xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision f149c9b7f942c56f30e66be034f669b95255474e)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29 
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33 
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37 
38     return 1 << drck->typeshift;
39 }
40 
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44 
45     /* no set format for a drc index: it only needs to be globally
46      * unique. this is how we encode the DRC type on bare-metal
47      * however, so might as well do that here
48      */
49     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50         | (drc->id & DRC_INDEX_ID_MASK);
51 }
52 
53 static void spapr_drc_release(SpaprDrc *drc)
54 {
55     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
56 
57     drck->release(drc->dev);
58 
59     drc->unplug_requested = false;
60     timer_del(drc->unplug_timeout_timer);
61 
62     g_free(drc->fdt);
63     drc->fdt = NULL;
64     drc->fdt_start_offset = 0;
65     object_property_del(OBJECT(drc), "device");
66     drc->dev = NULL;
67 }
68 
69 static uint32_t drc_isolate_physical(SpaprDrc *drc)
70 {
71     switch (drc->state) {
72     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
73         return RTAS_OUT_SUCCESS; /* Nothing to do */
74     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
75         break; /* see below */
76     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
77         return RTAS_OUT_PARAM_ERROR; /* not allowed */
78     default:
79         g_assert_not_reached();
80     }
81 
82     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
83 
84     if (drc->unplug_requested) {
85         uint32_t drc_index = spapr_drc_index(drc);
86         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
87         spapr_drc_release(drc);
88     }
89 
90     return RTAS_OUT_SUCCESS;
91 }
92 
93 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
94 {
95     switch (drc->state) {
96     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
97     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
98         return RTAS_OUT_SUCCESS; /* Nothing to do */
99     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
100         break; /* see below */
101     default:
102         g_assert_not_reached();
103     }
104 
105     /* cannot unisolate a non-existent resource, and, or resources
106      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
107      * 13.5.3.5)
108      */
109     if (!drc->dev) {
110         return RTAS_OUT_NO_SUCH_INDICATOR;
111     }
112 
113     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
114     drc->ccs_offset = drc->fdt_start_offset;
115     drc->ccs_depth = 0;
116 
117     return RTAS_OUT_SUCCESS;
118 }
119 
120 static uint32_t drc_isolate_logical(SpaprDrc *drc)
121 {
122     switch (drc->state) {
123     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
124     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
125         return RTAS_OUT_SUCCESS; /* Nothing to do */
126     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
127         break; /* see below */
128     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
129         return RTAS_OUT_PARAM_ERROR; /* not allowed */
130     default:
131         g_assert_not_reached();
132     }
133 
134     /*
135      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
136      * belong to a DIMM device that is marked for removal.
137      *
138      * Currently the guest userspace tool drmgr that drives the memory
139      * hotplug/unplug will just try to remove a set of 'removable' LMBs
140      * in response to a hot unplug request that is based on drc-count.
141      * If the LMB being removed doesn't belong to a DIMM device that is
142      * actually being unplugged, fail the isolation request here.
143      */
144     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
145         && !drc->unplug_requested) {
146         return RTAS_OUT_HW_ERROR;
147     }
148 
149     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
150 
151     return RTAS_OUT_SUCCESS;
152 }
153 
154 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
155 {
156     switch (drc->state) {
157     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
158     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
159         return RTAS_OUT_SUCCESS; /* Nothing to do */
160     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
161         break; /* see below */
162     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
163         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
164     default:
165         g_assert_not_reached();
166     }
167 
168     /* Move to AVAILABLE state should have ensured device was present */
169     g_assert(drc->dev);
170 
171     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
172     drc->ccs_offset = drc->fdt_start_offset;
173     drc->ccs_depth = 0;
174 
175     return RTAS_OUT_SUCCESS;
176 }
177 
178 static uint32_t drc_set_usable(SpaprDrc *drc)
179 {
180     switch (drc->state) {
181     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
182     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
183     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
184         return RTAS_OUT_SUCCESS; /* Nothing to do */
185     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
186         break; /* see below */
187     default:
188         g_assert_not_reached();
189     }
190 
191     /* if there's no resource/device associated with the DRC, there's
192      * no way for us to put it in an allocation state consistent with
193      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
194      * result in an RTAS return code of -3 / "no such indicator"
195      */
196     if (!drc->dev) {
197         return RTAS_OUT_NO_SUCH_INDICATOR;
198     }
199     if (drc->unplug_requested) {
200         /* Don't allow the guest to move a device away from UNUSABLE
201          * state when we want to unplug it */
202         return RTAS_OUT_NO_SUCH_INDICATOR;
203     }
204 
205     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
206 
207     return RTAS_OUT_SUCCESS;
208 }
209 
210 static uint32_t drc_set_unusable(SpaprDrc *drc)
211 {
212     switch (drc->state) {
213     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
214         return RTAS_OUT_SUCCESS; /* Nothing to do */
215     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
216         break; /* see below */
217     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
218     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
219         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
220     default:
221         g_assert_not_reached();
222     }
223 
224     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
225     if (drc->unplug_requested) {
226         uint32_t drc_index = spapr_drc_index(drc);
227         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
228         spapr_drc_release(drc);
229     }
230 
231     return RTAS_OUT_SUCCESS;
232 }
233 
234 static char *spapr_drc_name(SpaprDrc *drc)
235 {
236     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
237 
238     /* human-readable name for a DRC to encode into the DT
239      * description. this is mainly only used within a guest in place
240      * of the unique DRC index.
241      *
242      * in the case of VIO/PCI devices, it corresponds to a "location
243      * code" that maps a logical device/function (DRC index) to a
244      * physical (or virtual in the case of VIO) location in the system
245      * by chaining together the "location label" for each
246      * encapsulating component.
247      *
248      * since this is more to do with diagnosing physical hardware
249      * issues than guest compatibility, we choose location codes/DRC
250      * names that adhere to the documented format, but avoid encoding
251      * the entire topology information into the label/code, instead
252      * just using the location codes based on the labels for the
253      * endpoints (VIO/PCI adaptor connectors), which is basically just
254      * "C" followed by an integer ID.
255      *
256      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
257      * location codes as documented by PAPR+ v2.7, 12.3.1.5
258      */
259     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
260 }
261 
262 /*
263  * dr-entity-sense sensor value
264  * returned via get-sensor-state RTAS calls
265  * as expected by state diagram in PAPR+ 2.7, 13.4
266  * based on the current allocation/indicator/power states
267  * for the DR connector.
268  */
269 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
270 {
271     /* this assumes all PCI devices are assigned to a 'live insertion'
272      * power domain, where QEMU manages power state automatically as
273      * opposed to the guest. present, non-PCI resources are unaffected
274      * by power state.
275      */
276     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
277         : SPAPR_DR_ENTITY_SENSE_EMPTY;
278 }
279 
280 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
281 {
282     switch (drc->state) {
283     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
284         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
285     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
286     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
287     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
288         g_assert(drc->dev);
289         return SPAPR_DR_ENTITY_SENSE_PRESENT;
290     default:
291         g_assert_not_reached();
292     }
293 }
294 
295 static void prop_get_index(Object *obj, Visitor *v, const char *name,
296                            void *opaque, Error **errp)
297 {
298     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
299     uint32_t value = spapr_drc_index(drc);
300     visit_type_uint32(v, name, &value, errp);
301 }
302 
303 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
304                          void *opaque, Error **errp)
305 {
306     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
307     QNull *null = NULL;
308     int fdt_offset_next, fdt_offset, fdt_depth;
309     void *fdt;
310 
311     if (!drc->fdt) {
312         visit_type_null(v, NULL, &null, errp);
313         qobject_unref(null);
314         return;
315     }
316 
317     fdt = drc->fdt;
318     fdt_offset = drc->fdt_start_offset;
319     fdt_depth = 0;
320 
321     do {
322         const char *name = NULL;
323         const struct fdt_property *prop = NULL;
324         int prop_len = 0, name_len = 0;
325         uint32_t tag;
326         bool ok;
327 
328         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
329         switch (tag) {
330         case FDT_BEGIN_NODE:
331             fdt_depth++;
332             name = fdt_get_name(fdt, fdt_offset, &name_len);
333             if (!visit_start_struct(v, name, NULL, 0, errp)) {
334                 return;
335             }
336             break;
337         case FDT_END_NODE:
338             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
339             g_assert(fdt_depth > 0);
340             ok = visit_check_struct(v, errp);
341             visit_end_struct(v, NULL);
342             if (!ok) {
343                 return;
344             }
345             fdt_depth--;
346             break;
347         case FDT_PROP: {
348             int i;
349             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
350             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
351             if (!visit_start_list(v, name, NULL, 0, errp)) {
352                 return;
353             }
354             for (i = 0; i < prop_len; i++) {
355                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
356                                       errp)) {
357                     return;
358                 }
359             }
360             ok = visit_check_list(v, errp);
361             visit_end_list(v, NULL);
362             if (!ok) {
363                 return;
364             }
365             break;
366         }
367         default:
368             error_report("device FDT in unexpected state: %d", tag);
369             abort();
370         }
371         fdt_offset = fdt_offset_next;
372     } while (fdt_depth != 0);
373 }
374 
375 static void spapr_drc_start_unplug_timeout_timer(SpaprDrc *drc)
376 {
377     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
378 
379     if (drck->unplug_timeout_seconds != 0) {
380         timer_mod(drc->unplug_timeout_timer,
381                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) +
382                   drck->unplug_timeout_seconds * 1000);
383     }
384 }
385 
386 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d)
387 {
388     trace_spapr_drc_attach(spapr_drc_index(drc));
389 
390     g_assert(!drc->dev);
391     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
392              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
393 
394     drc->dev = d;
395 
396     object_property_add_link(OBJECT(drc), "device",
397                              object_get_typename(OBJECT(drc->dev)),
398                              (Object **)(&drc->dev),
399                              NULL, 0);
400 }
401 
402 void spapr_drc_unplug_request(SpaprDrc *drc)
403 {
404     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
405 
406     trace_spapr_drc_unplug_request(spapr_drc_index(drc));
407 
408     g_assert(drc->dev);
409 
410     drc->unplug_requested = true;
411 
412     spapr_drc_start_unplug_timeout_timer(drc);
413 
414     if (drc->state != drck->empty_state) {
415         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
416         return;
417     }
418 
419     spapr_drc_release(drc);
420 }
421 
422 int spapr_drc_unplug_timeout_remaining_sec(SpaprDrc *drc)
423 {
424     if (drc->unplug_requested && timer_pending(drc->unplug_timeout_timer)) {
425         return (qemu_timeout_ns_to_ms(drc->unplug_timeout_timer->expire_time) -
426                 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL)) / 1000;
427     }
428 
429     return 0;
430 }
431 
432 bool spapr_drc_reset(SpaprDrc *drc)
433 {
434     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
435     bool unplug_completed = false;
436 
437     trace_spapr_drc_reset(spapr_drc_index(drc));
438 
439     /* immediately upon reset we can safely assume DRCs whose devices
440      * are pending removal can be safely removed.
441      */
442     if (drc->unplug_requested) {
443         spapr_drc_release(drc);
444         unplug_completed = true;
445     }
446 
447     if (drc->dev) {
448         /* A device present at reset is ready to go, same as coldplugged */
449         drc->state = drck->ready_state;
450         /*
451          * Ensure that we are able to send the FDT fragment again
452          * via configure-connector call if the guest requests.
453          */
454         drc->ccs_offset = drc->fdt_start_offset;
455         drc->ccs_depth = 0;
456     } else {
457         drc->state = drck->empty_state;
458         drc->ccs_offset = -1;
459         drc->ccs_depth = -1;
460     }
461 
462     return unplug_completed;
463 }
464 
465 static bool spapr_drc_unplug_requested_needed(void *opaque)
466 {
467     return spapr_drc_unplug_requested(opaque);
468 }
469 
470 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
471     .name = "spapr_drc/unplug_requested",
472     .version_id = 1,
473     .minimum_version_id = 1,
474     .needed = spapr_drc_unplug_requested_needed,
475     .fields  = (VMStateField []) {
476         VMSTATE_BOOL(unplug_requested, SpaprDrc),
477         VMSTATE_END_OF_LIST()
478     }
479 };
480 
481 static bool spapr_drc_needed(void *opaque)
482 {
483     SpaprDrc *drc = opaque;
484     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
485 
486     /*
487      * If no dev is plugged in there is no need to migrate the DRC state
488      * nor to reset the DRC at CAS.
489      */
490     if (!drc->dev) {
491         return false;
492     }
493 
494     /*
495      * We need to reset the DRC at CAS or to migrate the DRC state if it's
496      * not equal to the expected long-term state, which is the same as the
497      * coldplugged initial state, or if an unplug request is pending.
498      */
499     return drc->state != drck->ready_state ||
500         spapr_drc_unplug_requested(drc);
501 }
502 
503 static int spapr_drc_post_load(void *opaque, int version_id)
504 {
505     SpaprDrc *drc = opaque;
506 
507     if (drc->unplug_requested) {
508         spapr_drc_start_unplug_timeout_timer(drc);
509     }
510 
511     return 0;
512 }
513 
514 static const VMStateDescription vmstate_spapr_drc = {
515     .name = "spapr_drc",
516     .version_id = 1,
517     .minimum_version_id = 1,
518     .needed = spapr_drc_needed,
519     .post_load = spapr_drc_post_load,
520     .fields  = (VMStateField []) {
521         VMSTATE_UINT32(state, SpaprDrc),
522         VMSTATE_END_OF_LIST()
523     },
524     .subsections = (const VMStateDescription * []) {
525         &vmstate_spapr_drc_unplug_requested,
526         NULL
527     }
528 };
529 
530 static void drc_unplug_timeout_cb(void *opaque)
531 {
532     SpaprDrc *drc = opaque;
533 
534     if (drc->unplug_requested) {
535         drc->unplug_requested = false;
536     }
537 }
538 
539 static void drc_realize(DeviceState *d, Error **errp)
540 {
541     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
542     Object *root_container;
543     gchar *link_name;
544     const char *child_name;
545 
546     trace_spapr_drc_realize(spapr_drc_index(drc));
547     /* NOTE: we do this as part of realize/unrealize due to the fact
548      * that the guest will communicate with the DRC via RTAS calls
549      * referencing the global DRC index. By unlinking the DRC
550      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
551      * inaccessible by the guest, since lookups rely on this path
552      * existing in the composition tree
553      */
554     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
555     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
556     child_name = object_get_canonical_path_component(OBJECT(drc));
557     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
558     object_property_add_alias(root_container, link_name,
559                               drc->owner, child_name);
560     g_free(link_name);
561 
562     drc->unplug_timeout_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
563                                              drc_unplug_timeout_cb,
564                                              drc);
565 
566     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
567                      drc);
568     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
569 }
570 
571 static void drc_unrealize(DeviceState *d)
572 {
573     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
574     Object *root_container;
575     gchar *name;
576 
577     trace_spapr_drc_unrealize(spapr_drc_index(drc));
578     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
579     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
580     name = g_strdup_printf("%x", spapr_drc_index(drc));
581     object_property_del(root_container, name);
582     g_free(name);
583     timer_free(drc->unplug_timeout_timer);
584 }
585 
586 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
587                                          uint32_t id)
588 {
589     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
590     char *prop_name;
591 
592     drc->id = id;
593     drc->owner = owner;
594     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
595                                 spapr_drc_index(drc));
596     object_property_add_child(owner, prop_name, OBJECT(drc));
597     object_unref(OBJECT(drc));
598     qdev_realize(DEVICE(drc), NULL, NULL);
599     g_free(prop_name);
600 
601     return drc;
602 }
603 
604 static void spapr_dr_connector_instance_init(Object *obj)
605 {
606     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
607     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
608 
609     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
610     object_property_add(obj, "index", "uint32", prop_get_index,
611                         NULL, NULL, NULL);
612     object_property_add(obj, "fdt", "struct", prop_get_fdt,
613                         NULL, NULL, NULL);
614     drc->state = drck->empty_state;
615 }
616 
617 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
618 {
619     DeviceClass *dk = DEVICE_CLASS(k);
620 
621     dk->realize = drc_realize;
622     dk->unrealize = drc_unrealize;
623     /*
624      * Reason: DR connector needs to be wired to either the machine or to a
625      * PHB in spapr_dr_connector_new().
626      */
627     dk->user_creatable = false;
628 }
629 
630 static bool drc_physical_needed(void *opaque)
631 {
632     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
633     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
634 
635     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
636         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
637         return false;
638     }
639     return true;
640 }
641 
642 static const VMStateDescription vmstate_spapr_drc_physical = {
643     .name = "spapr_drc/physical",
644     .version_id = 1,
645     .minimum_version_id = 1,
646     .needed = drc_physical_needed,
647     .fields  = (VMStateField []) {
648         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
649         VMSTATE_END_OF_LIST()
650     }
651 };
652 
653 static void drc_physical_reset(void *opaque)
654 {
655     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
656     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
657 
658     if (drc->dev) {
659         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
660     } else {
661         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
662     }
663 }
664 
665 static void realize_physical(DeviceState *d, Error **errp)
666 {
667     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
668     Error *local_err = NULL;
669 
670     drc_realize(d, &local_err);
671     if (local_err) {
672         error_propagate(errp, local_err);
673         return;
674     }
675 
676     vmstate_register(VMSTATE_IF(drcp),
677                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
678                      &vmstate_spapr_drc_physical, drcp);
679     qemu_register_reset(drc_physical_reset, drcp);
680 }
681 
682 static void unrealize_physical(DeviceState *d)
683 {
684     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
685 
686     drc_unrealize(d);
687     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
688     qemu_unregister_reset(drc_physical_reset, drcp);
689 }
690 
691 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
692 {
693     DeviceClass *dk = DEVICE_CLASS(k);
694     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
695 
696     dk->realize = realize_physical;
697     dk->unrealize = unrealize_physical;
698     drck->dr_entity_sense = physical_entity_sense;
699     drck->isolate = drc_isolate_physical;
700     drck->unisolate = drc_unisolate_physical;
701     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
702     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
703 }
704 
705 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
706 {
707     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
708 
709     drck->dr_entity_sense = logical_entity_sense;
710     drck->isolate = drc_isolate_logical;
711     drck->unisolate = drc_unisolate_logical;
712     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
713     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
714 }
715 
716 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
717 {
718     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
719 
720     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
721     drck->typename = "CPU";
722     drck->drc_name_prefix = "CPU ";
723     drck->release = spapr_core_release;
724     drck->dt_populate = spapr_core_dt_populate;
725     drck->unplug_timeout_seconds = 15;
726 }
727 
728 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
729 {
730     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
731 
732     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
733     drck->typename = "28";
734     drck->drc_name_prefix = "C";
735     drck->release = spapr_phb_remove_pci_device_cb;
736     drck->dt_populate = spapr_pci_dt_populate;
737 }
738 
739 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
740 {
741     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
742 
743     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
744     drck->typename = "MEM";
745     drck->drc_name_prefix = "LMB ";
746     drck->release = spapr_lmb_release;
747     drck->dt_populate = spapr_lmb_dt_populate;
748 }
749 
750 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
751 {
752     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
753 
754     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
755     drck->typename = "PHB";
756     drck->drc_name_prefix = "PHB ";
757     drck->release = spapr_phb_release;
758     drck->dt_populate = spapr_phb_dt_populate;
759 }
760 
761 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
762 {
763     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
764 
765     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
766     drck->typename = "PMEM";
767     drck->drc_name_prefix = "PMEM ";
768     drck->release = NULL;
769     drck->dt_populate = spapr_pmem_dt_populate;
770 }
771 
772 static const TypeInfo spapr_dr_connector_info = {
773     .name          = TYPE_SPAPR_DR_CONNECTOR,
774     .parent        = TYPE_DEVICE,
775     .instance_size = sizeof(SpaprDrc),
776     .instance_init = spapr_dr_connector_instance_init,
777     .class_size    = sizeof(SpaprDrcClass),
778     .class_init    = spapr_dr_connector_class_init,
779     .abstract      = true,
780 };
781 
782 static const TypeInfo spapr_drc_physical_info = {
783     .name          = TYPE_SPAPR_DRC_PHYSICAL,
784     .parent        = TYPE_SPAPR_DR_CONNECTOR,
785     .instance_size = sizeof(SpaprDrcPhysical),
786     .class_init    = spapr_drc_physical_class_init,
787     .abstract      = true,
788 };
789 
790 static const TypeInfo spapr_drc_logical_info = {
791     .name          = TYPE_SPAPR_DRC_LOGICAL,
792     .parent        = TYPE_SPAPR_DR_CONNECTOR,
793     .class_init    = spapr_drc_logical_class_init,
794     .abstract      = true,
795 };
796 
797 static const TypeInfo spapr_drc_cpu_info = {
798     .name          = TYPE_SPAPR_DRC_CPU,
799     .parent        = TYPE_SPAPR_DRC_LOGICAL,
800     .class_init    = spapr_drc_cpu_class_init,
801 };
802 
803 static const TypeInfo spapr_drc_pci_info = {
804     .name          = TYPE_SPAPR_DRC_PCI,
805     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
806     .class_init    = spapr_drc_pci_class_init,
807 };
808 
809 static const TypeInfo spapr_drc_lmb_info = {
810     .name          = TYPE_SPAPR_DRC_LMB,
811     .parent        = TYPE_SPAPR_DRC_LOGICAL,
812     .class_init    = spapr_drc_lmb_class_init,
813 };
814 
815 static const TypeInfo spapr_drc_phb_info = {
816     .name          = TYPE_SPAPR_DRC_PHB,
817     .parent        = TYPE_SPAPR_DRC_LOGICAL,
818     .instance_size = sizeof(SpaprDrc),
819     .class_init    = spapr_drc_phb_class_init,
820 };
821 
822 static const TypeInfo spapr_drc_pmem_info = {
823     .name          = TYPE_SPAPR_DRC_PMEM,
824     .parent        = TYPE_SPAPR_DRC_LOGICAL,
825     .class_init    = spapr_drc_pmem_class_init,
826 };
827 
828 /* helper functions for external users */
829 
830 SpaprDrc *spapr_drc_by_index(uint32_t index)
831 {
832     Object *obj;
833     gchar *name;
834 
835     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
836     obj = object_resolve_path(name, NULL);
837     g_free(name);
838 
839     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
840 }
841 
842 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
843 {
844     SpaprDrcClass *drck
845         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
846 
847     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
848                               | (id & DRC_INDEX_ID_MASK));
849 }
850 
851 /**
852  * spapr_dt_drc
853  *
854  * @fdt: libfdt device tree
855  * @path: path in the DT to generate properties
856  * @owner: parent Object/DeviceState for which to generate DRC
857  *         descriptions for
858  * @drc_type_mask: mask of SpaprDrcType values corresponding
859  *   to the types of DRCs to generate entries for
860  *
861  * generate OF properties to describe DRC topology/indices to guests
862  *
863  * as documented in PAPR+ v2.1, 13.5.2
864  */
865 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
866 {
867     Object *root_container;
868     ObjectProperty *prop;
869     ObjectPropertyIterator iter;
870     uint32_t drc_count = 0;
871     GArray *drc_indexes, *drc_power_domains;
872     GString *drc_names, *drc_types;
873     int ret;
874 
875     /*
876      * This should really be only called once per node since it overwrites
877      * the OF properties if they already exist.
878      */
879     g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL));
880 
881     /* the first entry of each properties is a 32-bit integer encoding
882      * the number of elements in the array. we won't know this until
883      * we complete the iteration through all the matching DRCs, but
884      * reserve the space now and set the offsets accordingly so we
885      * can fill them in later.
886      */
887     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
888     drc_indexes = g_array_set_size(drc_indexes, 1);
889     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
890     drc_power_domains = g_array_set_size(drc_power_domains, 1);
891     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
892     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
893 
894     /* aliases for all DRConnector objects will be rooted in QOM
895      * composition tree at DRC_CONTAINER_PATH
896      */
897     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
898 
899     object_property_iter_init(&iter, root_container);
900     while ((prop = object_property_iter_next(&iter))) {
901         Object *obj;
902         SpaprDrc *drc;
903         SpaprDrcClass *drck;
904         char *drc_name = NULL;
905         uint32_t drc_index, drc_power_domain;
906 
907         if (!strstart(prop->type, "link<", NULL)) {
908             continue;
909         }
910 
911         obj = object_property_get_link(root_container, prop->name,
912                                        &error_abort);
913         drc = SPAPR_DR_CONNECTOR(obj);
914         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
915 
916         if (owner && (drc->owner != owner)) {
917             continue;
918         }
919 
920         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
921             continue;
922         }
923 
924         drc_count++;
925 
926         /* ibm,drc-indexes */
927         drc_index = cpu_to_be32(spapr_drc_index(drc));
928         g_array_append_val(drc_indexes, drc_index);
929 
930         /* ibm,drc-power-domains */
931         drc_power_domain = cpu_to_be32(-1);
932         g_array_append_val(drc_power_domains, drc_power_domain);
933 
934         /* ibm,drc-names */
935         drc_name = spapr_drc_name(drc);
936         drc_names = g_string_append(drc_names, drc_name);
937         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
938         g_free(drc_name);
939 
940         /* ibm,drc-types */
941         drc_types = g_string_append(drc_types, drck->typename);
942         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
943     }
944 
945     /* now write the drc count into the space we reserved at the
946      * beginning of the arrays previously
947      */
948     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
949     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
950     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
951     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
952 
953     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
954                       drc_indexes->data,
955                       drc_indexes->len * sizeof(uint32_t));
956     if (ret) {
957         error_report("Couldn't create ibm,drc-indexes property");
958         goto out;
959     }
960 
961     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
962                       drc_power_domains->data,
963                       drc_power_domains->len * sizeof(uint32_t));
964     if (ret) {
965         error_report("Couldn't finalize ibm,drc-power-domains property");
966         goto out;
967     }
968 
969     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
970                       drc_names->str, drc_names->len);
971     if (ret) {
972         error_report("Couldn't finalize ibm,drc-names property");
973         goto out;
974     }
975 
976     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
977                       drc_types->str, drc_types->len);
978     if (ret) {
979         error_report("Couldn't finalize ibm,drc-types property");
980         goto out;
981     }
982 
983 out:
984     g_array_free(drc_indexes, true);
985     g_array_free(drc_power_domains, true);
986     g_string_free(drc_names, true);
987     g_string_free(drc_types, true);
988 
989     return ret;
990 }
991 
992 void spapr_drc_reset_all(SpaprMachineState *spapr)
993 {
994     Object *drc_container;
995     ObjectProperty *prop;
996     ObjectPropertyIterator iter;
997 
998     drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
999 restart:
1000     object_property_iter_init(&iter, drc_container);
1001     while ((prop = object_property_iter_next(&iter))) {
1002         SpaprDrc *drc;
1003 
1004         if (!strstart(prop->type, "link<", NULL)) {
1005             continue;
1006         }
1007         drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container,
1008                                                           prop->name,
1009                                                           &error_abort));
1010 
1011         /*
1012          * This will complete any pending plug/unplug requests.
1013          * In case of a unplugged PHB or PCI bridge, this will
1014          * cause some DRCs to be destroyed and thus potentially
1015          * invalidate the iterator.
1016          */
1017         if (spapr_drc_reset(drc)) {
1018             goto restart;
1019         }
1020     }
1021 }
1022 
1023 /*
1024  * RTAS calls
1025  */
1026 
1027 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
1028 {
1029     SpaprDrc *drc = spapr_drc_by_index(idx);
1030     SpaprDrcClass *drck;
1031 
1032     if (!drc) {
1033         return RTAS_OUT_NO_SUCH_INDICATOR;
1034     }
1035 
1036     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
1037 
1038     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1039 
1040     switch (state) {
1041     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
1042         return drck->isolate(drc);
1043 
1044     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
1045         return drck->unisolate(drc);
1046 
1047     default:
1048         return RTAS_OUT_PARAM_ERROR;
1049     }
1050 }
1051 
1052 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
1053 {
1054     SpaprDrc *drc = spapr_drc_by_index(idx);
1055 
1056     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
1057         return RTAS_OUT_NO_SUCH_INDICATOR;
1058     }
1059 
1060     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
1061 
1062     switch (state) {
1063     case SPAPR_DR_ALLOCATION_STATE_USABLE:
1064         return drc_set_usable(drc);
1065 
1066     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
1067         return drc_set_unusable(drc);
1068 
1069     default:
1070         return RTAS_OUT_PARAM_ERROR;
1071     }
1072 }
1073 
1074 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1075 {
1076     SpaprDrc *drc = spapr_drc_by_index(idx);
1077 
1078     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1079         return RTAS_OUT_NO_SUCH_INDICATOR;
1080     }
1081     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1082         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1083         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1084         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1085         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1086     }
1087 
1088     trace_spapr_drc_set_dr_indicator(idx, state);
1089     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1090     return RTAS_OUT_SUCCESS;
1091 }
1092 
1093 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1094                                uint32_t token,
1095                                uint32_t nargs, target_ulong args,
1096                                uint32_t nret, target_ulong rets)
1097 {
1098     uint32_t type, idx, state;
1099     uint32_t ret = RTAS_OUT_SUCCESS;
1100 
1101     if (nargs != 3 || nret != 1) {
1102         ret = RTAS_OUT_PARAM_ERROR;
1103         goto out;
1104     }
1105 
1106     type = rtas_ld(args, 0);
1107     idx = rtas_ld(args, 1);
1108     state = rtas_ld(args, 2);
1109 
1110     switch (type) {
1111     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1112         ret = rtas_set_isolation_state(idx, state);
1113         break;
1114     case RTAS_SENSOR_TYPE_DR:
1115         ret = rtas_set_dr_indicator(idx, state);
1116         break;
1117     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1118         ret = rtas_set_allocation_state(idx, state);
1119         break;
1120     default:
1121         ret = RTAS_OUT_NOT_SUPPORTED;
1122     }
1123 
1124 out:
1125     rtas_st(rets, 0, ret);
1126 }
1127 
1128 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1129                                   uint32_t token, uint32_t nargs,
1130                                   target_ulong args, uint32_t nret,
1131                                   target_ulong rets)
1132 {
1133     uint32_t sensor_type;
1134     uint32_t sensor_index;
1135     uint32_t sensor_state = 0;
1136     SpaprDrc *drc;
1137     SpaprDrcClass *drck;
1138     uint32_t ret = RTAS_OUT_SUCCESS;
1139 
1140     if (nargs != 2 || nret != 2) {
1141         ret = RTAS_OUT_PARAM_ERROR;
1142         goto out;
1143     }
1144 
1145     sensor_type = rtas_ld(args, 0);
1146     sensor_index = rtas_ld(args, 1);
1147 
1148     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1149         /* currently only DR-related sensors are implemented */
1150         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1151                                                         sensor_type);
1152         ret = RTAS_OUT_NOT_SUPPORTED;
1153         goto out;
1154     }
1155 
1156     drc = spapr_drc_by_index(sensor_index);
1157     if (!drc) {
1158         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1159         ret = RTAS_OUT_PARAM_ERROR;
1160         goto out;
1161     }
1162     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1163     sensor_state = drck->dr_entity_sense(drc);
1164 
1165 out:
1166     rtas_st(rets, 0, ret);
1167     rtas_st(rets, 1, sensor_state);
1168 }
1169 
1170 /* configure-connector work area offsets, int32_t units for field
1171  * indexes, bytes for field offset/len values.
1172  *
1173  * as documented by PAPR+ v2.7, 13.5.3.5
1174  */
1175 #define CC_IDX_NODE_NAME_OFFSET 2
1176 #define CC_IDX_PROP_NAME_OFFSET 2
1177 #define CC_IDX_PROP_LEN 3
1178 #define CC_IDX_PROP_DATA_OFFSET 4
1179 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1180 #define CC_WA_LEN 4096
1181 
1182 static void configure_connector_st(target_ulong addr, target_ulong offset,
1183                                    const void *buf, size_t len)
1184 {
1185     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1186                               buf, MIN(len, CC_WA_LEN - offset));
1187 }
1188 
1189 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1190                                          SpaprMachineState *spapr,
1191                                          uint32_t token, uint32_t nargs,
1192                                          target_ulong args, uint32_t nret,
1193                                          target_ulong rets)
1194 {
1195     uint64_t wa_addr;
1196     uint64_t wa_offset;
1197     uint32_t drc_index;
1198     SpaprDrc *drc;
1199     SpaprDrcClass *drck;
1200     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1201     int rc;
1202 
1203     if (nargs != 2 || nret != 1) {
1204         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1205         return;
1206     }
1207 
1208     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1209 
1210     drc_index = rtas_ld(wa_addr, 0);
1211     drc = spapr_drc_by_index(drc_index);
1212     if (!drc) {
1213         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1214         rc = RTAS_OUT_PARAM_ERROR;
1215         goto out;
1216     }
1217 
1218     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1219         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1220         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1221         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1222         /*
1223          * Need to unisolate the device before configuring
1224          * or it should already be in configured state to
1225          * allow configure-connector be called repeatedly.
1226          */
1227         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1228         goto out;
1229     }
1230 
1231     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1232 
1233     /*
1234      * This indicates that the kernel is reconfiguring a LMB due to
1235      * a failed hotunplug. Clear the pending unplug state for the whole
1236      * DIMM.
1237      */
1238     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB &&
1239         drc->unplug_requested) {
1240         spapr_clear_pending_dimm_unplug_state(spapr, drc->dev);
1241     }
1242 
1243     if (!drc->fdt) {
1244         void *fdt;
1245         int fdt_size;
1246 
1247         fdt = create_device_tree(&fdt_size);
1248 
1249         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1250                               NULL)) {
1251             g_free(fdt);
1252             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1253             goto out;
1254         }
1255 
1256         drc->fdt = fdt;
1257         drc->ccs_offset = drc->fdt_start_offset;
1258         drc->ccs_depth = 0;
1259     }
1260 
1261     do {
1262         uint32_t tag;
1263         const char *name;
1264         const struct fdt_property *prop;
1265         int fdt_offset_next, prop_len;
1266 
1267         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1268 
1269         switch (tag) {
1270         case FDT_BEGIN_NODE:
1271             drc->ccs_depth++;
1272             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1273 
1274             /* provide the name of the next OF node */
1275             wa_offset = CC_VAL_DATA_OFFSET;
1276             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1277             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1278             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1279             break;
1280         case FDT_END_NODE:
1281             drc->ccs_depth--;
1282             if (drc->ccs_depth == 0) {
1283                 uint32_t drc_index = spapr_drc_index(drc);
1284 
1285                 /* done sending the device tree, move to configured state */
1286                 trace_spapr_drc_set_configured(drc_index);
1287                 drc->state = drck->ready_state;
1288                 /*
1289                  * Ensure that we are able to send the FDT fragment
1290                  * again via configure-connector call if the guest requests.
1291                  */
1292                 drc->ccs_offset = drc->fdt_start_offset;
1293                 drc->ccs_depth = 0;
1294                 fdt_offset_next = drc->fdt_start_offset;
1295                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1296             } else {
1297                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1298             }
1299             break;
1300         case FDT_PROP:
1301             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1302                                               &prop_len);
1303             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1304 
1305             /* provide the name of the next OF property */
1306             wa_offset = CC_VAL_DATA_OFFSET;
1307             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1308             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1309 
1310             /* provide the length and value of the OF property. data gets
1311              * placed immediately after NULL terminator of the OF property's
1312              * name string
1313              */
1314             wa_offset += strlen(name) + 1,
1315             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1316             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1317             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1318             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1319             break;
1320         case FDT_END:
1321             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1322         default:
1323             /* keep seeking for an actionable tag */
1324             break;
1325         }
1326         if (drc->ccs_offset >= 0) {
1327             drc->ccs_offset = fdt_offset_next;
1328         }
1329     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1330 
1331     rc = resp;
1332 out:
1333     rtas_st(rets, 0, rc);
1334 }
1335 
1336 static void spapr_drc_register_types(void)
1337 {
1338     type_register_static(&spapr_dr_connector_info);
1339     type_register_static(&spapr_drc_physical_info);
1340     type_register_static(&spapr_drc_logical_info);
1341     type_register_static(&spapr_drc_cpu_info);
1342     type_register_static(&spapr_drc_pci_info);
1343     type_register_static(&spapr_drc_lmb_info);
1344     type_register_static(&spapr_drc_phb_info);
1345     type_register_static(&spapr_drc_pmem_info);
1346 
1347     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1348                         rtas_set_indicator);
1349     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1350                         rtas_get_sensor_state);
1351     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1352                         rtas_ibm_configure_connector);
1353 }
1354 type_init(spapr_drc_register_types)
1355