1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "migration/vmstate.h" 20 #include "qapi/visitor.h" 21 #include "qemu/error-report.h" 22 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 24 #include "hw/ppc/spapr_nvdimm.h" 25 #include "sysemu/device_tree.h" 26 #include "sysemu/reset.h" 27 #include "trace.h" 28 29 #define DRC_CONTAINER_PATH "/dr-connector" 30 #define DRC_INDEX_TYPE_SHIFT 28 31 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 32 33 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 34 { 35 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 36 37 return 1 << drck->typeshift; 38 } 39 40 uint32_t spapr_drc_index(SpaprDrc *drc) 41 { 42 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 43 44 /* no set format for a drc index: it only needs to be globally 45 * unique. this is how we encode the DRC type on bare-metal 46 * however, so might as well do that here 47 */ 48 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 49 | (drc->id & DRC_INDEX_ID_MASK); 50 } 51 52 static void spapr_drc_release(SpaprDrc *drc) 53 { 54 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 55 56 drck->release(drc->dev); 57 58 drc->unplug_requested = false; 59 g_free(drc->fdt); 60 drc->fdt = NULL; 61 drc->fdt_start_offset = 0; 62 object_property_del(OBJECT(drc), "device"); 63 drc->dev = NULL; 64 } 65 66 static uint32_t drc_isolate_physical(SpaprDrc *drc) 67 { 68 switch (drc->state) { 69 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 70 return RTAS_OUT_SUCCESS; /* Nothing to do */ 71 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 72 break; /* see below */ 73 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 74 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 75 default: 76 g_assert_not_reached(); 77 } 78 79 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 80 81 if (drc->unplug_requested) { 82 uint32_t drc_index = spapr_drc_index(drc); 83 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 84 spapr_drc_release(drc); 85 } 86 87 return RTAS_OUT_SUCCESS; 88 } 89 90 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 91 { 92 switch (drc->state) { 93 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 94 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 95 return RTAS_OUT_SUCCESS; /* Nothing to do */ 96 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 97 break; /* see below */ 98 default: 99 g_assert_not_reached(); 100 } 101 102 /* cannot unisolate a non-existent resource, and, or resources 103 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 104 * 13.5.3.5) 105 */ 106 if (!drc->dev) { 107 return RTAS_OUT_NO_SUCH_INDICATOR; 108 } 109 110 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 111 drc->ccs_offset = drc->fdt_start_offset; 112 drc->ccs_depth = 0; 113 114 return RTAS_OUT_SUCCESS; 115 } 116 117 static uint32_t drc_isolate_logical(SpaprDrc *drc) 118 { 119 switch (drc->state) { 120 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 121 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 122 return RTAS_OUT_SUCCESS; /* Nothing to do */ 123 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 124 break; /* see below */ 125 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 126 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 127 default: 128 g_assert_not_reached(); 129 } 130 131 /* 132 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 133 * belong to a DIMM device that is marked for removal. 134 * 135 * Currently the guest userspace tool drmgr that drives the memory 136 * hotplug/unplug will just try to remove a set of 'removable' LMBs 137 * in response to a hot unplug request that is based on drc-count. 138 * If the LMB being removed doesn't belong to a DIMM device that is 139 * actually being unplugged, fail the isolation request here. 140 */ 141 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 142 && !drc->unplug_requested) { 143 return RTAS_OUT_HW_ERROR; 144 } 145 146 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 147 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 switch (drc->state) { 154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 156 return RTAS_OUT_SUCCESS; /* Nothing to do */ 157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 158 break; /* see below */ 159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 161 default: 162 g_assert_not_reached(); 163 } 164 165 /* Move to AVAILABLE state should have ensured device was present */ 166 g_assert(drc->dev); 167 168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 169 drc->ccs_offset = drc->fdt_start_offset; 170 drc->ccs_depth = 0; 171 172 return RTAS_OUT_SUCCESS; 173 } 174 175 static uint32_t drc_set_usable(SpaprDrc *drc) 176 { 177 switch (drc->state) { 178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 break; /* see below */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* if there's no resource/device associated with the DRC, there's 189 * no way for us to put it in an allocation state consistent with 190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 191 * result in an RTAS return code of -3 / "no such indicator" 192 */ 193 if (!drc->dev) { 194 return RTAS_OUT_NO_SUCH_INDICATOR; 195 } 196 if (drc->unplug_requested) { 197 /* Don't allow the guest to move a device away from UNUSABLE 198 * state when we want to unplug it */ 199 return RTAS_OUT_NO_SUCH_INDICATOR; 200 } 201 202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 203 204 return RTAS_OUT_SUCCESS; 205 } 206 207 static uint32_t drc_set_unusable(SpaprDrc *drc) 208 { 209 switch (drc->state) { 210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 211 return RTAS_OUT_SUCCESS; /* Nothing to do */ 212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 213 break; /* see below */ 214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 217 default: 218 g_assert_not_reached(); 219 } 220 221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 222 if (drc->unplug_requested) { 223 uint32_t drc_index = spapr_drc_index(drc); 224 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 225 spapr_drc_release(drc); 226 } 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static char *spapr_drc_name(SpaprDrc *drc) 232 { 233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 234 235 /* human-readable name for a DRC to encode into the DT 236 * description. this is mainly only used within a guest in place 237 * of the unique DRC index. 238 * 239 * in the case of VIO/PCI devices, it corresponds to a "location 240 * code" that maps a logical device/function (DRC index) to a 241 * physical (or virtual in the case of VIO) location in the system 242 * by chaining together the "location label" for each 243 * encapsulating component. 244 * 245 * since this is more to do with diagnosing physical hardware 246 * issues than guest compatibility, we choose location codes/DRC 247 * names that adhere to the documented format, but avoid encoding 248 * the entire topology information into the label/code, instead 249 * just using the location codes based on the labels for the 250 * endpoints (VIO/PCI adaptor connectors), which is basically just 251 * "C" followed by an integer ID. 252 * 253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 254 * location codes as documented by PAPR+ v2.7, 12.3.1.5 255 */ 256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 257 } 258 259 /* 260 * dr-entity-sense sensor value 261 * returned via get-sensor-state RTAS calls 262 * as expected by state diagram in PAPR+ 2.7, 13.4 263 * based on the current allocation/indicator/power states 264 * for the DR connector. 265 */ 266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 267 { 268 /* this assumes all PCI devices are assigned to a 'live insertion' 269 * power domain, where QEMU manages power state automatically as 270 * opposed to the guest. present, non-PCI resources are unaffected 271 * by power state. 272 */ 273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 274 : SPAPR_DR_ENTITY_SENSE_EMPTY; 275 } 276 277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 278 { 279 switch (drc->state) { 280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 285 g_assert(drc->dev); 286 return SPAPR_DR_ENTITY_SENSE_PRESENT; 287 default: 288 g_assert_not_reached(); 289 } 290 } 291 292 static void prop_get_index(Object *obj, Visitor *v, const char *name, 293 void *opaque, Error **errp) 294 { 295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 296 uint32_t value = spapr_drc_index(drc); 297 visit_type_uint32(v, name, &value, errp); 298 } 299 300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 301 void *opaque, Error **errp) 302 { 303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 304 QNull *null = NULL; 305 int fdt_offset_next, fdt_offset, fdt_depth; 306 void *fdt; 307 308 if (!drc->fdt) { 309 visit_type_null(v, NULL, &null, errp); 310 qobject_unref(null); 311 return; 312 } 313 314 fdt = drc->fdt; 315 fdt_offset = drc->fdt_start_offset; 316 fdt_depth = 0; 317 318 do { 319 const char *name = NULL; 320 const struct fdt_property *prop = NULL; 321 int prop_len = 0, name_len = 0; 322 uint32_t tag; 323 bool ok; 324 325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 326 switch (tag) { 327 case FDT_BEGIN_NODE: 328 fdt_depth++; 329 name = fdt_get_name(fdt, fdt_offset, &name_len); 330 if (!visit_start_struct(v, name, NULL, 0, errp)) { 331 return; 332 } 333 break; 334 case FDT_END_NODE: 335 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 336 g_assert(fdt_depth > 0); 337 ok = visit_check_struct(v, errp); 338 visit_end_struct(v, NULL); 339 if (!ok) { 340 return; 341 } 342 fdt_depth--; 343 break; 344 case FDT_PROP: { 345 int i; 346 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 347 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 348 if (!visit_start_list(v, name, NULL, 0, errp)) { 349 return; 350 } 351 for (i = 0; i < prop_len; i++) { 352 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 353 errp)) { 354 return; 355 } 356 } 357 ok = visit_check_list(v, errp); 358 visit_end_list(v, NULL); 359 if (!ok) { 360 return; 361 } 362 break; 363 } 364 default: 365 error_report("device FDT in unexpected state: %d", tag); 366 abort(); 367 } 368 fdt_offset = fdt_offset_next; 369 } while (fdt_depth != 0); 370 } 371 372 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 373 { 374 trace_spapr_drc_attach(spapr_drc_index(drc)); 375 376 g_assert(!drc->dev); 377 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 378 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 379 380 drc->dev = d; 381 382 object_property_add_link(OBJECT(drc), "device", 383 object_get_typename(OBJECT(drc->dev)), 384 (Object **)(&drc->dev), 385 NULL, 0); 386 } 387 388 void spapr_drc_unplug_request(SpaprDrc *drc) 389 { 390 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 391 392 trace_spapr_drc_unplug_request(spapr_drc_index(drc)); 393 394 g_assert(drc->dev); 395 396 drc->unplug_requested = true; 397 398 if (drc->state != drck->empty_state) { 399 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 400 return; 401 } 402 403 spapr_drc_release(drc); 404 } 405 406 bool spapr_drc_reset(SpaprDrc *drc) 407 { 408 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 409 bool unplug_completed = false; 410 411 trace_spapr_drc_reset(spapr_drc_index(drc)); 412 413 /* immediately upon reset we can safely assume DRCs whose devices 414 * are pending removal can be safely removed. 415 */ 416 if (drc->unplug_requested) { 417 spapr_drc_release(drc); 418 unplug_completed = true; 419 } 420 421 if (drc->dev) { 422 /* A device present at reset is ready to go, same as coldplugged */ 423 drc->state = drck->ready_state; 424 /* 425 * Ensure that we are able to send the FDT fragment again 426 * via configure-connector call if the guest requests. 427 */ 428 drc->ccs_offset = drc->fdt_start_offset; 429 drc->ccs_depth = 0; 430 } else { 431 drc->state = drck->empty_state; 432 drc->ccs_offset = -1; 433 drc->ccs_depth = -1; 434 } 435 436 return unplug_completed; 437 } 438 439 static bool spapr_drc_unplug_requested_needed(void *opaque) 440 { 441 return spapr_drc_unplug_requested(opaque); 442 } 443 444 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 445 .name = "spapr_drc/unplug_requested", 446 .version_id = 1, 447 .minimum_version_id = 1, 448 .needed = spapr_drc_unplug_requested_needed, 449 .fields = (VMStateField []) { 450 VMSTATE_BOOL(unplug_requested, SpaprDrc), 451 VMSTATE_END_OF_LIST() 452 } 453 }; 454 455 static bool spapr_drc_needed(void *opaque) 456 { 457 SpaprDrc *drc = opaque; 458 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 459 460 /* 461 * If no dev is plugged in there is no need to migrate the DRC state 462 * nor to reset the DRC at CAS. 463 */ 464 if (!drc->dev) { 465 return false; 466 } 467 468 /* 469 * We need to reset the DRC at CAS or to migrate the DRC state if it's 470 * not equal to the expected long-term state, which is the same as the 471 * coldplugged initial state, or if an unplug request is pending. 472 */ 473 return drc->state != drck->ready_state || 474 spapr_drc_unplug_requested(drc); 475 } 476 477 static const VMStateDescription vmstate_spapr_drc = { 478 .name = "spapr_drc", 479 .version_id = 1, 480 .minimum_version_id = 1, 481 .needed = spapr_drc_needed, 482 .fields = (VMStateField []) { 483 VMSTATE_UINT32(state, SpaprDrc), 484 VMSTATE_END_OF_LIST() 485 }, 486 .subsections = (const VMStateDescription * []) { 487 &vmstate_spapr_drc_unplug_requested, 488 NULL 489 } 490 }; 491 492 static void drc_realize(DeviceState *d, Error **errp) 493 { 494 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 495 Object *root_container; 496 gchar *link_name; 497 const char *child_name; 498 499 trace_spapr_drc_realize(spapr_drc_index(drc)); 500 /* NOTE: we do this as part of realize/unrealize due to the fact 501 * that the guest will communicate with the DRC via RTAS calls 502 * referencing the global DRC index. By unlinking the DRC 503 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 504 * inaccessible by the guest, since lookups rely on this path 505 * existing in the composition tree 506 */ 507 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 508 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 509 child_name = object_get_canonical_path_component(OBJECT(drc)); 510 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 511 object_property_add_alias(root_container, link_name, 512 drc->owner, child_name); 513 g_free(link_name); 514 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 515 drc); 516 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 517 } 518 519 static void drc_unrealize(DeviceState *d) 520 { 521 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 522 Object *root_container; 523 gchar *name; 524 525 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 526 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 527 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 528 name = g_strdup_printf("%x", spapr_drc_index(drc)); 529 object_property_del(root_container, name); 530 g_free(name); 531 } 532 533 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 534 uint32_t id) 535 { 536 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 537 char *prop_name; 538 539 drc->id = id; 540 drc->owner = owner; 541 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 542 spapr_drc_index(drc)); 543 object_property_add_child(owner, prop_name, OBJECT(drc)); 544 object_unref(OBJECT(drc)); 545 qdev_realize(DEVICE(drc), NULL, NULL); 546 g_free(prop_name); 547 548 return drc; 549 } 550 551 static void spapr_dr_connector_instance_init(Object *obj) 552 { 553 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 554 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 555 556 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 557 object_property_add(obj, "index", "uint32", prop_get_index, 558 NULL, NULL, NULL); 559 object_property_add(obj, "fdt", "struct", prop_get_fdt, 560 NULL, NULL, NULL); 561 drc->state = drck->empty_state; 562 } 563 564 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 565 { 566 DeviceClass *dk = DEVICE_CLASS(k); 567 568 dk->realize = drc_realize; 569 dk->unrealize = drc_unrealize; 570 /* 571 * Reason: DR connector needs to be wired to either the machine or to a 572 * PHB in spapr_dr_connector_new(). 573 */ 574 dk->user_creatable = false; 575 } 576 577 static bool drc_physical_needed(void *opaque) 578 { 579 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 580 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 581 582 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 583 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 584 return false; 585 } 586 return true; 587 } 588 589 static const VMStateDescription vmstate_spapr_drc_physical = { 590 .name = "spapr_drc/physical", 591 .version_id = 1, 592 .minimum_version_id = 1, 593 .needed = drc_physical_needed, 594 .fields = (VMStateField []) { 595 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 596 VMSTATE_END_OF_LIST() 597 } 598 }; 599 600 static void drc_physical_reset(void *opaque) 601 { 602 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 603 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 604 605 if (drc->dev) { 606 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 607 } else { 608 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 609 } 610 } 611 612 static void realize_physical(DeviceState *d, Error **errp) 613 { 614 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 615 Error *local_err = NULL; 616 617 drc_realize(d, &local_err); 618 if (local_err) { 619 error_propagate(errp, local_err); 620 return; 621 } 622 623 vmstate_register(VMSTATE_IF(drcp), 624 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 625 &vmstate_spapr_drc_physical, drcp); 626 qemu_register_reset(drc_physical_reset, drcp); 627 } 628 629 static void unrealize_physical(DeviceState *d) 630 { 631 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 632 633 drc_unrealize(d); 634 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 635 qemu_unregister_reset(drc_physical_reset, drcp); 636 } 637 638 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 639 { 640 DeviceClass *dk = DEVICE_CLASS(k); 641 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 642 643 dk->realize = realize_physical; 644 dk->unrealize = unrealize_physical; 645 drck->dr_entity_sense = physical_entity_sense; 646 drck->isolate = drc_isolate_physical; 647 drck->unisolate = drc_unisolate_physical; 648 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 649 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 650 } 651 652 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 653 { 654 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 655 656 drck->dr_entity_sense = logical_entity_sense; 657 drck->isolate = drc_isolate_logical; 658 drck->unisolate = drc_unisolate_logical; 659 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 660 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 661 } 662 663 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 664 { 665 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 666 667 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 668 drck->typename = "CPU"; 669 drck->drc_name_prefix = "CPU "; 670 drck->release = spapr_core_release; 671 drck->dt_populate = spapr_core_dt_populate; 672 } 673 674 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 675 { 676 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 677 678 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 679 drck->typename = "28"; 680 drck->drc_name_prefix = "C"; 681 drck->release = spapr_phb_remove_pci_device_cb; 682 drck->dt_populate = spapr_pci_dt_populate; 683 } 684 685 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 686 { 687 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 688 689 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 690 drck->typename = "MEM"; 691 drck->drc_name_prefix = "LMB "; 692 drck->release = spapr_lmb_release; 693 drck->dt_populate = spapr_lmb_dt_populate; 694 } 695 696 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 697 { 698 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 699 700 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 701 drck->typename = "PHB"; 702 drck->drc_name_prefix = "PHB "; 703 drck->release = spapr_phb_release; 704 drck->dt_populate = spapr_phb_dt_populate; 705 } 706 707 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 708 { 709 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 710 711 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 712 drck->typename = "PMEM"; 713 drck->drc_name_prefix = "PMEM "; 714 drck->release = NULL; 715 drck->dt_populate = spapr_pmem_dt_populate; 716 } 717 718 static const TypeInfo spapr_dr_connector_info = { 719 .name = TYPE_SPAPR_DR_CONNECTOR, 720 .parent = TYPE_DEVICE, 721 .instance_size = sizeof(SpaprDrc), 722 .instance_init = spapr_dr_connector_instance_init, 723 .class_size = sizeof(SpaprDrcClass), 724 .class_init = spapr_dr_connector_class_init, 725 .abstract = true, 726 }; 727 728 static const TypeInfo spapr_drc_physical_info = { 729 .name = TYPE_SPAPR_DRC_PHYSICAL, 730 .parent = TYPE_SPAPR_DR_CONNECTOR, 731 .instance_size = sizeof(SpaprDrcPhysical), 732 .class_init = spapr_drc_physical_class_init, 733 .abstract = true, 734 }; 735 736 static const TypeInfo spapr_drc_logical_info = { 737 .name = TYPE_SPAPR_DRC_LOGICAL, 738 .parent = TYPE_SPAPR_DR_CONNECTOR, 739 .class_init = spapr_drc_logical_class_init, 740 .abstract = true, 741 }; 742 743 static const TypeInfo spapr_drc_cpu_info = { 744 .name = TYPE_SPAPR_DRC_CPU, 745 .parent = TYPE_SPAPR_DRC_LOGICAL, 746 .class_init = spapr_drc_cpu_class_init, 747 }; 748 749 static const TypeInfo spapr_drc_pci_info = { 750 .name = TYPE_SPAPR_DRC_PCI, 751 .parent = TYPE_SPAPR_DRC_PHYSICAL, 752 .class_init = spapr_drc_pci_class_init, 753 }; 754 755 static const TypeInfo spapr_drc_lmb_info = { 756 .name = TYPE_SPAPR_DRC_LMB, 757 .parent = TYPE_SPAPR_DRC_LOGICAL, 758 .class_init = spapr_drc_lmb_class_init, 759 }; 760 761 static const TypeInfo spapr_drc_phb_info = { 762 .name = TYPE_SPAPR_DRC_PHB, 763 .parent = TYPE_SPAPR_DRC_LOGICAL, 764 .instance_size = sizeof(SpaprDrc), 765 .class_init = spapr_drc_phb_class_init, 766 }; 767 768 static const TypeInfo spapr_drc_pmem_info = { 769 .name = TYPE_SPAPR_DRC_PMEM, 770 .parent = TYPE_SPAPR_DRC_LOGICAL, 771 .class_init = spapr_drc_pmem_class_init, 772 }; 773 774 /* helper functions for external users */ 775 776 SpaprDrc *spapr_drc_by_index(uint32_t index) 777 { 778 Object *obj; 779 gchar *name; 780 781 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 782 obj = object_resolve_path(name, NULL); 783 g_free(name); 784 785 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 786 } 787 788 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 789 { 790 SpaprDrcClass *drck 791 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 792 793 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 794 | (id & DRC_INDEX_ID_MASK)); 795 } 796 797 /** 798 * spapr_dt_drc 799 * 800 * @fdt: libfdt device tree 801 * @path: path in the DT to generate properties 802 * @owner: parent Object/DeviceState for which to generate DRC 803 * descriptions for 804 * @drc_type_mask: mask of SpaprDrcType values corresponding 805 * to the types of DRCs to generate entries for 806 * 807 * generate OF properties to describe DRC topology/indices to guests 808 * 809 * as documented in PAPR+ v2.1, 13.5.2 810 */ 811 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 812 { 813 Object *root_container; 814 ObjectProperty *prop; 815 ObjectPropertyIterator iter; 816 uint32_t drc_count = 0; 817 GArray *drc_indexes, *drc_power_domains; 818 GString *drc_names, *drc_types; 819 int ret; 820 821 /* 822 * This should really be only called once per node since it overwrites 823 * the OF properties if they already exist. 824 */ 825 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL)); 826 827 /* the first entry of each properties is a 32-bit integer encoding 828 * the number of elements in the array. we won't know this until 829 * we complete the iteration through all the matching DRCs, but 830 * reserve the space now and set the offsets accordingly so we 831 * can fill them in later. 832 */ 833 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 834 drc_indexes = g_array_set_size(drc_indexes, 1); 835 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 836 drc_power_domains = g_array_set_size(drc_power_domains, 1); 837 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 838 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 839 840 /* aliases for all DRConnector objects will be rooted in QOM 841 * composition tree at DRC_CONTAINER_PATH 842 */ 843 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 844 845 object_property_iter_init(&iter, root_container); 846 while ((prop = object_property_iter_next(&iter))) { 847 Object *obj; 848 SpaprDrc *drc; 849 SpaprDrcClass *drck; 850 char *drc_name = NULL; 851 uint32_t drc_index, drc_power_domain; 852 853 if (!strstart(prop->type, "link<", NULL)) { 854 continue; 855 } 856 857 obj = object_property_get_link(root_container, prop->name, 858 &error_abort); 859 drc = SPAPR_DR_CONNECTOR(obj); 860 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 861 862 if (owner && (drc->owner != owner)) { 863 continue; 864 } 865 866 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 867 continue; 868 } 869 870 drc_count++; 871 872 /* ibm,drc-indexes */ 873 drc_index = cpu_to_be32(spapr_drc_index(drc)); 874 g_array_append_val(drc_indexes, drc_index); 875 876 /* ibm,drc-power-domains */ 877 drc_power_domain = cpu_to_be32(-1); 878 g_array_append_val(drc_power_domains, drc_power_domain); 879 880 /* ibm,drc-names */ 881 drc_name = spapr_drc_name(drc); 882 drc_names = g_string_append(drc_names, drc_name); 883 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 884 g_free(drc_name); 885 886 /* ibm,drc-types */ 887 drc_types = g_string_append(drc_types, drck->typename); 888 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 889 } 890 891 /* now write the drc count into the space we reserved at the 892 * beginning of the arrays previously 893 */ 894 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 895 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 896 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 897 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 898 899 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 900 drc_indexes->data, 901 drc_indexes->len * sizeof(uint32_t)); 902 if (ret) { 903 error_report("Couldn't create ibm,drc-indexes property"); 904 goto out; 905 } 906 907 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 908 drc_power_domains->data, 909 drc_power_domains->len * sizeof(uint32_t)); 910 if (ret) { 911 error_report("Couldn't finalize ibm,drc-power-domains property"); 912 goto out; 913 } 914 915 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 916 drc_names->str, drc_names->len); 917 if (ret) { 918 error_report("Couldn't finalize ibm,drc-names property"); 919 goto out; 920 } 921 922 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 923 drc_types->str, drc_types->len); 924 if (ret) { 925 error_report("Couldn't finalize ibm,drc-types property"); 926 goto out; 927 } 928 929 out: 930 g_array_free(drc_indexes, true); 931 g_array_free(drc_power_domains, true); 932 g_string_free(drc_names, true); 933 g_string_free(drc_types, true); 934 935 return ret; 936 } 937 938 void spapr_drc_reset_all(SpaprMachineState *spapr) 939 { 940 Object *drc_container; 941 ObjectProperty *prop; 942 ObjectPropertyIterator iter; 943 944 drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 945 restart: 946 object_property_iter_init(&iter, drc_container); 947 while ((prop = object_property_iter_next(&iter))) { 948 SpaprDrc *drc; 949 950 if (!strstart(prop->type, "link<", NULL)) { 951 continue; 952 } 953 drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container, 954 prop->name, 955 &error_abort)); 956 957 /* 958 * This will complete any pending plug/unplug requests. 959 * In case of a unplugged PHB or PCI bridge, this will 960 * cause some DRCs to be destroyed and thus potentially 961 * invalidate the iterator. 962 */ 963 if (spapr_drc_reset(drc)) { 964 goto restart; 965 } 966 } 967 } 968 969 /* 970 * RTAS calls 971 */ 972 973 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 974 { 975 SpaprDrc *drc = spapr_drc_by_index(idx); 976 SpaprDrcClass *drck; 977 978 if (!drc) { 979 return RTAS_OUT_NO_SUCH_INDICATOR; 980 } 981 982 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 983 984 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 985 986 switch (state) { 987 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 988 return drck->isolate(drc); 989 990 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 991 return drck->unisolate(drc); 992 993 default: 994 return RTAS_OUT_PARAM_ERROR; 995 } 996 } 997 998 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 999 { 1000 SpaprDrc *drc = spapr_drc_by_index(idx); 1001 1002 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 1003 return RTAS_OUT_NO_SUCH_INDICATOR; 1004 } 1005 1006 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 1007 1008 switch (state) { 1009 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1010 return drc_set_usable(drc); 1011 1012 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1013 return drc_set_unusable(drc); 1014 1015 default: 1016 return RTAS_OUT_PARAM_ERROR; 1017 } 1018 } 1019 1020 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1021 { 1022 SpaprDrc *drc = spapr_drc_by_index(idx); 1023 1024 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1025 return RTAS_OUT_NO_SUCH_INDICATOR; 1026 } 1027 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1028 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1029 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1030 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1031 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1032 } 1033 1034 trace_spapr_drc_set_dr_indicator(idx, state); 1035 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1036 return RTAS_OUT_SUCCESS; 1037 } 1038 1039 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1040 uint32_t token, 1041 uint32_t nargs, target_ulong args, 1042 uint32_t nret, target_ulong rets) 1043 { 1044 uint32_t type, idx, state; 1045 uint32_t ret = RTAS_OUT_SUCCESS; 1046 1047 if (nargs != 3 || nret != 1) { 1048 ret = RTAS_OUT_PARAM_ERROR; 1049 goto out; 1050 } 1051 1052 type = rtas_ld(args, 0); 1053 idx = rtas_ld(args, 1); 1054 state = rtas_ld(args, 2); 1055 1056 switch (type) { 1057 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1058 ret = rtas_set_isolation_state(idx, state); 1059 break; 1060 case RTAS_SENSOR_TYPE_DR: 1061 ret = rtas_set_dr_indicator(idx, state); 1062 break; 1063 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1064 ret = rtas_set_allocation_state(idx, state); 1065 break; 1066 default: 1067 ret = RTAS_OUT_NOT_SUPPORTED; 1068 } 1069 1070 out: 1071 rtas_st(rets, 0, ret); 1072 } 1073 1074 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1075 uint32_t token, uint32_t nargs, 1076 target_ulong args, uint32_t nret, 1077 target_ulong rets) 1078 { 1079 uint32_t sensor_type; 1080 uint32_t sensor_index; 1081 uint32_t sensor_state = 0; 1082 SpaprDrc *drc; 1083 SpaprDrcClass *drck; 1084 uint32_t ret = RTAS_OUT_SUCCESS; 1085 1086 if (nargs != 2 || nret != 2) { 1087 ret = RTAS_OUT_PARAM_ERROR; 1088 goto out; 1089 } 1090 1091 sensor_type = rtas_ld(args, 0); 1092 sensor_index = rtas_ld(args, 1); 1093 1094 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1095 /* currently only DR-related sensors are implemented */ 1096 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1097 sensor_type); 1098 ret = RTAS_OUT_NOT_SUPPORTED; 1099 goto out; 1100 } 1101 1102 drc = spapr_drc_by_index(sensor_index); 1103 if (!drc) { 1104 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1105 ret = RTAS_OUT_PARAM_ERROR; 1106 goto out; 1107 } 1108 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1109 sensor_state = drck->dr_entity_sense(drc); 1110 1111 out: 1112 rtas_st(rets, 0, ret); 1113 rtas_st(rets, 1, sensor_state); 1114 } 1115 1116 /* configure-connector work area offsets, int32_t units for field 1117 * indexes, bytes for field offset/len values. 1118 * 1119 * as documented by PAPR+ v2.7, 13.5.3.5 1120 */ 1121 #define CC_IDX_NODE_NAME_OFFSET 2 1122 #define CC_IDX_PROP_NAME_OFFSET 2 1123 #define CC_IDX_PROP_LEN 3 1124 #define CC_IDX_PROP_DATA_OFFSET 4 1125 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1126 #define CC_WA_LEN 4096 1127 1128 static void configure_connector_st(target_ulong addr, target_ulong offset, 1129 const void *buf, size_t len) 1130 { 1131 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1132 buf, MIN(len, CC_WA_LEN - offset)); 1133 } 1134 1135 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1136 SpaprMachineState *spapr, 1137 uint32_t token, uint32_t nargs, 1138 target_ulong args, uint32_t nret, 1139 target_ulong rets) 1140 { 1141 uint64_t wa_addr; 1142 uint64_t wa_offset; 1143 uint32_t drc_index; 1144 SpaprDrc *drc; 1145 SpaprDrcClass *drck; 1146 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1147 int rc; 1148 1149 if (nargs != 2 || nret != 1) { 1150 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1151 return; 1152 } 1153 1154 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1155 1156 drc_index = rtas_ld(wa_addr, 0); 1157 drc = spapr_drc_by_index(drc_index); 1158 if (!drc) { 1159 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1160 rc = RTAS_OUT_PARAM_ERROR; 1161 goto out; 1162 } 1163 1164 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1165 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1166 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1167 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1168 /* 1169 * Need to unisolate the device before configuring 1170 * or it should already be in configured state to 1171 * allow configure-connector be called repeatedly. 1172 */ 1173 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1174 goto out; 1175 } 1176 1177 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1178 1179 /* 1180 * This indicates that the kernel is reconfiguring a LMB due to 1181 * a failed hotunplug. Rollback the DIMM unplug process. 1182 */ 1183 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB && 1184 drc->unplug_requested) { 1185 spapr_memory_unplug_rollback(spapr, drc->dev); 1186 } 1187 1188 if (!drc->fdt) { 1189 void *fdt; 1190 int fdt_size; 1191 1192 fdt = create_device_tree(&fdt_size); 1193 1194 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1195 NULL)) { 1196 g_free(fdt); 1197 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1198 goto out; 1199 } 1200 1201 drc->fdt = fdt; 1202 drc->ccs_offset = drc->fdt_start_offset; 1203 drc->ccs_depth = 0; 1204 } 1205 1206 do { 1207 uint32_t tag; 1208 const char *name; 1209 const struct fdt_property *prop; 1210 int fdt_offset_next, prop_len; 1211 1212 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1213 1214 switch (tag) { 1215 case FDT_BEGIN_NODE: 1216 drc->ccs_depth++; 1217 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1218 1219 /* provide the name of the next OF node */ 1220 wa_offset = CC_VAL_DATA_OFFSET; 1221 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1222 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1223 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1224 break; 1225 case FDT_END_NODE: 1226 drc->ccs_depth--; 1227 if (drc->ccs_depth == 0) { 1228 uint32_t drc_index = spapr_drc_index(drc); 1229 1230 /* done sending the device tree, move to configured state */ 1231 trace_spapr_drc_set_configured(drc_index); 1232 drc->state = drck->ready_state; 1233 /* 1234 * Ensure that we are able to send the FDT fragment 1235 * again via configure-connector call if the guest requests. 1236 */ 1237 drc->ccs_offset = drc->fdt_start_offset; 1238 drc->ccs_depth = 0; 1239 fdt_offset_next = drc->fdt_start_offset; 1240 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1241 } else { 1242 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1243 } 1244 break; 1245 case FDT_PROP: 1246 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1247 &prop_len); 1248 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1249 1250 /* provide the name of the next OF property */ 1251 wa_offset = CC_VAL_DATA_OFFSET; 1252 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1253 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1254 1255 /* provide the length and value of the OF property. data gets 1256 * placed immediately after NULL terminator of the OF property's 1257 * name string 1258 */ 1259 wa_offset += strlen(name) + 1, 1260 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1261 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1262 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1263 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1264 break; 1265 case FDT_END: 1266 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1267 default: 1268 /* keep seeking for an actionable tag */ 1269 break; 1270 } 1271 if (drc->ccs_offset >= 0) { 1272 drc->ccs_offset = fdt_offset_next; 1273 } 1274 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1275 1276 rc = resp; 1277 out: 1278 rtas_st(rets, 0, rc); 1279 } 1280 1281 static void spapr_drc_register_types(void) 1282 { 1283 type_register_static(&spapr_dr_connector_info); 1284 type_register_static(&spapr_drc_physical_info); 1285 type_register_static(&spapr_drc_logical_info); 1286 type_register_static(&spapr_drc_cpu_info); 1287 type_register_static(&spapr_drc_pci_info); 1288 type_register_static(&spapr_drc_lmb_info); 1289 type_register_static(&spapr_drc_phb_info); 1290 type_register_static(&spapr_drc_pmem_info); 1291 1292 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1293 rtas_set_indicator); 1294 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1295 rtas_get_sensor_state); 1296 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1297 rtas_ibm_configure_connector); 1298 } 1299 type_init(spapr_drc_register_types) 1300