xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision f101c9fe)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "qemu/cutils.h"
17 #include "hw/ppc/spapr_drc.h"
18 #include "qom/object.h"
19 #include "migration/vmstate.h"
20 #include "qapi/visitor.h"
21 #include "qemu/error-report.h"
22 #include "hw/ppc/spapr.h" /* for RTAS return codes */
23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
24 #include "hw/ppc/spapr_nvdimm.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/reset.h"
27 #include "trace.h"
28 
29 #define DRC_CONTAINER_PATH "/dr-connector"
30 #define DRC_INDEX_TYPE_SHIFT 28
31 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
32 
33 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
34 {
35     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
36 
37     return 1 << drck->typeshift;
38 }
39 
40 uint32_t spapr_drc_index(SpaprDrc *drc)
41 {
42     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
43 
44     /* no set format for a drc index: it only needs to be globally
45      * unique. this is how we encode the DRC type on bare-metal
46      * however, so might as well do that here
47      */
48     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
49         | (drc->id & DRC_INDEX_ID_MASK);
50 }
51 
52 static void spapr_drc_release(SpaprDrc *drc)
53 {
54     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
55 
56     drck->release(drc->dev);
57 
58     drc->unplug_requested = false;
59     g_free(drc->fdt);
60     drc->fdt = NULL;
61     drc->fdt_start_offset = 0;
62     object_property_del(OBJECT(drc), "device");
63     drc->dev = NULL;
64 }
65 
66 static uint32_t drc_isolate_physical(SpaprDrc *drc)
67 {
68     switch (drc->state) {
69     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
70         return RTAS_OUT_SUCCESS; /* Nothing to do */
71     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
72         break; /* see below */
73     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
74         return RTAS_OUT_PARAM_ERROR; /* not allowed */
75     default:
76         g_assert_not_reached();
77     }
78 
79     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
80 
81     if (drc->unplug_requested) {
82         uint32_t drc_index = spapr_drc_index(drc);
83         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
84         spapr_drc_release(drc);
85     }
86 
87     return RTAS_OUT_SUCCESS;
88 }
89 
90 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
91 {
92     switch (drc->state) {
93     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
94     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
95         return RTAS_OUT_SUCCESS; /* Nothing to do */
96     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
97         break; /* see below */
98     default:
99         g_assert_not_reached();
100     }
101 
102     /* cannot unisolate a non-existent resource, and, or resources
103      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
104      * 13.5.3.5)
105      */
106     if (!drc->dev) {
107         return RTAS_OUT_NO_SUCH_INDICATOR;
108     }
109 
110     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
111     drc->ccs_offset = drc->fdt_start_offset;
112     drc->ccs_depth = 0;
113 
114     return RTAS_OUT_SUCCESS;
115 }
116 
117 static uint32_t drc_isolate_logical(SpaprDrc *drc)
118 {
119     switch (drc->state) {
120     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
121     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
122         return RTAS_OUT_SUCCESS; /* Nothing to do */
123     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
124         break; /* see below */
125     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
126         return RTAS_OUT_PARAM_ERROR; /* not allowed */
127     default:
128         g_assert_not_reached();
129     }
130 
131     /*
132      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
133      * belong to a DIMM device that is marked for removal.
134      *
135      * Currently the guest userspace tool drmgr that drives the memory
136      * hotplug/unplug will just try to remove a set of 'removable' LMBs
137      * in response to a hot unplug request that is based on drc-count.
138      * If the LMB being removed doesn't belong to a DIMM device that is
139      * actually being unplugged, fail the isolation request here.
140      */
141     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
142         && !drc->unplug_requested) {
143         return RTAS_OUT_HW_ERROR;
144     }
145 
146     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
147 
148     return RTAS_OUT_SUCCESS;
149 }
150 
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153     SpaprMachineState *spapr = NULL;
154 
155     switch (drc->state) {
156     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
157     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
158         /*
159          * Unisolating a logical DRC that was marked for unplug
160          * means that the kernel is refusing the removal.
161          */
162         if (drc->unplug_requested && drc->dev) {
163             if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) {
164                 spapr = SPAPR_MACHINE(qdev_get_machine());
165 
166                 spapr_memory_unplug_rollback(spapr, drc->dev);
167             }
168 
169             drc->unplug_requested = false;
170             error_report("Device hotunplug rejected by the guest "
171                          "for device %s", drc->dev->id);
172 
173             /*
174              * TODO: send a QAPI DEVICE_UNPLUG_ERROR event when
175              * it is implemented.
176              */
177         }
178 
179         return RTAS_OUT_SUCCESS; /* Nothing to do */
180     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
181         break; /* see below */
182     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
184     default:
185         g_assert_not_reached();
186     }
187 
188     /* Move to AVAILABLE state should have ensured device was present */
189     g_assert(drc->dev);
190 
191     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
192     drc->ccs_offset = drc->fdt_start_offset;
193     drc->ccs_depth = 0;
194 
195     return RTAS_OUT_SUCCESS;
196 }
197 
198 static uint32_t drc_set_usable(SpaprDrc *drc)
199 {
200     switch (drc->state) {
201     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
202     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
203     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
204         return RTAS_OUT_SUCCESS; /* Nothing to do */
205     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
206         break; /* see below */
207     default:
208         g_assert_not_reached();
209     }
210 
211     /* if there's no resource/device associated with the DRC, there's
212      * no way for us to put it in an allocation state consistent with
213      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
214      * result in an RTAS return code of -3 / "no such indicator"
215      */
216     if (!drc->dev) {
217         return RTAS_OUT_NO_SUCH_INDICATOR;
218     }
219     if (drc->unplug_requested) {
220         /* Don't allow the guest to move a device away from UNUSABLE
221          * state when we want to unplug it */
222         return RTAS_OUT_NO_SUCH_INDICATOR;
223     }
224 
225     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
226 
227     return RTAS_OUT_SUCCESS;
228 }
229 
230 static uint32_t drc_set_unusable(SpaprDrc *drc)
231 {
232     switch (drc->state) {
233     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
234         return RTAS_OUT_SUCCESS; /* Nothing to do */
235     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
236         break; /* see below */
237     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
238     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
239         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
240     default:
241         g_assert_not_reached();
242     }
243 
244     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
245     if (drc->unplug_requested) {
246         uint32_t drc_index = spapr_drc_index(drc);
247         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
248         spapr_drc_release(drc);
249     }
250 
251     return RTAS_OUT_SUCCESS;
252 }
253 
254 static char *spapr_drc_name(SpaprDrc *drc)
255 {
256     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
257 
258     /* human-readable name for a DRC to encode into the DT
259      * description. this is mainly only used within a guest in place
260      * of the unique DRC index.
261      *
262      * in the case of VIO/PCI devices, it corresponds to a "location
263      * code" that maps a logical device/function (DRC index) to a
264      * physical (or virtual in the case of VIO) location in the system
265      * by chaining together the "location label" for each
266      * encapsulating component.
267      *
268      * since this is more to do with diagnosing physical hardware
269      * issues than guest compatibility, we choose location codes/DRC
270      * names that adhere to the documented format, but avoid encoding
271      * the entire topology information into the label/code, instead
272      * just using the location codes based on the labels for the
273      * endpoints (VIO/PCI adaptor connectors), which is basically just
274      * "C" followed by an integer ID.
275      *
276      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
277      * location codes as documented by PAPR+ v2.7, 12.3.1.5
278      */
279     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
280 }
281 
282 /*
283  * dr-entity-sense sensor value
284  * returned via get-sensor-state RTAS calls
285  * as expected by state diagram in PAPR+ 2.7, 13.4
286  * based on the current allocation/indicator/power states
287  * for the DR connector.
288  */
289 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
290 {
291     /* this assumes all PCI devices are assigned to a 'live insertion'
292      * power domain, where QEMU manages power state automatically as
293      * opposed to the guest. present, non-PCI resources are unaffected
294      * by power state.
295      */
296     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
297         : SPAPR_DR_ENTITY_SENSE_EMPTY;
298 }
299 
300 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
301 {
302     switch (drc->state) {
303     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
304         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
305     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
306     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
307     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
308         g_assert(drc->dev);
309         return SPAPR_DR_ENTITY_SENSE_PRESENT;
310     default:
311         g_assert_not_reached();
312     }
313 }
314 
315 static void prop_get_index(Object *obj, Visitor *v, const char *name,
316                            void *opaque, Error **errp)
317 {
318     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
319     uint32_t value = spapr_drc_index(drc);
320     visit_type_uint32(v, name, &value, errp);
321 }
322 
323 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
324                          void *opaque, Error **errp)
325 {
326     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
327     QNull *null = NULL;
328     int fdt_offset_next, fdt_offset, fdt_depth;
329     void *fdt;
330 
331     if (!drc->fdt) {
332         visit_type_null(v, NULL, &null, errp);
333         qobject_unref(null);
334         return;
335     }
336 
337     fdt = drc->fdt;
338     fdt_offset = drc->fdt_start_offset;
339     fdt_depth = 0;
340 
341     do {
342         const char *name = NULL;
343         const struct fdt_property *prop = NULL;
344         int prop_len = 0, name_len = 0;
345         uint32_t tag;
346         bool ok;
347 
348         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
349         switch (tag) {
350         case FDT_BEGIN_NODE:
351             fdt_depth++;
352             name = fdt_get_name(fdt, fdt_offset, &name_len);
353             if (!visit_start_struct(v, name, NULL, 0, errp)) {
354                 return;
355             }
356             break;
357         case FDT_END_NODE:
358             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
359             g_assert(fdt_depth > 0);
360             ok = visit_check_struct(v, errp);
361             visit_end_struct(v, NULL);
362             if (!ok) {
363                 return;
364             }
365             fdt_depth--;
366             break;
367         case FDT_PROP: {
368             int i;
369             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
370             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
371             if (!visit_start_list(v, name, NULL, 0, errp)) {
372                 return;
373             }
374             for (i = 0; i < prop_len; i++) {
375                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
376                                       errp)) {
377                     return;
378                 }
379             }
380             ok = visit_check_list(v, errp);
381             visit_end_list(v, NULL);
382             if (!ok) {
383                 return;
384             }
385             break;
386         }
387         default:
388             error_report("device FDT in unexpected state: %d", tag);
389             abort();
390         }
391         fdt_offset = fdt_offset_next;
392     } while (fdt_depth != 0);
393 }
394 
395 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d)
396 {
397     trace_spapr_drc_attach(spapr_drc_index(drc));
398 
399     g_assert(!drc->dev);
400     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
401              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
402 
403     drc->dev = d;
404 
405     object_property_add_link(OBJECT(drc), "device",
406                              object_get_typename(OBJECT(drc->dev)),
407                              (Object **)(&drc->dev),
408                              NULL, 0);
409 }
410 
411 void spapr_drc_unplug_request(SpaprDrc *drc)
412 {
413     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
414 
415     trace_spapr_drc_unplug_request(spapr_drc_index(drc));
416 
417     g_assert(drc->dev);
418 
419     drc->unplug_requested = true;
420 
421     if (drc->state != drck->empty_state) {
422         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
423         return;
424     }
425 
426     spapr_drc_release(drc);
427 }
428 
429 bool spapr_drc_reset(SpaprDrc *drc)
430 {
431     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
432     bool unplug_completed = false;
433 
434     trace_spapr_drc_reset(spapr_drc_index(drc));
435 
436     /* immediately upon reset we can safely assume DRCs whose devices
437      * are pending removal can be safely removed.
438      */
439     if (drc->unplug_requested) {
440         spapr_drc_release(drc);
441         unplug_completed = true;
442     }
443 
444     if (drc->dev) {
445         /* A device present at reset is ready to go, same as coldplugged */
446         drc->state = drck->ready_state;
447         /*
448          * Ensure that we are able to send the FDT fragment again
449          * via configure-connector call if the guest requests.
450          */
451         drc->ccs_offset = drc->fdt_start_offset;
452         drc->ccs_depth = 0;
453     } else {
454         drc->state = drck->empty_state;
455         drc->ccs_offset = -1;
456         drc->ccs_depth = -1;
457     }
458 
459     return unplug_completed;
460 }
461 
462 static bool spapr_drc_unplug_requested_needed(void *opaque)
463 {
464     return spapr_drc_unplug_requested(opaque);
465 }
466 
467 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
468     .name = "spapr_drc/unplug_requested",
469     .version_id = 1,
470     .minimum_version_id = 1,
471     .needed = spapr_drc_unplug_requested_needed,
472     .fields  = (VMStateField []) {
473         VMSTATE_BOOL(unplug_requested, SpaprDrc),
474         VMSTATE_END_OF_LIST()
475     }
476 };
477 
478 static bool spapr_drc_needed(void *opaque)
479 {
480     SpaprDrc *drc = opaque;
481     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
482 
483     /*
484      * If no dev is plugged in there is no need to migrate the DRC state
485      * nor to reset the DRC at CAS.
486      */
487     if (!drc->dev) {
488         return false;
489     }
490 
491     /*
492      * We need to reset the DRC at CAS or to migrate the DRC state if it's
493      * not equal to the expected long-term state, which is the same as the
494      * coldplugged initial state, or if an unplug request is pending.
495      */
496     return drc->state != drck->ready_state ||
497         spapr_drc_unplug_requested(drc);
498 }
499 
500 static const VMStateDescription vmstate_spapr_drc = {
501     .name = "spapr_drc",
502     .version_id = 1,
503     .minimum_version_id = 1,
504     .needed = spapr_drc_needed,
505     .fields  = (VMStateField []) {
506         VMSTATE_UINT32(state, SpaprDrc),
507         VMSTATE_END_OF_LIST()
508     },
509     .subsections = (const VMStateDescription * []) {
510         &vmstate_spapr_drc_unplug_requested,
511         NULL
512     }
513 };
514 
515 static void drc_realize(DeviceState *d, Error **errp)
516 {
517     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
518     Object *root_container;
519     gchar *link_name;
520     const char *child_name;
521 
522     trace_spapr_drc_realize(spapr_drc_index(drc));
523     /* NOTE: we do this as part of realize/unrealize due to the fact
524      * that the guest will communicate with the DRC via RTAS calls
525      * referencing the global DRC index. By unlinking the DRC
526      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
527      * inaccessible by the guest, since lookups rely on this path
528      * existing in the composition tree
529      */
530     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
531     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
532     child_name = object_get_canonical_path_component(OBJECT(drc));
533     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
534     object_property_add_alias(root_container, link_name,
535                               drc->owner, child_name);
536     g_free(link_name);
537     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
538                      drc);
539     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
540 }
541 
542 static void drc_unrealize(DeviceState *d)
543 {
544     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
545     Object *root_container;
546     gchar *name;
547 
548     trace_spapr_drc_unrealize(spapr_drc_index(drc));
549     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
550     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
551     name = g_strdup_printf("%x", spapr_drc_index(drc));
552     object_property_del(root_container, name);
553     g_free(name);
554 }
555 
556 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
557                                          uint32_t id)
558 {
559     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
560     char *prop_name;
561 
562     drc->id = id;
563     drc->owner = owner;
564     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
565                                 spapr_drc_index(drc));
566     object_property_add_child(owner, prop_name, OBJECT(drc));
567     object_unref(OBJECT(drc));
568     qdev_realize(DEVICE(drc), NULL, NULL);
569     g_free(prop_name);
570 
571     return drc;
572 }
573 
574 static void spapr_dr_connector_instance_init(Object *obj)
575 {
576     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
577     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
578 
579     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
580     object_property_add(obj, "index", "uint32", prop_get_index,
581                         NULL, NULL, NULL);
582     object_property_add(obj, "fdt", "struct", prop_get_fdt,
583                         NULL, NULL, NULL);
584     drc->state = drck->empty_state;
585 }
586 
587 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
588 {
589     DeviceClass *dk = DEVICE_CLASS(k);
590 
591     dk->realize = drc_realize;
592     dk->unrealize = drc_unrealize;
593     /*
594      * Reason: DR connector needs to be wired to either the machine or to a
595      * PHB in spapr_dr_connector_new().
596      */
597     dk->user_creatable = false;
598 }
599 
600 static bool drc_physical_needed(void *opaque)
601 {
602     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
603     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
604 
605     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
606         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
607         return false;
608     }
609     return true;
610 }
611 
612 static const VMStateDescription vmstate_spapr_drc_physical = {
613     .name = "spapr_drc/physical",
614     .version_id = 1,
615     .minimum_version_id = 1,
616     .needed = drc_physical_needed,
617     .fields  = (VMStateField []) {
618         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
619         VMSTATE_END_OF_LIST()
620     }
621 };
622 
623 static void drc_physical_reset(void *opaque)
624 {
625     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
626     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
627 
628     if (drc->dev) {
629         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
630     } else {
631         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
632     }
633 }
634 
635 static void realize_physical(DeviceState *d, Error **errp)
636 {
637     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
638     Error *local_err = NULL;
639 
640     drc_realize(d, &local_err);
641     if (local_err) {
642         error_propagate(errp, local_err);
643         return;
644     }
645 
646     vmstate_register(VMSTATE_IF(drcp),
647                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
648                      &vmstate_spapr_drc_physical, drcp);
649     qemu_register_reset(drc_physical_reset, drcp);
650 }
651 
652 static void unrealize_physical(DeviceState *d)
653 {
654     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
655 
656     drc_unrealize(d);
657     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
658     qemu_unregister_reset(drc_physical_reset, drcp);
659 }
660 
661 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
662 {
663     DeviceClass *dk = DEVICE_CLASS(k);
664     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
665 
666     dk->realize = realize_physical;
667     dk->unrealize = unrealize_physical;
668     drck->dr_entity_sense = physical_entity_sense;
669     drck->isolate = drc_isolate_physical;
670     drck->unisolate = drc_unisolate_physical;
671     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
672     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
673 }
674 
675 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
676 {
677     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
678 
679     drck->dr_entity_sense = logical_entity_sense;
680     drck->isolate = drc_isolate_logical;
681     drck->unisolate = drc_unisolate_logical;
682     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
683     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
684 }
685 
686 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
687 {
688     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
689 
690     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
691     drck->typename = "CPU";
692     drck->drc_name_prefix = "CPU ";
693     drck->release = spapr_core_release;
694     drck->dt_populate = spapr_core_dt_populate;
695 }
696 
697 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
698 {
699     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
700 
701     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
702     drck->typename = "28";
703     drck->drc_name_prefix = "C";
704     drck->release = spapr_phb_remove_pci_device_cb;
705     drck->dt_populate = spapr_pci_dt_populate;
706 }
707 
708 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
709 {
710     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
711 
712     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
713     drck->typename = "MEM";
714     drck->drc_name_prefix = "LMB ";
715     drck->release = spapr_lmb_release;
716     drck->dt_populate = spapr_lmb_dt_populate;
717 }
718 
719 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
720 {
721     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
722 
723     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
724     drck->typename = "PHB";
725     drck->drc_name_prefix = "PHB ";
726     drck->release = spapr_phb_release;
727     drck->dt_populate = spapr_phb_dt_populate;
728 }
729 
730 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
731 {
732     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
733 
734     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
735     drck->typename = "PMEM";
736     drck->drc_name_prefix = "PMEM ";
737     drck->release = NULL;
738     drck->dt_populate = spapr_pmem_dt_populate;
739 }
740 
741 static const TypeInfo spapr_dr_connector_info = {
742     .name          = TYPE_SPAPR_DR_CONNECTOR,
743     .parent        = TYPE_DEVICE,
744     .instance_size = sizeof(SpaprDrc),
745     .instance_init = spapr_dr_connector_instance_init,
746     .class_size    = sizeof(SpaprDrcClass),
747     .class_init    = spapr_dr_connector_class_init,
748     .abstract      = true,
749 };
750 
751 static const TypeInfo spapr_drc_physical_info = {
752     .name          = TYPE_SPAPR_DRC_PHYSICAL,
753     .parent        = TYPE_SPAPR_DR_CONNECTOR,
754     .instance_size = sizeof(SpaprDrcPhysical),
755     .class_init    = spapr_drc_physical_class_init,
756     .abstract      = true,
757 };
758 
759 static const TypeInfo spapr_drc_logical_info = {
760     .name          = TYPE_SPAPR_DRC_LOGICAL,
761     .parent        = TYPE_SPAPR_DR_CONNECTOR,
762     .class_init    = spapr_drc_logical_class_init,
763     .abstract      = true,
764 };
765 
766 static const TypeInfo spapr_drc_cpu_info = {
767     .name          = TYPE_SPAPR_DRC_CPU,
768     .parent        = TYPE_SPAPR_DRC_LOGICAL,
769     .class_init    = spapr_drc_cpu_class_init,
770 };
771 
772 static const TypeInfo spapr_drc_pci_info = {
773     .name          = TYPE_SPAPR_DRC_PCI,
774     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
775     .class_init    = spapr_drc_pci_class_init,
776 };
777 
778 static const TypeInfo spapr_drc_lmb_info = {
779     .name          = TYPE_SPAPR_DRC_LMB,
780     .parent        = TYPE_SPAPR_DRC_LOGICAL,
781     .class_init    = spapr_drc_lmb_class_init,
782 };
783 
784 static const TypeInfo spapr_drc_phb_info = {
785     .name          = TYPE_SPAPR_DRC_PHB,
786     .parent        = TYPE_SPAPR_DRC_LOGICAL,
787     .instance_size = sizeof(SpaprDrc),
788     .class_init    = spapr_drc_phb_class_init,
789 };
790 
791 static const TypeInfo spapr_drc_pmem_info = {
792     .name          = TYPE_SPAPR_DRC_PMEM,
793     .parent        = TYPE_SPAPR_DRC_LOGICAL,
794     .class_init    = spapr_drc_pmem_class_init,
795 };
796 
797 /* helper functions for external users */
798 
799 SpaprDrc *spapr_drc_by_index(uint32_t index)
800 {
801     Object *obj;
802     gchar *name;
803 
804     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
805     obj = object_resolve_path(name, NULL);
806     g_free(name);
807 
808     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
809 }
810 
811 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
812 {
813     SpaprDrcClass *drck
814         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
815 
816     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
817                               | (id & DRC_INDEX_ID_MASK));
818 }
819 
820 /**
821  * spapr_dt_drc
822  *
823  * @fdt: libfdt device tree
824  * @path: path in the DT to generate properties
825  * @owner: parent Object/DeviceState for which to generate DRC
826  *         descriptions for
827  * @drc_type_mask: mask of SpaprDrcType values corresponding
828  *   to the types of DRCs to generate entries for
829  *
830  * generate OF properties to describe DRC topology/indices to guests
831  *
832  * as documented in PAPR+ v2.1, 13.5.2
833  */
834 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
835 {
836     Object *root_container;
837     ObjectProperty *prop;
838     ObjectPropertyIterator iter;
839     uint32_t drc_count = 0;
840     GArray *drc_indexes, *drc_power_domains;
841     GString *drc_names, *drc_types;
842     int ret;
843 
844     /*
845      * This should really be only called once per node since it overwrites
846      * the OF properties if they already exist.
847      */
848     g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL));
849 
850     /* the first entry of each properties is a 32-bit integer encoding
851      * the number of elements in the array. we won't know this until
852      * we complete the iteration through all the matching DRCs, but
853      * reserve the space now and set the offsets accordingly so we
854      * can fill them in later.
855      */
856     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
857     drc_indexes = g_array_set_size(drc_indexes, 1);
858     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
859     drc_power_domains = g_array_set_size(drc_power_domains, 1);
860     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
861     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
862 
863     /* aliases for all DRConnector objects will be rooted in QOM
864      * composition tree at DRC_CONTAINER_PATH
865      */
866     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
867 
868     object_property_iter_init(&iter, root_container);
869     while ((prop = object_property_iter_next(&iter))) {
870         Object *obj;
871         SpaprDrc *drc;
872         SpaprDrcClass *drck;
873         char *drc_name = NULL;
874         uint32_t drc_index, drc_power_domain;
875 
876         if (!strstart(prop->type, "link<", NULL)) {
877             continue;
878         }
879 
880         obj = object_property_get_link(root_container, prop->name,
881                                        &error_abort);
882         drc = SPAPR_DR_CONNECTOR(obj);
883         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
884 
885         if (owner && (drc->owner != owner)) {
886             continue;
887         }
888 
889         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
890             continue;
891         }
892 
893         drc_count++;
894 
895         /* ibm,drc-indexes */
896         drc_index = cpu_to_be32(spapr_drc_index(drc));
897         g_array_append_val(drc_indexes, drc_index);
898 
899         /* ibm,drc-power-domains */
900         drc_power_domain = cpu_to_be32(-1);
901         g_array_append_val(drc_power_domains, drc_power_domain);
902 
903         /* ibm,drc-names */
904         drc_name = spapr_drc_name(drc);
905         drc_names = g_string_append(drc_names, drc_name);
906         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
907         g_free(drc_name);
908 
909         /* ibm,drc-types */
910         drc_types = g_string_append(drc_types, drck->typename);
911         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
912     }
913 
914     /* now write the drc count into the space we reserved at the
915      * beginning of the arrays previously
916      */
917     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
918     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
919     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
920     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
921 
922     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
923                       drc_indexes->data,
924                       drc_indexes->len * sizeof(uint32_t));
925     if (ret) {
926         error_report("Couldn't create ibm,drc-indexes property");
927         goto out;
928     }
929 
930     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
931                       drc_power_domains->data,
932                       drc_power_domains->len * sizeof(uint32_t));
933     if (ret) {
934         error_report("Couldn't finalize ibm,drc-power-domains property");
935         goto out;
936     }
937 
938     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
939                       drc_names->str, drc_names->len);
940     if (ret) {
941         error_report("Couldn't finalize ibm,drc-names property");
942         goto out;
943     }
944 
945     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
946                       drc_types->str, drc_types->len);
947     if (ret) {
948         error_report("Couldn't finalize ibm,drc-types property");
949         goto out;
950     }
951 
952 out:
953     g_array_free(drc_indexes, true);
954     g_array_free(drc_power_domains, true);
955     g_string_free(drc_names, true);
956     g_string_free(drc_types, true);
957 
958     return ret;
959 }
960 
961 void spapr_drc_reset_all(SpaprMachineState *spapr)
962 {
963     Object *drc_container;
964     ObjectProperty *prop;
965     ObjectPropertyIterator iter;
966 
967     drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
968 restart:
969     object_property_iter_init(&iter, drc_container);
970     while ((prop = object_property_iter_next(&iter))) {
971         SpaprDrc *drc;
972 
973         if (!strstart(prop->type, "link<", NULL)) {
974             continue;
975         }
976         drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container,
977                                                           prop->name,
978                                                           &error_abort));
979 
980         /*
981          * This will complete any pending plug/unplug requests.
982          * In case of a unplugged PHB or PCI bridge, this will
983          * cause some DRCs to be destroyed and thus potentially
984          * invalidate the iterator.
985          */
986         if (spapr_drc_reset(drc)) {
987             goto restart;
988         }
989     }
990 }
991 
992 /*
993  * RTAS calls
994  */
995 
996 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
997 {
998     SpaprDrc *drc = spapr_drc_by_index(idx);
999     SpaprDrcClass *drck;
1000 
1001     if (!drc) {
1002         return RTAS_OUT_NO_SUCH_INDICATOR;
1003     }
1004 
1005     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
1006 
1007     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1008 
1009     switch (state) {
1010     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
1011         return drck->isolate(drc);
1012 
1013     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
1014         return drck->unisolate(drc);
1015 
1016     default:
1017         return RTAS_OUT_PARAM_ERROR;
1018     }
1019 }
1020 
1021 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
1022 {
1023     SpaprDrc *drc = spapr_drc_by_index(idx);
1024 
1025     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
1026         return RTAS_OUT_NO_SUCH_INDICATOR;
1027     }
1028 
1029     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
1030 
1031     switch (state) {
1032     case SPAPR_DR_ALLOCATION_STATE_USABLE:
1033         return drc_set_usable(drc);
1034 
1035     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
1036         return drc_set_unusable(drc);
1037 
1038     default:
1039         return RTAS_OUT_PARAM_ERROR;
1040     }
1041 }
1042 
1043 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1044 {
1045     SpaprDrc *drc = spapr_drc_by_index(idx);
1046 
1047     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1048         return RTAS_OUT_NO_SUCH_INDICATOR;
1049     }
1050     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1051         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1052         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1053         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1054         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1055     }
1056 
1057     trace_spapr_drc_set_dr_indicator(idx, state);
1058     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1059     return RTAS_OUT_SUCCESS;
1060 }
1061 
1062 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1063                                uint32_t token,
1064                                uint32_t nargs, target_ulong args,
1065                                uint32_t nret, target_ulong rets)
1066 {
1067     uint32_t type, idx, state;
1068     uint32_t ret = RTAS_OUT_SUCCESS;
1069 
1070     if (nargs != 3 || nret != 1) {
1071         ret = RTAS_OUT_PARAM_ERROR;
1072         goto out;
1073     }
1074 
1075     type = rtas_ld(args, 0);
1076     idx = rtas_ld(args, 1);
1077     state = rtas_ld(args, 2);
1078 
1079     switch (type) {
1080     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1081         ret = rtas_set_isolation_state(idx, state);
1082         break;
1083     case RTAS_SENSOR_TYPE_DR:
1084         ret = rtas_set_dr_indicator(idx, state);
1085         break;
1086     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1087         ret = rtas_set_allocation_state(idx, state);
1088         break;
1089     default:
1090         ret = RTAS_OUT_NOT_SUPPORTED;
1091     }
1092 
1093 out:
1094     rtas_st(rets, 0, ret);
1095 }
1096 
1097 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1098                                   uint32_t token, uint32_t nargs,
1099                                   target_ulong args, uint32_t nret,
1100                                   target_ulong rets)
1101 {
1102     uint32_t sensor_type;
1103     uint32_t sensor_index;
1104     uint32_t sensor_state = 0;
1105     SpaprDrc *drc;
1106     SpaprDrcClass *drck;
1107     uint32_t ret = RTAS_OUT_SUCCESS;
1108 
1109     if (nargs != 2 || nret != 2) {
1110         ret = RTAS_OUT_PARAM_ERROR;
1111         goto out;
1112     }
1113 
1114     sensor_type = rtas_ld(args, 0);
1115     sensor_index = rtas_ld(args, 1);
1116 
1117     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1118         /* currently only DR-related sensors are implemented */
1119         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1120                                                         sensor_type);
1121         ret = RTAS_OUT_NOT_SUPPORTED;
1122         goto out;
1123     }
1124 
1125     drc = spapr_drc_by_index(sensor_index);
1126     if (!drc) {
1127         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1128         ret = RTAS_OUT_PARAM_ERROR;
1129         goto out;
1130     }
1131     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1132     sensor_state = drck->dr_entity_sense(drc);
1133 
1134 out:
1135     rtas_st(rets, 0, ret);
1136     rtas_st(rets, 1, sensor_state);
1137 }
1138 
1139 /* configure-connector work area offsets, int32_t units for field
1140  * indexes, bytes for field offset/len values.
1141  *
1142  * as documented by PAPR+ v2.7, 13.5.3.5
1143  */
1144 #define CC_IDX_NODE_NAME_OFFSET 2
1145 #define CC_IDX_PROP_NAME_OFFSET 2
1146 #define CC_IDX_PROP_LEN 3
1147 #define CC_IDX_PROP_DATA_OFFSET 4
1148 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1149 #define CC_WA_LEN 4096
1150 
1151 static void configure_connector_st(target_ulong addr, target_ulong offset,
1152                                    const void *buf, size_t len)
1153 {
1154     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1155                               buf, MIN(len, CC_WA_LEN - offset));
1156 }
1157 
1158 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1159                                          SpaprMachineState *spapr,
1160                                          uint32_t token, uint32_t nargs,
1161                                          target_ulong args, uint32_t nret,
1162                                          target_ulong rets)
1163 {
1164     uint64_t wa_addr;
1165     uint64_t wa_offset;
1166     uint32_t drc_index;
1167     SpaprDrc *drc;
1168     SpaprDrcClass *drck;
1169     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1170     int rc;
1171 
1172     if (nargs != 2 || nret != 1) {
1173         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1174         return;
1175     }
1176 
1177     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1178 
1179     drc_index = rtas_ld(wa_addr, 0);
1180     drc = spapr_drc_by_index(drc_index);
1181     if (!drc) {
1182         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1183         rc = RTAS_OUT_PARAM_ERROR;
1184         goto out;
1185     }
1186 
1187     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1188         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1189         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1190         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1191         /*
1192          * Need to unisolate the device before configuring
1193          * or it should already be in configured state to
1194          * allow configure-connector be called repeatedly.
1195          */
1196         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1197         goto out;
1198     }
1199 
1200     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1201 
1202     /*
1203      * This indicates that the kernel is reconfiguring a LMB due to
1204      * a failed hotunplug. Rollback the DIMM unplug process.
1205      */
1206     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB &&
1207         drc->unplug_requested) {
1208         spapr_memory_unplug_rollback(spapr, drc->dev);
1209     }
1210 
1211     if (!drc->fdt) {
1212         void *fdt;
1213         int fdt_size;
1214 
1215         fdt = create_device_tree(&fdt_size);
1216 
1217         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1218                               NULL)) {
1219             g_free(fdt);
1220             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1221             goto out;
1222         }
1223 
1224         drc->fdt = fdt;
1225         drc->ccs_offset = drc->fdt_start_offset;
1226         drc->ccs_depth = 0;
1227     }
1228 
1229     do {
1230         uint32_t tag;
1231         const char *name;
1232         const struct fdt_property *prop;
1233         int fdt_offset_next, prop_len;
1234 
1235         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1236 
1237         switch (tag) {
1238         case FDT_BEGIN_NODE:
1239             drc->ccs_depth++;
1240             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1241 
1242             /* provide the name of the next OF node */
1243             wa_offset = CC_VAL_DATA_OFFSET;
1244             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1245             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1246             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1247             break;
1248         case FDT_END_NODE:
1249             drc->ccs_depth--;
1250             if (drc->ccs_depth == 0) {
1251                 uint32_t drc_index = spapr_drc_index(drc);
1252 
1253                 /* done sending the device tree, move to configured state */
1254                 trace_spapr_drc_set_configured(drc_index);
1255                 drc->state = drck->ready_state;
1256                 /*
1257                  * Ensure that we are able to send the FDT fragment
1258                  * again via configure-connector call if the guest requests.
1259                  */
1260                 drc->ccs_offset = drc->fdt_start_offset;
1261                 drc->ccs_depth = 0;
1262                 fdt_offset_next = drc->fdt_start_offset;
1263                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1264             } else {
1265                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1266             }
1267             break;
1268         case FDT_PROP:
1269             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1270                                               &prop_len);
1271             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1272 
1273             /* provide the name of the next OF property */
1274             wa_offset = CC_VAL_DATA_OFFSET;
1275             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1276             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1277 
1278             /* provide the length and value of the OF property. data gets
1279              * placed immediately after NULL terminator of the OF property's
1280              * name string
1281              */
1282             wa_offset += strlen(name) + 1,
1283             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1284             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1285             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1286             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1287             break;
1288         case FDT_END:
1289             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1290         default:
1291             /* keep seeking for an actionable tag */
1292             break;
1293         }
1294         if (drc->ccs_offset >= 0) {
1295             drc->ccs_offset = fdt_offset_next;
1296         }
1297     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1298 
1299     rc = resp;
1300 out:
1301     rtas_st(rets, 0, rc);
1302 }
1303 
1304 static void spapr_drc_register_types(void)
1305 {
1306     type_register_static(&spapr_dr_connector_info);
1307     type_register_static(&spapr_drc_physical_info);
1308     type_register_static(&spapr_drc_logical_info);
1309     type_register_static(&spapr_drc_cpu_info);
1310     type_register_static(&spapr_drc_pci_info);
1311     type_register_static(&spapr_drc_lmb_info);
1312     type_register_static(&spapr_drc_phb_info);
1313     type_register_static(&spapr_drc_pmem_info);
1314 
1315     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1316                         rtas_set_indicator);
1317     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1318                         rtas_get_sensor_state);
1319     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1320                         rtas_ibm_configure_connector);
1321 }
1322 type_init(spapr_drc_register_types)
1323