*
119      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120      * belong to a DIMM device that is marked for removal.
121      *
122      * Currently the guest userspace tool drmgr that drives the memory
123      * hotplug/unplug will just try to remove a set of 'removable' LMBs
124      * in response to a hot unplug request that is based on drc-count.
125      * If the LMB being removed doesn't belong to a DIMM device that is
126      * actually being unplugged, fail the isolation request here.
127      */
128     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129         && !drc->unplug_requested) {
130         return RTAS_OUT_HW_ERROR;
131     }
132 
133     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
134 
135     /* if we're awaiting release, but still in an unconfigured state,
136      * it's likely the guest is still in the process of configuring
137      * the device and is transitioning the devices to an ISOLATED
138      * state as a part of that process. so we only complete the
139      * removal when this transition happens for a device in a
140      * configured state, as suggested by the state diagram from PAPR+
141      * 2.7, 13.4
142      */
143     if (drc->unplug_requested) {
144         uint32_t drc_index = spapr_drc_index(drc);
145         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146         spapr_drc_detach(drc);
147     }
148     return RTAS_OUT_SUCCESS;
149 }
150 
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153     switch (drc->state) {
154     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156         return RTAS_OUT_SUCCESS; /* Nothing to do */
157     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158         break; /* see below */
159     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161     default:
162         g_assert_not_reached();
163     }
164 
165     /* Move to AVAILABLE state should have ensured device was present */
166     g_assert(drc->dev);
167 
168     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169     drc->ccs_offset = drc->fdt_start_offset;
170     drc->ccs_depth = 0;
171 
172     return RTAS_OUT_SUCCESS;
173 }
174 
175 static uint32_t drc_set_usable(SpaprDrc *drc)
176 {
177     switch (drc->state) {
178     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181         return RTAS_OUT_SUCCESS; /* Nothing to do */
182     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183         break; /* see below */
184     default:
185         g_assert_not_reached();
186     }
187 
188     /* if there's no resource/device associated with the DRC, there's
189      * no way for us to put it in an allocation state consistent with
190      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191      * result in an RTAS return code of -3 / "no such indicator"
192      */
193     if (!drc->dev) {
194         return RTAS_OUT_NO_SUCH_INDICATOR;
195     }
196     if (drc->unplug_requested) {
197         /* Don't allow the guest to move a device away from UNUSABLE
198          * state when we want to unplug it */
199         return RTAS_OUT_NO_SUCH_INDICATOR;
200     }
201 
202     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
203 
204     return RTAS_OUT_SUCCESS;
205 }
206 
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
208 {
209     switch (drc->state) {
210     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211         return RTAS_OUT_SUCCESS; /* Nothing to do */
212     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213         break; /* see below */
214     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217     default:
218         g_assert_not_reached();
219     }
220 
221     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222     if (drc->unplug_requested) {
223         uint32_t drc_index = spapr_drc_index(drc);
224         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225         spapr_drc_detach(drc);
226     }
227 
228     return RTAS_OUT_SUCCESS;
229 }
230 
231 static char *spapr_drc_name(SpaprDrc *drc)
232 {
233     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
234 
235     /* human-readable name for a DRC to encode into the DT
236      * description. this is mainly only used within a guest in place
237      * of the unique DRC index.
238      *
239      * in the case of VIO/PCI devices, it corresponds to a "location
240      * code" that maps a logical device/function (DRC index) to a
241      * physical (or virtual in the case of VIO) location in the system
242      * by chaining together the "location label" for each
243      * encapsulating component.
244      *
245      * since this is more to do with diagnosing physical hardware
246      * issues than guest compatibility, we choose location codes/DRC
247      * names that adhere to the documented format, but avoid encoding
248      * the entire topology information into the label/code, instead
249      * just using the location codes based on the labels for the
250      * endpoints (VIO/PCI adaptor connectors), which is basically just
251      * "C" followed by an integer ID.
252      *
253      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254      * location codes as documented by PAPR+ v2.7, 12.3.1.5
255      */
256     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
257 }
258 
259 /*
260  * dr-entity-sense sensor value
261  * returned via get-sensor-state RTAS calls
262  * as expected by state diagram in PAPR+ 2.7, 13.4
263  * based on the current allocation/indicator/power states
264  * for the DR connector.
265  */
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
267 {
268     /* this assumes all PCI devices are assigned to a 'live insertion'
269      * power domain, where QEMU manages power state automatically as
270      * opposed to the guest. present, non-PCI resources are unaffected
271      * by power state.
272      */
273     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274         : SPAPR_DR_ENTITY_SENSE_EMPTY;
275 }
276 
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
278 {
279     switch (drc->state) {
280     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285         g_assert(drc->dev);
286         return SPAPR_DR_ENTITY_SENSE_PRESENT;
287     default:
288         g_assert_not_reached();
289     }
290 }
291 
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293                            void *opaque, Error **errp)
294 {
295     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296     uint32_t value = spapr_drc_index(drc);
297     visit_type_uint32(v, name, &value, errp);
298 }
299 
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301                          void *opaque, Error **errp)
302 {
303     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304     QNull *null = NULL;
305     Error *err = NULL;
306     int fdt_offset_next, fdt_offset, fdt_depth;
307     void *fdt;
308 
309     if (!drc->fdt) {
310         visit_type_null(v, NULL, &null, errp);
311         qobject_unref(null);
312         return;
313     }
314 
315     fdt = drc->fdt;
316     fdt_offset = drc->fdt_start_offset;
317     fdt_depth = 0;
318 
319     do {
320         const char *name = NULL;
321         const struct fdt_property *prop = NULL;
322         int prop_len = 0, name_len = 0;
323         uint32_t tag;
324 
325         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326         switch (tag) {
327         case FDT_BEGIN_NODE:
328             fdt_depth++;
329             name = fdt_get_name(fdt, fdt_offset, &name_len);
330             visit_start_struct(v, name, NULL, 0, &err);
331             if (err) {
332                 error_propagate(errp, err);
333                 return;
334             }
335             break;
336         case FDT_END_NODE:
337             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
338             g_assert(fdt_depth > 0);
339             visit_check_struct(v, &err);
340             visit_end_struct(v, NULL);
341             if (err) {
342                 error_propagate(errp, err);
343                 return;
344             }
345             fdt_depth--;
346             break;
347         case FDT_PROP: {
348             int i;
349             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
350             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
351             visit_start_list(v, name, NULL, 0, &err);
352             if (err) {
353                 error_propagate(errp, err);
354                 return;
355             }
356             for (i = 0; i < prop_len; i++) {
357                 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
358                 if (err) {
359                     error_propagate(errp, err);
360                     return;
361                 }
362             }
363             visit_check_list(v, &err);
364             visit_end_list(v, NULL);
365             if (err) {
366                 error_propagate(errp, err);
367                 return;
368             }
369             break;
370         }
371         default:
372             error_report("device FDT in unexpected state: %d", tag);
373             abort();
374         }
375         fdt_offset = fdt_offset_next;
376     } while (fdt_depth != 0);
377 }
378 
379 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
380 {
381     trace_spapr_drc_attach(spapr_drc_index(drc));
382 
383     if (drc->dev) {
384         error_setg(errp, "an attached device is still awaiting release");
385         return;
386     }
387     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
388              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
389 
390     drc->dev = d;
391 
392     object_property_add_link(OBJECT(drc), "device",
393                              object_get_typename(OBJECT(drc->dev)),
394                              (Object **)(&drc->dev),
395                              NULL, 0);
396 }
397 
398 static void spapr_drc_release(SpaprDrc *drc)
399 {
400     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
401 
402     drck->release(drc->dev);
403 
404     drc->unplug_requested = false;
405     g_free(drc->fdt);
406     drc->fdt = NULL;
407     drc->fdt_start_offset = 0;
408     object_property_del(OBJECT(drc), "device");
409     drc->dev = NULL;
410 }
411 
412 void spapr_drc_detach(SpaprDrc *drc)
413 {
414     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
415 
416     trace_spapr_drc_detach(spapr_drc_index(drc));
417 
418     g_assert(drc->dev);
419 
420     drc->unplug_requested = true;
421 
422     if (drc->state != drck->empty_state) {
423         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
424         return;
425     }
426 
427     spapr_drc_release(drc);
428 }
429 
430 void spapr_drc_reset(SpaprDrc *drc)
431 {
432     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
433 
434     trace_spapr_drc_reset(spapr_drc_index(drc));
435 
436     /* immediately upon reset we can safely assume DRCs whose devices
437      * are pending removal can be safely removed.
438      */
439     if (drc->unplug_requested) {
440         spapr_drc_release(drc);
441     }
442 
443     if (drc->dev) {
444         /* A device present at reset is ready to go, same as coldplugged */
445         drc->state = drck->ready_state;
446         /*
447          * Ensure that we are able to send the FDT fragment again
448          * via configure-connector call if the guest requests.
449          */
450         drc->ccs_offset = drc->fdt_start_offset;
451         drc->ccs_depth = 0;
452     } else {
453         drc->state = drck->empty_state;
454         drc->ccs_offset = -1;
455         drc->ccs_depth = -1;
456     }
457 }
458 
459 static bool spapr_drc_unplug_requested_needed(void *opaque)
460 {
461     return spapr_drc_unplug_requested(opaque);
462 }
463 
464 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
465     .name = "spapr_drc/unplug_requested",
466     .version_id = 1,
467     .minimum_version_id = 1,
468     .needed = spapr_drc_unplug_requested_needed,
469     .fields  = (VMStateField []) {
470         VMSTATE_BOOL(unplug_requested, SpaprDrc),
471         VMSTATE_END_OF_LIST()
472     }
473 };
474 
475 bool spapr_drc_transient(SpaprDrc *drc)
476 {
477     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
478 
479     /*
480      * If no dev is plugged in there is no need to migrate the DRC state
481      * nor to reset the DRC at CAS.
482      */
483     if (!drc->dev) {
484         return false;
485     }
486 
487     /*
488      * We need to reset the DRC at CAS or to migrate the DRC state if it's
489      * not equal to the expected long-term state, which is the same as the
490      * coldplugged initial state, or if an unplug request is pending.
491      */
492     return drc->state != drck->ready_state ||
493         spapr_drc_unplug_requested(drc);
494 }
495 
496 static bool spapr_drc_needed(void *opaque)
497 {
498     return spapr_drc_transient(opaque);
499 }
500 
501 static const VMStateDescription vmstate_spapr_drc = {
502     .name = "spapr_drc",
503     .version_id = 1,
504     .minimum_version_id = 1,
505     .needed = spapr_drc_needed,
506     .fields  = (VMStateField []) {
507         VMSTATE_UINT32(state, SpaprDrc),
508         VMSTATE_END_OF_LIST()
509     },
510     .subsections = (const VMStateDescription * []) {
511         &vmstate_spapr_drc_unplug_requested,
512         NULL
513     }
514 };
515 
516 static void realize(DeviceState *d, Error **errp)
517 {
518     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
519     Object *root_container;
520     gchar *link_name;
521     char *child_name;
522 
523     trace_spapr_drc_realize(spapr_drc_index(drc));
524     /* NOTE: we do this as part of realize/unrealize due to the fact
525      * that the guest will communicate with the DRC via RTAS calls
526      * referencing the global DRC index. By unlinking the DRC
527      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
528      * inaccessible by the guest, since lookups rely on this path
529      * existing in the composition tree
530      */
531     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
532     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
533     child_name = object_get_canonical_path_component(OBJECT(drc));
534     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
535     object_property_add_alias(root_container, link_name,
536                               drc->owner, child_name);
537     g_free(child_name);
538     g_free(link_name);
539     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
540                      drc);
541     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
542 }
543 
544 static void unrealize(DeviceState *d)
545 {
546     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
547     Object *root_container;
548     gchar *name;
549 
550     trace_spapr_drc_unrealize(spapr_drc_index(drc));
551     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
552     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
553     name = g_strdup_printf("%x", spapr_drc_index(drc));
554     object_property_del(root_container, name);
555     g_free(name);
556 }
557 
558 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
559                                          uint32_t id)
560 {
561     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
562     char *prop_name;
563 
564     drc->id = id;
565     drc->owner = owner;
566     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
567                                 spapr_drc_index(drc));
568     object_property_add_child(owner, prop_name, OBJECT(drc));
569     object_unref(OBJECT(drc));
570     qdev_realize(DEVICE(drc), NULL, NULL);
571     g_free(prop_name);
572 
573     return drc;
574 }
575 
576 static void spapr_dr_connector_instance_init(Object *obj)
577 {
578     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
579     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
580 
581     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
582     object_property_add(obj, "index", "uint32", prop_get_index,
583                         NULL, NULL, NULL);
584     object_property_add(obj, "fdt", "struct", prop_get_fdt,
585                         NULL, NULL, NULL);
586     drc->state = drck->empty_state;
587 }
588 
589 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
590 {
591     DeviceClass *dk = DEVICE_CLASS(k);
592 
593     dk->realize = realize;
594     dk->unrealize = unrealize;
595     /*
596      * Reason: it crashes FIXME find and document the real reason
597      */
598     dk->user_creatable = false;
599 }
600 
601 static bool drc_physical_needed(void *opaque)
602 {
603     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
604     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
605 
606     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
607         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
608         return false;
609     }
610     return true;
611 }
612 
613 static const VMStateDescription vmstate_spapr_drc_physical = {
614     .name = "spapr_drc/physical",
615     .version_id = 1,
616     .minimum_version_id = 1,
617     .needed = drc_physical_needed,
618     .fields  = (VMStateField []) {
619         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
620         VMSTATE_END_OF_LIST()
621     }
622 };
623 
624 static void drc_physical_reset(void *opaque)
625 {
626     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
627     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
628 
629     if (drc->dev) {
630         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
631     } else {
632         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
633     }
634 }
635 
636 static void realize_physical(DeviceState *d, Error **errp)
637 {
638     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
639     Error *local_err = NULL;
640 
641     realize(d, &local_err);
642     if (local_err) {
643         error_propagate(errp, local_err);
644         return;
645     }
646 
647     vmstate_register(VMSTATE_IF(drcp),
648                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
649                      &vmstate_spapr_drc_physical, drcp);
650     qemu_register_reset(drc_physical_reset, drcp);
651 }
652 
653 static void unrealize_physical(DeviceState *d)
654 {
655     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
656 
657     unrealize(d);
658     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
659     qemu_unregister_reset(drc_physical_reset, drcp);
660 }
661 
662 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
663 {
664     DeviceClass *dk = DEVICE_CLASS(k);
665     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
666 
667     dk->realize = realize_physical;
668     dk->unrealize = unrealize_physical;
669     drck->dr_entity_sense = physical_entity_sense;
670     drck->isolate = drc_isolate_physical;
671     drck->unisolate = drc_unisolate_physical;
672     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
673     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
674 }
675 
676 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
677 {
678     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
679 
680     drck->dr_entity_sense = logical_entity_sense;
681     drck->isolate = drc_isolate_logical;
682     drck->unisolate = drc_unisolate_logical;
683     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
684     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
685 }
686 
687 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
688 {
689     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
690 
691     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
692     drck->typename = "CPU";
693     drck->drc_name_prefix = "CPU ";
694     drck->release = spapr_core_release;
695     drck->dt_populate = spapr_core_dt_populate;
696 }
697 
698 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
699 {
700     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
701 
702     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
703     drck->typename = "28";
704     drck->drc_name_prefix = "C";
705     drck->release = spapr_phb_remove_pci_device_cb;
706     drck->dt_populate = spapr_pci_dt_populate;
707 }
708 
709 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
710 {
711     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
712 
713     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
714     drck->typename = "MEM";
715     drck->drc_name_prefix = "LMB ";
716     drck->release = spapr_lmb_release;
717     drck->dt_populate = spapr_lmb_dt_populate;
718 }
719 
720 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
721 {
722     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
723 
724     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
725     drck->typename = "PHB";
726     drck->drc_name_prefix = "PHB ";
727     drck->release = spapr_phb_release;
728     drck->dt_populate = spapr_phb_dt_populate;
729 }
730 
731 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
732 {
733     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
734 
735     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
736     drck->typename = "PMEM";
737     drck->drc_name_prefix = "PMEM ";
738     drck->release = NULL;
739     drck->dt_populate = spapr_pmem_dt_populate;
740 }
741 
742 static const TypeInfo spapr_dr_connector_info = {
743     .name          = TYPE_SPAPR_DR_CONNECTOR,
744     .parent        = TYPE_DEVICE,
745     .instance_size = sizeof(SpaprDrc),
746     .instance_init = spapr_dr_connector_instance_init,
747     .class_size    = sizeof(SpaprDrcClass),
748     .class_init    = spapr_dr_connector_class_init,
749     .abstract      = true,
750 };
751 
752 static const TypeInfo spapr_drc_physical_info = {
753     .name          = TYPE_SPAPR_DRC_PHYSICAL,
754     .parent        = TYPE_SPAPR_DR_CONNECTOR,
755     .instance_size = sizeof(SpaprDrcPhysical),
756     .class_init    = spapr_drc_physical_class_init,
757     .abstract      = true,
758 };
759 
760 static const TypeInfo spapr_drc_logical_info = {
761     .name          = TYPE_SPAPR_DRC_LOGICAL,
762     .parent        = TYPE_SPAPR_DR_CONNECTOR,
763     .class_init    = spapr_drc_logical_class_init,
764     .abstract      = true,
765 };
766 
767 static const TypeInfo spapr_drc_cpu_info = {
768     .name          = TYPE_SPAPR_DRC_CPU,
769     .parent        = TYPE_SPAPR_DRC_LOGICAL,
770     .class_init    = spapr_drc_cpu_class_init,
771 };
772 
773 static const TypeInfo spapr_drc_pci_info = {
774     .name          = TYPE_SPAPR_DRC_PCI,
775     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
776     .class_init    = spapr_drc_pci_class_init,
777 };
778 
779 static const TypeInfo spapr_drc_lmb_info = {
780     .name          = TYPE_SPAPR_DRC_LMB,
781     .parent        = TYPE_SPAPR_DRC_LOGICAL,
782     .class_init    = spapr_drc_lmb_class_init,
783 };
784 
785 static const TypeInfo spapr_drc_phb_info = {
786     .name          = TYPE_SPAPR_DRC_PHB,
787     .parent        = TYPE_SPAPR_DRC_LOGICAL,
788     .instance_size = sizeof(SpaprDrc),
789     .class_init    = spapr_drc_phb_class_init,
790 };
791 
792 static const TypeInfo spapr_drc_pmem_info = {
793     .name          = TYPE_SPAPR_DRC_PMEM,
794     .parent        = TYPE_SPAPR_DRC_LOGICAL,
795     .class_init    = spapr_drc_pmem_class_init,
796 };
797 
798 /* helper functions for external users */
799 
800 SpaprDrc *spapr_drc_by_index(uint32_t index)
801 {
802     Object *obj;
803     gchar *name;
804 
805     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
806     obj = object_resolve_path(name, NULL);
807     g_free(name);
808 
809     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
810 }
811 
812 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
813 {
814     SpaprDrcClass *drck
815         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
816 
817     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
818                               | (id & DRC_INDEX_ID_MASK));
819 }
820 
821 /**
822  * spapr_dt_drc
823  *
824  * @fdt: libfdt device tree
825  * @path: path in the DT to generate properties
826  * @owner: parent Object/DeviceState for which to generate DRC
827  *         descriptions for
828  * @drc_type_mask: mask of SpaprDrcType values corresponding
829  *   to the types of DRCs to generate entries for
830  *
831  * generate OF properties to describe DRC topology/indices to guests
832  *
833  * as documented in PAPR+ v2.1, 13.5.2
834  */
835 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
836 {
837     Object *root_container;
838     ObjectProperty *prop;
839     ObjectPropertyIterator iter;
840     uint32_t drc_count = 0;
841     GArray *drc_indexes, *drc_power_domains;
842     GString *drc_names, *drc_types;
843     int ret;
844 
845     /* the first entry of each properties is a 32-bit integer encoding
846      * the number of elements in the array. we won't know this until
847      * we complete the iteration through all the matching DRCs, but
848      * reserve the space now and set the offsets accordingly so we
849      * can fill them in later.
850      */
851     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
852     drc_indexes = g_array_set_size(drc_indexes, 1);
853     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
854     drc_power_domains = g_array_set_size(drc_power_domains, 1);
855     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
856     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
857 
858     /* aliases for all DRConnector objects will be rooted in QOM
859      * composition tree at DRC_CONTAINER_PATH
860      */
861     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
862 
863     object_property_iter_init(&iter, root_container);
864     while ((prop = object_property_iter_next(&iter))) {
865         Object *obj;
866         SpaprDrc *drc;
867         SpaprDrcClass *drck;
868         char *drc_name = NULL;
869         uint32_t drc_index, drc_power_domain;
870 
871         if (!strstart(prop->type, "link<", NULL)) {
872             continue;
873         }
874 
875         obj = object_property_get_link(root_container, prop->name, NULL);
876         drc = SPAPR_DR_CONNECTOR(obj);
877         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
878 
879         if (owner && (drc->owner != owner)) {
880             continue;
881         }
882 
883         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
884             continue;
885         }
886 
887         drc_count++;
888 
889         /* ibm,drc-indexes */
890         drc_index = cpu_to_be32(spapr_drc_index(drc));
891         g_array_append_val(drc_indexes, drc_index);
892 
893         /* ibm,drc-power-domains */
894         drc_power_domain = cpu_to_be32(-1);
895         g_array_append_val(drc_power_domains, drc_power_domain);
896 
897         /* ibm,drc-names */
898         drc_name = spapr_drc_name(drc);
899         drc_names = g_string_append(drc_names, drc_name);
900         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
901         g_free(drc_name);
902 
903         /* ibm,drc-types */
904         drc_types = g_string_append(drc_types, drck->typename);
905         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
906     }
907 
908     /* now write the drc count into the space we reserved at the
909      * beginning of the arrays previously
910      */
911     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
912     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
913     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
914     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
915 
916     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
917                       drc_indexes->data,
918                       drc_indexes->len * sizeof(uint32_t));
919     if (ret) {
920         error_report("Couldn't create ibm,drc-indexes property");
921         goto out;
922     }
923 
924     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
925                       drc_power_domains->data,
926                       drc_power_domains->len * sizeof(uint32_t));
927     if (ret) {
928         error_report("Couldn't finalize ibm,drc-power-domains property");
929         goto out;
930     }
931 
932     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
933                       drc_names->str, drc_names->len);
934     if (ret) {
935         error_report("Couldn't finalize ibm,drc-names property");
936         goto out;
937     }
938 
939     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
940                       drc_types->str, drc_types->len);
941     if (ret) {
942         error_report("Couldn't finalize ibm,drc-types property");
943         goto out;
944     }
945 
946 out:
947     g_array_free(drc_indexes, true);
948     g_array_free(drc_power_domains, true);
949     g_string_free(drc_names, true);
950     g_string_free(drc_types, true);
951 
952     return ret;
953 }
954 
955 /*
956  * RTAS calls
957  */
958 
959 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
960 {
961     SpaprDrc *drc = spapr_drc_by_index(idx);
962     SpaprDrcClass *drck;
963 
964     if (!drc) {
965         return RTAS_OUT_NO_SUCH_INDICATOR;
966     }
967 
968     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
969 
970     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
971 
972     switch (state) {
973     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
974         return drck->isolate(drc);
975 
976     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
977         return drck->unisolate(drc);
978 
979     default:
980         return RTAS_OUT_PARAM_ERROR;
981     }
982 }
983 
984 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
985 {
986     SpaprDrc *drc = spapr_drc_by_index(idx);
987 
988     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
989         return RTAS_OUT_NO_SUCH_INDICATOR;
990     }
991 
992     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
993 
994     switch (state) {
995     case SPAPR_DR_ALLOCATION_STATE_USABLE:
996         return drc_set_usable(drc);
997 
998     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
999         return drc_set_unusable(drc);
1000 
1001     default:
1002         return RTAS_OUT_PARAM_ERROR;
1003     }
1004 }
1005 
1006 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1007 {
1008     SpaprDrc *drc = spapr_drc_by_index(idx);
1009 
1010     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1011         return RTAS_OUT_NO_SUCH_INDICATOR;
1012     }
1013     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1014         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1015         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1016         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1017         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1018     }
1019 
1020     trace_spapr_drc_set_dr_indicator(idx, state);
1021     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1022     return RTAS_OUT_SUCCESS;
1023 }
1024 
1025 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1026                                uint32_t token,
1027                                uint32_t nargs, target_ulong args,
1028                                uint32_t nret, target_ulong rets)
1029 {
1030     uint32_t type, idx, state;
1031     uint32_t ret = RTAS_OUT_SUCCESS;
1032 
1033     if (nargs != 3 || nret != 1) {
1034         ret = RTAS_OUT_PARAM_ERROR;
1035         goto out;
1036     }
1037 
1038     type = rtas_ld(args, 0);
1039     idx = rtas_ld(args, 1);
1040     state = rtas_ld(args, 2);
1041 
1042     switch (type) {
1043     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1044         ret = rtas_set_isolation_state(idx, state);
1045         break;
1046     case RTAS_SENSOR_TYPE_DR:
1047         ret = rtas_set_dr_indicator(idx, state);
1048         break;
1049     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1050         ret = rtas_set_allocation_state(idx, state);
1051         break;
1052     default:
1053         ret = RTAS_OUT_NOT_SUPPORTED;
1054     }
1055 
1056 out:
1057     rtas_st(rets, 0, ret);
1058 }
1059 
1060 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1061                                   uint32_t token, uint32_t nargs,
1062                                   target_ulong args, uint32_t nret,
1063                                   target_ulong rets)
1064 {
1065     uint32_t sensor_type;
1066     uint32_t sensor_index;
1067     uint32_t sensor_state = 0;
1068     SpaprDrc *drc;
1069     SpaprDrcClass *drck;
1070     uint32_t ret = RTAS_OUT_SUCCESS;
1071 
1072     if (nargs != 2 || nret != 2) {
1073         ret = RTAS_OUT_PARAM_ERROR;
1074         goto out;
1075     }
1076 
1077     sensor_type = rtas_ld(args, 0);
1078     sensor_index = rtas_ld(args, 1);
1079 
1080     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1081         /* currently only DR-related sensors are implemented */
1082         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1083                                                         sensor_type);
1084         ret = RTAS_OUT_NOT_SUPPORTED;
1085         goto out;
1086     }
1087 
1088     drc = spapr_drc_by_index(sensor_index);
1089     if (!drc) {
1090         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1091         ret = RTAS_OUT_PARAM_ERROR;
1092         goto out;
1093     }
1094     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1095     sensor_state = drck->dr_entity_sense(drc);
1096 
1097 out:
1098     rtas_st(rets, 0, ret);
1099     rtas_st(rets, 1, sensor_state);
1100 }
1101 
1102 /* configure-connector work area offsets, int32_t units for field
1103  * indexes, bytes for field offset/len values.
1104  *
1105  * as documented by PAPR+ v2.7, 13.5.3.5
1106  */
1107 #define CC_IDX_NODE_NAME_OFFSET 2
1108 #define CC_IDX_PROP_NAME_OFFSET 2
1109 #define CC_IDX_PROP_LEN 3
1110 #define CC_IDX_PROP_DATA_OFFSET 4
1111 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1112 #define CC_WA_LEN 4096
1113 
1114 static void configure_connector_st(target_ulong addr, target_ulong offset,
1115                                    const void *buf, size_t len)
1116 {
1117     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1118                               buf, MIN(len, CC_WA_LEN - offset));
1119 }
1120 
1121 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1122                                          SpaprMachineState *spapr,
1123                                          uint32_t token, uint32_t nargs,
1124                                          target_ulong args, uint32_t nret,
1125                                          target_ulong rets)
1126 {
1127     uint64_t wa_addr;
1128     uint64_t wa_offset;
1129     uint32_t drc_index;
1130     SpaprDrc *drc;
1131     SpaprDrcClass *drck;
1132     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1133     int rc;
1134 
1135     if (nargs != 2 || nret != 1) {
1136         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1137         return;
1138     }
1139 
1140     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1141 
1142     drc_index = rtas_ld(wa_addr, 0);
1143     drc = spapr_drc_by_index(drc_index);
1144     if (!drc) {
1145         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1146         rc = RTAS_OUT_PARAM_ERROR;
1147         goto out;
1148     }
1149 
1150     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1151         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1152         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1153         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1154         /*
1155          * Need to unisolate the device before configuring
1156          * or it should already be in configured state to
1157          * allow configure-connector be called repeatedly.
1158          */
1159         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1160         goto out;
1161     }
1162 
1163     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1164 
1165     if (!drc->fdt) {
1166         Error *local_err = NULL;
1167         void *fdt;
1168         int fdt_size;
1169 
1170         fdt = create_device_tree(&fdt_size);
1171 
1172         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1173                               &local_err)) {
1174             g_free(fdt);
1175             error_free(local_err);
1176             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1177             goto out;
1178         }
1179 
1180         drc->fdt = fdt;
1181         drc->ccs_offset = drc->fdt_start_offset;
1182         drc->ccs_depth = 0;
1183     }
1184 
1185     do {
1186         uint32_t tag;
1187         const char *name;
1188         const struct fdt_property *prop;
1189         int fdt_offset_next, prop_len;
1190 
1191         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1192 
1193         switch (tag) {
1194         case FDT_BEGIN_NODE:
1195             drc->ccs_depth++;
1196             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1197 
1198             /* provide the name of the next OF node */
1199             wa_offset = CC_VAL_DATA_OFFSET;
1200             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1201             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1202             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1203             break;
1204         case FDT_END_NODE:
1205             drc->ccs_depth--;
1206             if (drc->ccs_depth == 0) {
1207                 uint32_t drc_index = spapr_drc_index(drc);
1208 
1209                 /* done sending the device tree, move to configured state */
1210                 trace_spapr_drc_set_configured(drc_index);
1211                 drc->state = drck->ready_state;
1212                 /*
1213                  * Ensure that we are able to send the FDT fragment
1214                  * again via configure-connector call if the guest requests.
1215                  */
1216                 drc->ccs_offset = drc->fdt_start_offset;
1217                 drc->ccs_depth = 0;
1218                 fdt_offset_next = drc->fdt_start_offset;
1219                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1220             } else {
1221                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1222             }
1223             break;
1224         case FDT_PROP:
1225             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1226                                               &prop_len);
1227             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1228 
1229             /* provide the name of the next OF property */
1230             wa_offset = CC_VAL_DATA_OFFSET;
1231             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1232             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1233 
1234             /* provide the length and value of the OF property. data gets
1235              * placed immediately after NULL terminator of the OF property's
1236              * name string
1237              */
1238             wa_offset += strlen(name) + 1,
1239             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1240             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1241             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1242             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1243             break;
1244         case FDT_END:
1245             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1246         default:
1247             /* keep seeking for an actionable tag */
1248             break;
1249         }
1250         if (drc->ccs_offset >= 0) {
1251             drc->ccs_offset = fdt_offset_next;
1252         }
1253     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1254 
1255     rc = resp;
1256 out:
1257     rtas_st(rets, 0, rc);
1258 }
1259 
1260 static void spapr_drc_register_types(void)
1261 {
1262     type_register_static(&spapr_dr_connector_info);
1263     type_register_static(&spapr_drc_physical_info);
1264     type_register_static(&spapr_drc_logical_info);
1265     type_register_static(&spapr_drc_cpu_info);
1266     type_register_static(&spapr_drc_pci_info);
1267     type_register_static(&spapr_drc_lmb_info);
1268     type_register_static(&spapr_drc_phb_info);
1269     type_register_static(&spapr_drc_pmem_info);
1270 
1271     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1272                         rtas_set_indicator);
1273     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1274                         rtas_get_sensor_state);
1275     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1276                         rtas_ibm_configure_connector);
1277 }
1278 type_init(spapr_drc_register_types)
1279