1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "hw/qdev.h" 20 #include "qapi/visitor.h" 21 #include "qemu/error-report.h" 22 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 24 #include "trace.h" 25 26 #define DRC_CONTAINER_PATH "/dr-connector" 27 #define DRC_INDEX_TYPE_SHIFT 28 28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 29 30 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc) 31 { 32 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 33 34 return 1 << drck->typeshift; 35 } 36 37 uint32_t spapr_drc_index(sPAPRDRConnector *drc) 38 { 39 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 40 41 /* no set format for a drc index: it only needs to be globally 42 * unique. this is how we encode the DRC type on bare-metal 43 * however, so might as well do that here 44 */ 45 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 46 | (drc->id & DRC_INDEX_ID_MASK); 47 } 48 49 static uint32_t drc_isolate_physical(sPAPRDRConnector *drc) 50 { 51 /* if the guest is configuring a device attached to this DRC, we 52 * should reset the configuration state at this point since it may 53 * no longer be reliable (guest released device and needs to start 54 * over, or unplug occurred so the FDT is no longer valid) 55 */ 56 g_free(drc->ccs); 57 drc->ccs = NULL; 58 59 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED; 60 61 /* if we're awaiting release, but still in an unconfigured state, 62 * it's likely the guest is still in the process of configuring 63 * the device and is transitioning the devices to an ISOLATED 64 * state as a part of that process. so we only complete the 65 * removal when this transition happens for a device in a 66 * configured state, as suggested by the state diagram from PAPR+ 67 * 2.7, 13.4 68 */ 69 if (drc->awaiting_release) { 70 uint32_t drc_index = spapr_drc_index(drc); 71 if (drc->configured) { 72 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 73 spapr_drc_detach(drc, DEVICE(drc->dev), NULL); 74 } else { 75 trace_spapr_drc_set_isolation_state_deferring(drc_index); 76 } 77 } 78 drc->configured = false; 79 80 return RTAS_OUT_SUCCESS; 81 } 82 83 static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc) 84 { 85 /* cannot unisolate a non-existent resource, and, or resources 86 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 87 * 13.5.3.5) 88 */ 89 if (!drc->dev) { 90 return RTAS_OUT_NO_SUCH_INDICATOR; 91 } 92 93 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED; 94 95 return RTAS_OUT_SUCCESS; 96 } 97 98 static uint32_t drc_isolate_logical(sPAPRDRConnector *drc) 99 { 100 /* if the guest is configuring a device attached to this DRC, we 101 * should reset the configuration state at this point since it may 102 * no longer be reliable (guest released device and needs to start 103 * over, or unplug occurred so the FDT is no longer valid) 104 */ 105 g_free(drc->ccs); 106 drc->ccs = NULL; 107 108 /* 109 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 110 * belong to a DIMM device that is marked for removal. 111 * 112 * Currently the guest userspace tool drmgr that drives the memory 113 * hotplug/unplug will just try to remove a set of 'removable' LMBs 114 * in response to a hot unplug request that is based on drc-count. 115 * If the LMB being removed doesn't belong to a DIMM device that is 116 * actually being unplugged, fail the isolation request here. 117 */ 118 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 119 && !drc->awaiting_release) { 120 return RTAS_OUT_HW_ERROR; 121 } 122 123 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED; 124 125 /* if we're awaiting release, but still in an unconfigured state, 126 * it's likely the guest is still in the process of configuring 127 * the device and is transitioning the devices to an ISOLATED 128 * state as a part of that process. so we only complete the 129 * removal when this transition happens for a device in a 130 * configured state, as suggested by the state diagram from PAPR+ 131 * 2.7, 13.4 132 */ 133 if (drc->awaiting_release) { 134 uint32_t drc_index = spapr_drc_index(drc); 135 if (drc->configured) { 136 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 137 spapr_drc_detach(drc, DEVICE(drc->dev), NULL); 138 } else { 139 trace_spapr_drc_set_isolation_state_deferring(drc_index); 140 } 141 } 142 drc->configured = false; 143 144 return RTAS_OUT_SUCCESS; 145 } 146 147 static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc) 148 { 149 /* cannot unisolate a non-existent resource, and, or resources 150 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 151 * 13.5.3.5) 152 */ 153 if (!drc->dev || 154 drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) { 155 return RTAS_OUT_NO_SUCH_INDICATOR; 156 } 157 158 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED; 159 160 return RTAS_OUT_SUCCESS; 161 } 162 163 static uint32_t drc_set_usable(sPAPRDRConnector *drc) 164 { 165 /* if there's no resource/device associated with the DRC, there's 166 * no way for us to put it in an allocation state consistent with 167 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 168 * result in an RTAS return code of -3 / "no such indicator" 169 */ 170 if (!drc->dev) { 171 return RTAS_OUT_NO_SUCH_INDICATOR; 172 } 173 if (drc->awaiting_release && drc->awaiting_allocation) { 174 /* kernel is acknowledging a previous hotplug event 175 * while we are already removing it. 176 * it's safe to ignore awaiting_allocation here since we know the 177 * situation is predicated on the guest either already having done 178 * so (boot-time hotplug), or never being able to acquire in the 179 * first place (hotplug followed by immediate unplug). 180 */ 181 return RTAS_OUT_NO_SUCH_INDICATOR; 182 } 183 184 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE; 185 drc->awaiting_allocation = false; 186 187 return RTAS_OUT_SUCCESS; 188 } 189 190 static uint32_t drc_set_unusable(sPAPRDRConnector *drc) 191 { 192 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_UNUSABLE; 193 if (drc->awaiting_release) { 194 uint32_t drc_index = spapr_drc_index(drc); 195 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 196 spapr_drc_detach(drc, DEVICE(drc->dev), NULL); 197 } 198 199 return RTAS_OUT_SUCCESS; 200 } 201 202 static const char *spapr_drc_name(sPAPRDRConnector *drc) 203 { 204 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 205 206 /* human-readable name for a DRC to encode into the DT 207 * description. this is mainly only used within a guest in place 208 * of the unique DRC index. 209 * 210 * in the case of VIO/PCI devices, it corresponds to a "location 211 * code" that maps a logical device/function (DRC index) to a 212 * physical (or virtual in the case of VIO) location in the system 213 * by chaining together the "location label" for each 214 * encapsulating component. 215 * 216 * since this is more to do with diagnosing physical hardware 217 * issues than guest compatibility, we choose location codes/DRC 218 * names that adhere to the documented format, but avoid encoding 219 * the entire topology information into the label/code, instead 220 * just using the location codes based on the labels for the 221 * endpoints (VIO/PCI adaptor connectors), which is basically just 222 * "C" followed by an integer ID. 223 * 224 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 225 * location codes as documented by PAPR+ v2.7, 12.3.1.5 226 */ 227 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 228 } 229 230 /* 231 * dr-entity-sense sensor value 232 * returned via get-sensor-state RTAS calls 233 * as expected by state diagram in PAPR+ 2.7, 13.4 234 * based on the current allocation/indicator/power states 235 * for the DR connector. 236 */ 237 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc) 238 { 239 /* this assumes all PCI devices are assigned to a 'live insertion' 240 * power domain, where QEMU manages power state automatically as 241 * opposed to the guest. present, non-PCI resources are unaffected 242 * by power state. 243 */ 244 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 245 : SPAPR_DR_ENTITY_SENSE_EMPTY; 246 } 247 248 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc) 249 { 250 if (drc->dev 251 && (drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE)) { 252 return SPAPR_DR_ENTITY_SENSE_PRESENT; 253 } else { 254 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 255 } 256 } 257 258 static void prop_get_index(Object *obj, Visitor *v, const char *name, 259 void *opaque, Error **errp) 260 { 261 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 262 uint32_t value = spapr_drc_index(drc); 263 visit_type_uint32(v, name, &value, errp); 264 } 265 266 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 267 void *opaque, Error **errp) 268 { 269 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 270 Error *err = NULL; 271 int fdt_offset_next, fdt_offset, fdt_depth; 272 void *fdt; 273 274 if (!drc->fdt) { 275 visit_type_null(v, NULL, errp); 276 return; 277 } 278 279 fdt = drc->fdt; 280 fdt_offset = drc->fdt_start_offset; 281 fdt_depth = 0; 282 283 do { 284 const char *name = NULL; 285 const struct fdt_property *prop = NULL; 286 int prop_len = 0, name_len = 0; 287 uint32_t tag; 288 289 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 290 switch (tag) { 291 case FDT_BEGIN_NODE: 292 fdt_depth++; 293 name = fdt_get_name(fdt, fdt_offset, &name_len); 294 visit_start_struct(v, name, NULL, 0, &err); 295 if (err) { 296 error_propagate(errp, err); 297 return; 298 } 299 break; 300 case FDT_END_NODE: 301 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 302 g_assert(fdt_depth > 0); 303 visit_check_struct(v, &err); 304 visit_end_struct(v, NULL); 305 if (err) { 306 error_propagate(errp, err); 307 return; 308 } 309 fdt_depth--; 310 break; 311 case FDT_PROP: { 312 int i; 313 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 314 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 315 visit_start_list(v, name, NULL, 0, &err); 316 if (err) { 317 error_propagate(errp, err); 318 return; 319 } 320 for (i = 0; i < prop_len; i++) { 321 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); 322 if (err) { 323 error_propagate(errp, err); 324 return; 325 } 326 } 327 visit_check_list(v, &err); 328 visit_end_list(v, NULL); 329 if (err) { 330 error_propagate(errp, err); 331 return; 332 } 333 break; 334 } 335 default: 336 error_setg(&error_abort, "device FDT in unexpected state: %d", tag); 337 } 338 fdt_offset = fdt_offset_next; 339 } while (fdt_depth != 0); 340 } 341 342 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt, 343 int fdt_start_offset, bool coldplug, Error **errp) 344 { 345 trace_spapr_drc_attach(spapr_drc_index(drc)); 346 347 if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) { 348 error_setg(errp, "an attached device is still awaiting release"); 349 return; 350 } 351 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) { 352 g_assert(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE); 353 } 354 g_assert(fdt || coldplug); 355 356 drc->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 357 358 drc->dev = d; 359 drc->fdt = fdt; 360 drc->fdt_start_offset = fdt_start_offset; 361 drc->configured = coldplug; 362 363 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) { 364 drc->awaiting_allocation = true; 365 } 366 367 object_property_add_link(OBJECT(drc), "device", 368 object_get_typename(OBJECT(drc->dev)), 369 (Object **)(&drc->dev), 370 NULL, 0, NULL); 371 } 372 373 static void spapr_drc_release(sPAPRDRConnector *drc) 374 { 375 drc->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 376 377 /* Calling release callbacks based on spapr_drc_type(drc). */ 378 switch (spapr_drc_type(drc)) { 379 case SPAPR_DR_CONNECTOR_TYPE_CPU: 380 spapr_core_release(drc->dev); 381 break; 382 case SPAPR_DR_CONNECTOR_TYPE_PCI: 383 spapr_phb_remove_pci_device_cb(drc->dev); 384 break; 385 case SPAPR_DR_CONNECTOR_TYPE_LMB: 386 spapr_lmb_release(drc->dev); 387 break; 388 case SPAPR_DR_CONNECTOR_TYPE_PHB: 389 case SPAPR_DR_CONNECTOR_TYPE_VIO: 390 default: 391 g_assert(false); 392 } 393 394 drc->awaiting_release = false; 395 g_free(drc->fdt); 396 drc->fdt = NULL; 397 drc->fdt_start_offset = 0; 398 object_property_del(OBJECT(drc), "device", NULL); 399 drc->dev = NULL; 400 } 401 402 void spapr_drc_detach(sPAPRDRConnector *drc, DeviceState *d, Error **errp) 403 { 404 trace_spapr_drc_detach(spapr_drc_index(drc)); 405 406 if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) { 407 trace_spapr_drc_awaiting_isolated(spapr_drc_index(drc)); 408 drc->awaiting_release = true; 409 return; 410 } 411 412 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI && 413 drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) { 414 trace_spapr_drc_awaiting_unusable(spapr_drc_index(drc)); 415 drc->awaiting_release = true; 416 return; 417 } 418 419 if (drc->awaiting_allocation) { 420 drc->awaiting_release = true; 421 trace_spapr_drc_awaiting_allocation(spapr_drc_index(drc)); 422 return; 423 } 424 425 spapr_drc_release(drc); 426 } 427 428 static bool release_pending(sPAPRDRConnector *drc) 429 { 430 return drc->awaiting_release; 431 } 432 433 static void reset(DeviceState *d) 434 { 435 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 436 437 trace_spapr_drc_reset(spapr_drc_index(drc)); 438 439 g_free(drc->ccs); 440 drc->ccs = NULL; 441 442 /* immediately upon reset we can safely assume DRCs whose devices 443 * are pending removal can be safely removed. 444 */ 445 if (drc->awaiting_release) { 446 spapr_drc_release(drc); 447 } 448 449 drc->awaiting_allocation = false; 450 451 if (drc->dev) { 452 /* A device present at reset is coldplugged */ 453 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED; 454 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) { 455 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE; 456 } 457 } else { 458 /* Otherwise device is absent, but might be hotplugged */ 459 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED; 460 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) { 461 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_UNUSABLE; 462 } 463 } 464 } 465 466 static bool spapr_drc_needed(void *opaque) 467 { 468 sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque; 469 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 470 bool rc = false; 471 sPAPRDREntitySense value = drck->dr_entity_sense(drc); 472 473 /* If no dev is plugged in there is no need to migrate the DRC state */ 474 if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) { 475 return false; 476 } 477 478 /* 479 * If there is dev plugged in, we need to migrate the DRC state when 480 * it is different from cold-plugged state 481 */ 482 switch (spapr_drc_type(drc)) { 483 case SPAPR_DR_CONNECTOR_TYPE_PCI: 484 case SPAPR_DR_CONNECTOR_TYPE_CPU: 485 case SPAPR_DR_CONNECTOR_TYPE_LMB: 486 rc = !((drc->isolation_state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) && 487 (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) && 488 drc->configured && !drc->awaiting_release); 489 break; 490 case SPAPR_DR_CONNECTOR_TYPE_PHB: 491 case SPAPR_DR_CONNECTOR_TYPE_VIO: 492 default: 493 g_assert_not_reached(); 494 } 495 return rc; 496 } 497 498 static const VMStateDescription vmstate_spapr_drc = { 499 .name = "spapr_drc", 500 .version_id = 1, 501 .minimum_version_id = 1, 502 .needed = spapr_drc_needed, 503 .fields = (VMStateField []) { 504 VMSTATE_UINT32(isolation_state, sPAPRDRConnector), 505 VMSTATE_UINT32(allocation_state, sPAPRDRConnector), 506 VMSTATE_UINT32(dr_indicator, sPAPRDRConnector), 507 VMSTATE_BOOL(configured, sPAPRDRConnector), 508 VMSTATE_BOOL(awaiting_release, sPAPRDRConnector), 509 VMSTATE_BOOL(awaiting_allocation, sPAPRDRConnector), 510 VMSTATE_END_OF_LIST() 511 } 512 }; 513 514 static void realize(DeviceState *d, Error **errp) 515 { 516 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 517 Object *root_container; 518 char link_name[256]; 519 gchar *child_name; 520 Error *err = NULL; 521 522 trace_spapr_drc_realize(spapr_drc_index(drc)); 523 /* NOTE: we do this as part of realize/unrealize due to the fact 524 * that the guest will communicate with the DRC via RTAS calls 525 * referencing the global DRC index. By unlinking the DRC 526 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 527 * inaccessible by the guest, since lookups rely on this path 528 * existing in the composition tree 529 */ 530 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 531 snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc)); 532 child_name = object_get_canonical_path_component(OBJECT(drc)); 533 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 534 object_property_add_alias(root_container, link_name, 535 drc->owner, child_name, &err); 536 if (err) { 537 error_report_err(err); 538 object_unref(OBJECT(drc)); 539 } 540 g_free(child_name); 541 vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 542 drc); 543 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 544 } 545 546 static void unrealize(DeviceState *d, Error **errp) 547 { 548 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 549 Object *root_container; 550 char name[256]; 551 Error *err = NULL; 552 553 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 554 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 555 snprintf(name, sizeof(name), "%x", spapr_drc_index(drc)); 556 object_property_del(root_container, name, &err); 557 if (err) { 558 error_report_err(err); 559 object_unref(OBJECT(drc)); 560 } 561 } 562 563 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type, 564 uint32_t id) 565 { 566 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type)); 567 char *prop_name; 568 569 drc->id = id; 570 drc->owner = owner; 571 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 572 spapr_drc_index(drc)); 573 object_property_add_child(owner, prop_name, OBJECT(drc), NULL); 574 object_property_set_bool(OBJECT(drc), true, "realized", NULL); 575 g_free(prop_name); 576 577 /* PCI slot always start in a USABLE state, and stay there */ 578 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) { 579 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE; 580 } 581 582 return drc; 583 } 584 585 static void spapr_dr_connector_instance_init(Object *obj) 586 { 587 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 588 589 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL); 590 object_property_add(obj, "index", "uint32", prop_get_index, 591 NULL, NULL, NULL, NULL); 592 object_property_add(obj, "fdt", "struct", prop_get_fdt, 593 NULL, NULL, NULL, NULL); 594 } 595 596 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 597 { 598 DeviceClass *dk = DEVICE_CLASS(k); 599 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 600 601 dk->reset = reset; 602 dk->realize = realize; 603 dk->unrealize = unrealize; 604 drck->release_pending = release_pending; 605 /* 606 * Reason: it crashes FIXME find and document the real reason 607 */ 608 dk->user_creatable = false; 609 } 610 611 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 612 { 613 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 614 615 drck->dr_entity_sense = physical_entity_sense; 616 drck->isolate = drc_isolate_physical; 617 drck->unisolate = drc_unisolate_physical; 618 } 619 620 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 621 { 622 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 623 624 drck->dr_entity_sense = logical_entity_sense; 625 drck->isolate = drc_isolate_logical; 626 drck->unisolate = drc_unisolate_logical; 627 } 628 629 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 630 { 631 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 632 633 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 634 drck->typename = "CPU"; 635 drck->drc_name_prefix = "CPU "; 636 } 637 638 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 639 { 640 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 641 642 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 643 drck->typename = "28"; 644 drck->drc_name_prefix = "C"; 645 } 646 647 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 648 { 649 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 650 651 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 652 drck->typename = "MEM"; 653 drck->drc_name_prefix = "LMB "; 654 } 655 656 static const TypeInfo spapr_dr_connector_info = { 657 .name = TYPE_SPAPR_DR_CONNECTOR, 658 .parent = TYPE_DEVICE, 659 .instance_size = sizeof(sPAPRDRConnector), 660 .instance_init = spapr_dr_connector_instance_init, 661 .class_size = sizeof(sPAPRDRConnectorClass), 662 .class_init = spapr_dr_connector_class_init, 663 .abstract = true, 664 }; 665 666 static const TypeInfo spapr_drc_physical_info = { 667 .name = TYPE_SPAPR_DRC_PHYSICAL, 668 .parent = TYPE_SPAPR_DR_CONNECTOR, 669 .instance_size = sizeof(sPAPRDRConnector), 670 .class_init = spapr_drc_physical_class_init, 671 .abstract = true, 672 }; 673 674 static const TypeInfo spapr_drc_logical_info = { 675 .name = TYPE_SPAPR_DRC_LOGICAL, 676 .parent = TYPE_SPAPR_DR_CONNECTOR, 677 .instance_size = sizeof(sPAPRDRConnector), 678 .class_init = spapr_drc_logical_class_init, 679 .abstract = true, 680 }; 681 682 static const TypeInfo spapr_drc_cpu_info = { 683 .name = TYPE_SPAPR_DRC_CPU, 684 .parent = TYPE_SPAPR_DRC_LOGICAL, 685 .instance_size = sizeof(sPAPRDRConnector), 686 .class_init = spapr_drc_cpu_class_init, 687 }; 688 689 static const TypeInfo spapr_drc_pci_info = { 690 .name = TYPE_SPAPR_DRC_PCI, 691 .parent = TYPE_SPAPR_DRC_PHYSICAL, 692 .instance_size = sizeof(sPAPRDRConnector), 693 .class_init = spapr_drc_pci_class_init, 694 }; 695 696 static const TypeInfo spapr_drc_lmb_info = { 697 .name = TYPE_SPAPR_DRC_LMB, 698 .parent = TYPE_SPAPR_DRC_LOGICAL, 699 .instance_size = sizeof(sPAPRDRConnector), 700 .class_init = spapr_drc_lmb_class_init, 701 }; 702 703 /* helper functions for external users */ 704 705 sPAPRDRConnector *spapr_drc_by_index(uint32_t index) 706 { 707 Object *obj; 708 char name[256]; 709 710 snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index); 711 obj = object_resolve_path(name, NULL); 712 713 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 714 } 715 716 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id) 717 { 718 sPAPRDRConnectorClass *drck 719 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 720 721 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 722 | (id & DRC_INDEX_ID_MASK)); 723 } 724 725 /** 726 * spapr_drc_populate_dt 727 * 728 * @fdt: libfdt device tree 729 * @path: path in the DT to generate properties 730 * @owner: parent Object/DeviceState for which to generate DRC 731 * descriptions for 732 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding 733 * to the types of DRCs to generate entries for 734 * 735 * generate OF properties to describe DRC topology/indices to guests 736 * 737 * as documented in PAPR+ v2.1, 13.5.2 738 */ 739 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner, 740 uint32_t drc_type_mask) 741 { 742 Object *root_container; 743 ObjectProperty *prop; 744 ObjectPropertyIterator iter; 745 uint32_t drc_count = 0; 746 GArray *drc_indexes, *drc_power_domains; 747 GString *drc_names, *drc_types; 748 int ret; 749 750 /* the first entry of each properties is a 32-bit integer encoding 751 * the number of elements in the array. we won't know this until 752 * we complete the iteration through all the matching DRCs, but 753 * reserve the space now and set the offsets accordingly so we 754 * can fill them in later. 755 */ 756 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 757 drc_indexes = g_array_set_size(drc_indexes, 1); 758 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 759 drc_power_domains = g_array_set_size(drc_power_domains, 1); 760 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 761 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 762 763 /* aliases for all DRConnector objects will be rooted in QOM 764 * composition tree at DRC_CONTAINER_PATH 765 */ 766 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 767 768 object_property_iter_init(&iter, root_container); 769 while ((prop = object_property_iter_next(&iter))) { 770 Object *obj; 771 sPAPRDRConnector *drc; 772 sPAPRDRConnectorClass *drck; 773 uint32_t drc_index, drc_power_domain; 774 775 if (!strstart(prop->type, "link<", NULL)) { 776 continue; 777 } 778 779 obj = object_property_get_link(root_container, prop->name, NULL); 780 drc = SPAPR_DR_CONNECTOR(obj); 781 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 782 783 if (owner && (drc->owner != owner)) { 784 continue; 785 } 786 787 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 788 continue; 789 } 790 791 drc_count++; 792 793 /* ibm,drc-indexes */ 794 drc_index = cpu_to_be32(spapr_drc_index(drc)); 795 g_array_append_val(drc_indexes, drc_index); 796 797 /* ibm,drc-power-domains */ 798 drc_power_domain = cpu_to_be32(-1); 799 g_array_append_val(drc_power_domains, drc_power_domain); 800 801 /* ibm,drc-names */ 802 drc_names = g_string_append(drc_names, spapr_drc_name(drc)); 803 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 804 805 /* ibm,drc-types */ 806 drc_types = g_string_append(drc_types, drck->typename); 807 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 808 } 809 810 /* now write the drc count into the space we reserved at the 811 * beginning of the arrays previously 812 */ 813 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 814 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 815 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 816 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 817 818 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes", 819 drc_indexes->data, 820 drc_indexes->len * sizeof(uint32_t)); 821 if (ret) { 822 error_report("Couldn't create ibm,drc-indexes property"); 823 goto out; 824 } 825 826 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains", 827 drc_power_domains->data, 828 drc_power_domains->len * sizeof(uint32_t)); 829 if (ret) { 830 error_report("Couldn't finalize ibm,drc-power-domains property"); 831 goto out; 832 } 833 834 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names", 835 drc_names->str, drc_names->len); 836 if (ret) { 837 error_report("Couldn't finalize ibm,drc-names property"); 838 goto out; 839 } 840 841 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types", 842 drc_types->str, drc_types->len); 843 if (ret) { 844 error_report("Couldn't finalize ibm,drc-types property"); 845 goto out; 846 } 847 848 out: 849 g_array_free(drc_indexes, true); 850 g_array_free(drc_power_domains, true); 851 g_string_free(drc_names, true); 852 g_string_free(drc_types, true); 853 854 return ret; 855 } 856 857 /* 858 * RTAS calls 859 */ 860 861 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 862 { 863 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 864 sPAPRDRConnectorClass *drck; 865 866 if (!drc) { 867 return RTAS_OUT_NO_SUCH_INDICATOR; 868 } 869 870 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 871 872 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 873 874 switch (state) { 875 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 876 return drck->isolate(drc); 877 878 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 879 return drck->unisolate(drc); 880 881 default: 882 return RTAS_OUT_PARAM_ERROR; 883 } 884 } 885 886 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 887 { 888 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 889 890 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 891 return RTAS_OUT_NO_SUCH_INDICATOR; 892 } 893 894 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 895 896 switch (state) { 897 case SPAPR_DR_ALLOCATION_STATE_USABLE: 898 return drc_set_usable(drc); 899 900 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 901 return drc_set_unusable(drc); 902 903 default: 904 return RTAS_OUT_PARAM_ERROR; 905 } 906 } 907 908 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 909 { 910 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 911 912 if (!drc) { 913 return RTAS_OUT_PARAM_ERROR; 914 } 915 916 trace_spapr_drc_set_dr_indicator(idx, state); 917 drc->dr_indicator = state; 918 return RTAS_OUT_SUCCESS; 919 } 920 921 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, 922 uint32_t token, 923 uint32_t nargs, target_ulong args, 924 uint32_t nret, target_ulong rets) 925 { 926 uint32_t type, idx, state; 927 uint32_t ret = RTAS_OUT_SUCCESS; 928 929 if (nargs != 3 || nret != 1) { 930 ret = RTAS_OUT_PARAM_ERROR; 931 goto out; 932 } 933 934 type = rtas_ld(args, 0); 935 idx = rtas_ld(args, 1); 936 state = rtas_ld(args, 2); 937 938 switch (type) { 939 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 940 ret = rtas_set_isolation_state(idx, state); 941 break; 942 case RTAS_SENSOR_TYPE_DR: 943 ret = rtas_set_dr_indicator(idx, state); 944 break; 945 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 946 ret = rtas_set_allocation_state(idx, state); 947 break; 948 default: 949 ret = RTAS_OUT_NOT_SUPPORTED; 950 } 951 952 out: 953 rtas_st(rets, 0, ret); 954 } 955 956 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, 957 uint32_t token, uint32_t nargs, 958 target_ulong args, uint32_t nret, 959 target_ulong rets) 960 { 961 uint32_t sensor_type; 962 uint32_t sensor_index; 963 uint32_t sensor_state = 0; 964 sPAPRDRConnector *drc; 965 sPAPRDRConnectorClass *drck; 966 uint32_t ret = RTAS_OUT_SUCCESS; 967 968 if (nargs != 2 || nret != 2) { 969 ret = RTAS_OUT_PARAM_ERROR; 970 goto out; 971 } 972 973 sensor_type = rtas_ld(args, 0); 974 sensor_index = rtas_ld(args, 1); 975 976 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 977 /* currently only DR-related sensors are implemented */ 978 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 979 sensor_type); 980 ret = RTAS_OUT_NOT_SUPPORTED; 981 goto out; 982 } 983 984 drc = spapr_drc_by_index(sensor_index); 985 if (!drc) { 986 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 987 ret = RTAS_OUT_PARAM_ERROR; 988 goto out; 989 } 990 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 991 sensor_state = drck->dr_entity_sense(drc); 992 993 out: 994 rtas_st(rets, 0, ret); 995 rtas_st(rets, 1, sensor_state); 996 } 997 998 /* configure-connector work area offsets, int32_t units for field 999 * indexes, bytes for field offset/len values. 1000 * 1001 * as documented by PAPR+ v2.7, 13.5.3.5 1002 */ 1003 #define CC_IDX_NODE_NAME_OFFSET 2 1004 #define CC_IDX_PROP_NAME_OFFSET 2 1005 #define CC_IDX_PROP_LEN 3 1006 #define CC_IDX_PROP_DATA_OFFSET 4 1007 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1008 #define CC_WA_LEN 4096 1009 1010 static void configure_connector_st(target_ulong addr, target_ulong offset, 1011 const void *buf, size_t len) 1012 { 1013 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1014 buf, MIN(len, CC_WA_LEN - offset)); 1015 } 1016 1017 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1018 sPAPRMachineState *spapr, 1019 uint32_t token, uint32_t nargs, 1020 target_ulong args, uint32_t nret, 1021 target_ulong rets) 1022 { 1023 uint64_t wa_addr; 1024 uint64_t wa_offset; 1025 uint32_t drc_index; 1026 sPAPRDRConnector *drc; 1027 sPAPRConfigureConnectorState *ccs; 1028 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1029 int rc; 1030 1031 if (nargs != 2 || nret != 1) { 1032 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1033 return; 1034 } 1035 1036 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1037 1038 drc_index = rtas_ld(wa_addr, 0); 1039 drc = spapr_drc_by_index(drc_index); 1040 if (!drc) { 1041 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1042 rc = RTAS_OUT_PARAM_ERROR; 1043 goto out; 1044 } 1045 1046 if (!drc->fdt) { 1047 trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index); 1048 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1049 goto out; 1050 } 1051 1052 ccs = drc->ccs; 1053 if (!ccs) { 1054 ccs = g_new0(sPAPRConfigureConnectorState, 1); 1055 ccs->fdt_offset = drc->fdt_start_offset; 1056 drc->ccs = ccs; 1057 } 1058 1059 do { 1060 uint32_t tag; 1061 const char *name; 1062 const struct fdt_property *prop; 1063 int fdt_offset_next, prop_len; 1064 1065 tag = fdt_next_tag(drc->fdt, ccs->fdt_offset, &fdt_offset_next); 1066 1067 switch (tag) { 1068 case FDT_BEGIN_NODE: 1069 ccs->fdt_depth++; 1070 name = fdt_get_name(drc->fdt, ccs->fdt_offset, NULL); 1071 1072 /* provide the name of the next OF node */ 1073 wa_offset = CC_VAL_DATA_OFFSET; 1074 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1075 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1076 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1077 break; 1078 case FDT_END_NODE: 1079 ccs->fdt_depth--; 1080 if (ccs->fdt_depth == 0) { 1081 sPAPRDRIsolationState state = drc->isolation_state; 1082 uint32_t drc_index = spapr_drc_index(drc); 1083 /* done sending the device tree, don't need to track 1084 * the state anymore 1085 */ 1086 trace_spapr_drc_set_configured(drc_index); 1087 if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) { 1088 drc->configured = true; 1089 } else { 1090 /* guest should be not configuring an isolated device */ 1091 trace_spapr_drc_set_configured_skipping(drc_index); 1092 } 1093 g_free(ccs); 1094 drc->ccs = NULL; 1095 ccs = NULL; 1096 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1097 } else { 1098 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1099 } 1100 break; 1101 case FDT_PROP: 1102 prop = fdt_get_property_by_offset(drc->fdt, ccs->fdt_offset, 1103 &prop_len); 1104 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1105 1106 /* provide the name of the next OF property */ 1107 wa_offset = CC_VAL_DATA_OFFSET; 1108 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1109 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1110 1111 /* provide the length and value of the OF property. data gets 1112 * placed immediately after NULL terminator of the OF property's 1113 * name string 1114 */ 1115 wa_offset += strlen(name) + 1, 1116 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1117 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1118 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1119 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1120 break; 1121 case FDT_END: 1122 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1123 default: 1124 /* keep seeking for an actionable tag */ 1125 break; 1126 } 1127 if (ccs) { 1128 ccs->fdt_offset = fdt_offset_next; 1129 } 1130 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1131 1132 rc = resp; 1133 out: 1134 rtas_st(rets, 0, rc); 1135 } 1136 1137 static void spapr_drc_register_types(void) 1138 { 1139 type_register_static(&spapr_dr_connector_info); 1140 type_register_static(&spapr_drc_physical_info); 1141 type_register_static(&spapr_drc_logical_info); 1142 type_register_static(&spapr_drc_cpu_info); 1143 type_register_static(&spapr_drc_pci_info); 1144 type_register_static(&spapr_drc_lmb_info); 1145 1146 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1147 rtas_set_indicator); 1148 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1149 rtas_get_sensor_state); 1150 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1151 rtas_ibm_configure_connector); 1152 } 1153 type_init(spapr_drc_register_types) 1154