1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static uint32_t drc_isolate_physical(SpaprDrc *drc) 54 { 55 switch (drc->state) { 56 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 57 return RTAS_OUT_SUCCESS; /* Nothing to do */ 58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 59 break; /* see below */ 60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 61 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 62 default: 63 g_assert_not_reached(); 64 } 65 66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 67 68 if (drc->unplug_requested) { 69 uint32_t drc_index = spapr_drc_index(drc); 70 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 71 spapr_drc_detach(drc); 72 } 73 74 return RTAS_OUT_SUCCESS; 75 } 76 77 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 78 { 79 switch (drc->state) { 80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 82 return RTAS_OUT_SUCCESS; /* Nothing to do */ 83 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 84 break; /* see below */ 85 default: 86 g_assert_not_reached(); 87 } 88 89 /* cannot unisolate a non-existent resource, and, or resources 90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 91 * 13.5.3.5) 92 */ 93 if (!drc->dev) { 94 return RTAS_OUT_NO_SUCH_INDICATOR; 95 } 96 97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 98 drc->ccs_offset = drc->fdt_start_offset; 99 drc->ccs_depth = 0; 100 101 return RTAS_OUT_SUCCESS; 102 } 103 104 static uint32_t drc_isolate_logical(SpaprDrc *drc) 105 { 106 switch (drc->state) { 107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 109 return RTAS_OUT_SUCCESS; /* Nothing to do */ 110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 111 break; /* see below */ 112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 113 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 114 default: 115 g_assert_not_reached(); 116 } 117 118 /* 119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 120 * belong to a DIMM device that is marked for removal. 121 * 122 * Currently the guest userspace tool drmgr that drives the memory 123 * hotplug/unplug will just try to remove a set of 'removable' LMBs 124 * in response to a hot unplug request that is based on drc-count. 125 * If the LMB being removed doesn't belong to a DIMM device that is 126 * actually being unplugged, fail the isolation request here. 127 */ 128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 129 && !drc->unplug_requested) { 130 return RTAS_OUT_HW_ERROR; 131 } 132 133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 134 135 /* if we're awaiting release, but still in an unconfigured state, 136 * it's likely the guest is still in the process of configuring 137 * the device and is transitioning the devices to an ISOLATED 138 * state as a part of that process. so we only complete the 139 * removal when this transition happens for a device in a 140 * configured state, as suggested by the state diagram from PAPR+ 141 * 2.7, 13.4 142 */ 143 if (drc->unplug_requested) { 144 uint32_t drc_index = spapr_drc_index(drc); 145 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 146 spapr_drc_detach(drc); 147 } 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 switch (drc->state) { 154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 156 return RTAS_OUT_SUCCESS; /* Nothing to do */ 157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 158 break; /* see below */ 159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 161 default: 162 g_assert_not_reached(); 163 } 164 165 /* Move to AVAILABLE state should have ensured device was present */ 166 g_assert(drc->dev); 167 168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 169 drc->ccs_offset = drc->fdt_start_offset; 170 drc->ccs_depth = 0; 171 172 return RTAS_OUT_SUCCESS; 173 } 174 175 static uint32_t drc_set_usable(SpaprDrc *drc) 176 { 177 switch (drc->state) { 178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 break; /* see below */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* if there's no resource/device associated with the DRC, there's 189 * no way for us to put it in an allocation state consistent with 190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 191 * result in an RTAS return code of -3 / "no such indicator" 192 */ 193 if (!drc->dev) { 194 return RTAS_OUT_NO_SUCH_INDICATOR; 195 } 196 if (drc->unplug_requested) { 197 /* Don't allow the guest to move a device away from UNUSABLE 198 * state when we want to unplug it */ 199 return RTAS_OUT_NO_SUCH_INDICATOR; 200 } 201 202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 203 204 return RTAS_OUT_SUCCESS; 205 } 206 207 static uint32_t drc_set_unusable(SpaprDrc *drc) 208 { 209 switch (drc->state) { 210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 211 return RTAS_OUT_SUCCESS; /* Nothing to do */ 212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 213 break; /* see below */ 214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 217 default: 218 g_assert_not_reached(); 219 } 220 221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 222 if (drc->unplug_requested) { 223 uint32_t drc_index = spapr_drc_index(drc); 224 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 225 spapr_drc_detach(drc); 226 } 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static char *spapr_drc_name(SpaprDrc *drc) 232 { 233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 234 235 /* human-readable name for a DRC to encode into the DT 236 * description. this is mainly only used within a guest in place 237 * of the unique DRC index. 238 * 239 * in the case of VIO/PCI devices, it corresponds to a "location 240 * code" that maps a logical device/function (DRC index) to a 241 * physical (or virtual in the case of VIO) location in the system 242 * by chaining together the "location label" for each 243 * encapsulating component. 244 * 245 * since this is more to do with diagnosing physical hardware 246 * issues than guest compatibility, we choose location codes/DRC 247 * names that adhere to the documented format, but avoid encoding 248 * the entire topology information into the label/code, instead 249 * just using the location codes based on the labels for the 250 * endpoints (VIO/PCI adaptor connectors), which is basically just 251 * "C" followed by an integer ID. 252 * 253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 254 * location codes as documented by PAPR+ v2.7, 12.3.1.5 255 */ 256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 257 } 258 259 /* 260 * dr-entity-sense sensor value 261 * returned via get-sensor-state RTAS calls 262 * as expected by state diagram in PAPR+ 2.7, 13.4 263 * based on the current allocation/indicator/power states 264 * for the DR connector. 265 */ 266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 267 { 268 /* this assumes all PCI devices are assigned to a 'live insertion' 269 * power domain, where QEMU manages power state automatically as 270 * opposed to the guest. present, non-PCI resources are unaffected 271 * by power state. 272 */ 273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 274 : SPAPR_DR_ENTITY_SENSE_EMPTY; 275 } 276 277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 278 { 279 switch (drc->state) { 280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 285 g_assert(drc->dev); 286 return SPAPR_DR_ENTITY_SENSE_PRESENT; 287 default: 288 g_assert_not_reached(); 289 } 290 } 291 292 static void prop_get_index(Object *obj, Visitor *v, const char *name, 293 void *opaque, Error **errp) 294 { 295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 296 uint32_t value = spapr_drc_index(drc); 297 visit_type_uint32(v, name, &value, errp); 298 } 299 300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 301 void *opaque, Error **errp) 302 { 303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 304 QNull *null = NULL; 305 Error *err = NULL; 306 int fdt_offset_next, fdt_offset, fdt_depth; 307 void *fdt; 308 309 if (!drc->fdt) { 310 visit_type_null(v, NULL, &null, errp); 311 qobject_unref(null); 312 return; 313 } 314 315 fdt = drc->fdt; 316 fdt_offset = drc->fdt_start_offset; 317 fdt_depth = 0; 318 319 do { 320 const char *name = NULL; 321 const struct fdt_property *prop = NULL; 322 int prop_len = 0, name_len = 0; 323 uint32_t tag; 324 325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 326 switch (tag) { 327 case FDT_BEGIN_NODE: 328 fdt_depth++; 329 name = fdt_get_name(fdt, fdt_offset, &name_len); 330 visit_start_struct(v, name, NULL, 0, &err); 331 if (err) { 332 error_propagate(errp, err); 333 return; 334 } 335 break; 336 case FDT_END_NODE: 337 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 338 g_assert(fdt_depth > 0); 339 visit_check_struct(v, &err); 340 visit_end_struct(v, NULL); 341 if (err) { 342 error_propagate(errp, err); 343 return; 344 } 345 fdt_depth--; 346 break; 347 case FDT_PROP: { 348 int i; 349 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 350 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 351 visit_start_list(v, name, NULL, 0, &err); 352 if (err) { 353 error_propagate(errp, err); 354 return; 355 } 356 for (i = 0; i < prop_len; i++) { 357 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); 358 if (err) { 359 error_propagate(errp, err); 360 return; 361 } 362 } 363 visit_check_list(v, &err); 364 visit_end_list(v, NULL); 365 if (err) { 366 error_propagate(errp, err); 367 return; 368 } 369 break; 370 } 371 default: 372 error_report("device FDT in unexpected state: %d", tag); 373 abort(); 374 } 375 fdt_offset = fdt_offset_next; 376 } while (fdt_depth != 0); 377 } 378 379 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp) 380 { 381 trace_spapr_drc_attach(spapr_drc_index(drc)); 382 383 if (drc->dev) { 384 error_setg(errp, "an attached device is still awaiting release"); 385 return; 386 } 387 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 388 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 389 390 drc->dev = d; 391 392 object_property_add_link(OBJECT(drc), "device", 393 object_get_typename(OBJECT(drc->dev)), 394 (Object **)(&drc->dev), 395 NULL, 0, NULL); 396 } 397 398 static void spapr_drc_release(SpaprDrc *drc) 399 { 400 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 401 402 drck->release(drc->dev); 403 404 drc->unplug_requested = false; 405 g_free(drc->fdt); 406 drc->fdt = NULL; 407 drc->fdt_start_offset = 0; 408 object_property_del(OBJECT(drc), "device", &error_abort); 409 drc->dev = NULL; 410 } 411 412 void spapr_drc_detach(SpaprDrc *drc) 413 { 414 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 415 416 trace_spapr_drc_detach(spapr_drc_index(drc)); 417 418 g_assert(drc->dev); 419 420 drc->unplug_requested = true; 421 422 if (drc->state != drck->empty_state) { 423 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 424 return; 425 } 426 427 spapr_drc_release(drc); 428 } 429 430 void spapr_drc_reset(SpaprDrc *drc) 431 { 432 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 433 434 trace_spapr_drc_reset(spapr_drc_index(drc)); 435 436 /* immediately upon reset we can safely assume DRCs whose devices 437 * are pending removal can be safely removed. 438 */ 439 if (drc->unplug_requested) { 440 spapr_drc_release(drc); 441 } 442 443 if (drc->dev) { 444 /* A device present at reset is ready to go, same as coldplugged */ 445 drc->state = drck->ready_state; 446 /* 447 * Ensure that we are able to send the FDT fragment again 448 * via configure-connector call if the guest requests. 449 */ 450 drc->ccs_offset = drc->fdt_start_offset; 451 drc->ccs_depth = 0; 452 } else { 453 drc->state = drck->empty_state; 454 drc->ccs_offset = -1; 455 drc->ccs_depth = -1; 456 } 457 } 458 459 bool spapr_drc_needed(void *opaque) 460 { 461 SpaprDrc *drc = (SpaprDrc *)opaque; 462 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 463 464 /* If no dev is plugged in there is no need to migrate the DRC state */ 465 if (!drc->dev) { 466 return false; 467 } 468 469 /* 470 * We need to migrate the state if it's not equal to the expected 471 * long-term state, which is the same as the coldplugged initial 472 * state */ 473 return (drc->state != drck->ready_state); 474 } 475 476 static const VMStateDescription vmstate_spapr_drc = { 477 .name = "spapr_drc", 478 .version_id = 1, 479 .minimum_version_id = 1, 480 .needed = spapr_drc_needed, 481 .fields = (VMStateField []) { 482 VMSTATE_UINT32(state, SpaprDrc), 483 VMSTATE_END_OF_LIST() 484 } 485 }; 486 487 static void realize(DeviceState *d, Error **errp) 488 { 489 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 490 Object *root_container; 491 gchar *link_name; 492 gchar *child_name; 493 Error *err = NULL; 494 495 trace_spapr_drc_realize(spapr_drc_index(drc)); 496 /* NOTE: we do this as part of realize/unrealize due to the fact 497 * that the guest will communicate with the DRC via RTAS calls 498 * referencing the global DRC index. By unlinking the DRC 499 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 500 * inaccessible by the guest, since lookups rely on this path 501 * existing in the composition tree 502 */ 503 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 504 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 505 child_name = object_get_canonical_path_component(OBJECT(drc)); 506 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 507 object_property_add_alias(root_container, link_name, 508 drc->owner, child_name, &err); 509 g_free(child_name); 510 g_free(link_name); 511 if (err) { 512 error_propagate(errp, err); 513 return; 514 } 515 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 516 drc); 517 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 518 } 519 520 static void unrealize(DeviceState *d, Error **errp) 521 { 522 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 523 Object *root_container; 524 gchar *name; 525 526 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 527 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 528 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 529 name = g_strdup_printf("%x", spapr_drc_index(drc)); 530 object_property_del(root_container, name, errp); 531 g_free(name); 532 } 533 534 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 535 uint32_t id) 536 { 537 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 538 char *prop_name; 539 540 drc->id = id; 541 drc->owner = owner; 542 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 543 spapr_drc_index(drc)); 544 object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort); 545 object_unref(OBJECT(drc)); 546 object_property_set_bool(OBJECT(drc), true, "realized", NULL); 547 g_free(prop_name); 548 549 return drc; 550 } 551 552 static void spapr_dr_connector_instance_init(Object *obj) 553 { 554 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 555 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 556 557 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL); 558 object_property_add(obj, "index", "uint32", prop_get_index, 559 NULL, NULL, NULL, NULL); 560 object_property_add(obj, "fdt", "struct", prop_get_fdt, 561 NULL, NULL, NULL, NULL); 562 drc->state = drck->empty_state; 563 } 564 565 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 566 { 567 DeviceClass *dk = DEVICE_CLASS(k); 568 569 dk->realize = realize; 570 dk->unrealize = unrealize; 571 /* 572 * Reason: it crashes FIXME find and document the real reason 573 */ 574 dk->user_creatable = false; 575 } 576 577 static bool drc_physical_needed(void *opaque) 578 { 579 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 580 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 581 582 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 583 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 584 return false; 585 } 586 return true; 587 } 588 589 static const VMStateDescription vmstate_spapr_drc_physical = { 590 .name = "spapr_drc/physical", 591 .version_id = 1, 592 .minimum_version_id = 1, 593 .needed = drc_physical_needed, 594 .fields = (VMStateField []) { 595 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 596 VMSTATE_END_OF_LIST() 597 } 598 }; 599 600 static void drc_physical_reset(void *opaque) 601 { 602 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 603 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 604 605 if (drc->dev) { 606 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 607 } else { 608 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 609 } 610 } 611 612 static void realize_physical(DeviceState *d, Error **errp) 613 { 614 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 615 Error *local_err = NULL; 616 617 realize(d, &local_err); 618 if (local_err) { 619 error_propagate(errp, local_err); 620 return; 621 } 622 623 vmstate_register(VMSTATE_IF(drcp), 624 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 625 &vmstate_spapr_drc_physical, drcp); 626 qemu_register_reset(drc_physical_reset, drcp); 627 } 628 629 static void unrealize_physical(DeviceState *d, Error **errp) 630 { 631 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 632 Error *local_err = NULL; 633 634 unrealize(d, &local_err); 635 if (local_err) { 636 error_propagate(errp, local_err); 637 return; 638 } 639 640 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 641 qemu_unregister_reset(drc_physical_reset, drcp); 642 } 643 644 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 645 { 646 DeviceClass *dk = DEVICE_CLASS(k); 647 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 648 649 dk->realize = realize_physical; 650 dk->unrealize = unrealize_physical; 651 drck->dr_entity_sense = physical_entity_sense; 652 drck->isolate = drc_isolate_physical; 653 drck->unisolate = drc_unisolate_physical; 654 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 655 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 656 } 657 658 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 659 { 660 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 661 662 drck->dr_entity_sense = logical_entity_sense; 663 drck->isolate = drc_isolate_logical; 664 drck->unisolate = drc_unisolate_logical; 665 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 666 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 667 } 668 669 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 670 { 671 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 672 673 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 674 drck->typename = "CPU"; 675 drck->drc_name_prefix = "CPU "; 676 drck->release = spapr_core_release; 677 drck->dt_populate = spapr_core_dt_populate; 678 } 679 680 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 681 { 682 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 683 684 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 685 drck->typename = "28"; 686 drck->drc_name_prefix = "C"; 687 drck->release = spapr_phb_remove_pci_device_cb; 688 drck->dt_populate = spapr_pci_dt_populate; 689 } 690 691 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 692 { 693 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 694 695 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 696 drck->typename = "MEM"; 697 drck->drc_name_prefix = "LMB "; 698 drck->release = spapr_lmb_release; 699 drck->dt_populate = spapr_lmb_dt_populate; 700 } 701 702 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 703 { 704 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 705 706 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 707 drck->typename = "PHB"; 708 drck->drc_name_prefix = "PHB "; 709 drck->release = spapr_phb_release; 710 drck->dt_populate = spapr_phb_dt_populate; 711 } 712 713 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 714 { 715 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 716 717 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 718 drck->typename = "PMEM"; 719 drck->drc_name_prefix = "PMEM "; 720 drck->release = NULL; 721 drck->dt_populate = spapr_pmem_dt_populate; 722 } 723 724 static const TypeInfo spapr_dr_connector_info = { 725 .name = TYPE_SPAPR_DR_CONNECTOR, 726 .parent = TYPE_DEVICE, 727 .instance_size = sizeof(SpaprDrc), 728 .instance_init = spapr_dr_connector_instance_init, 729 .class_size = sizeof(SpaprDrcClass), 730 .class_init = spapr_dr_connector_class_init, 731 .abstract = true, 732 }; 733 734 static const TypeInfo spapr_drc_physical_info = { 735 .name = TYPE_SPAPR_DRC_PHYSICAL, 736 .parent = TYPE_SPAPR_DR_CONNECTOR, 737 .instance_size = sizeof(SpaprDrcPhysical), 738 .class_init = spapr_drc_physical_class_init, 739 .abstract = true, 740 }; 741 742 static const TypeInfo spapr_drc_logical_info = { 743 .name = TYPE_SPAPR_DRC_LOGICAL, 744 .parent = TYPE_SPAPR_DR_CONNECTOR, 745 .class_init = spapr_drc_logical_class_init, 746 .abstract = true, 747 }; 748 749 static const TypeInfo spapr_drc_cpu_info = { 750 .name = TYPE_SPAPR_DRC_CPU, 751 .parent = TYPE_SPAPR_DRC_LOGICAL, 752 .class_init = spapr_drc_cpu_class_init, 753 }; 754 755 static const TypeInfo spapr_drc_pci_info = { 756 .name = TYPE_SPAPR_DRC_PCI, 757 .parent = TYPE_SPAPR_DRC_PHYSICAL, 758 .class_init = spapr_drc_pci_class_init, 759 }; 760 761 static const TypeInfo spapr_drc_lmb_info = { 762 .name = TYPE_SPAPR_DRC_LMB, 763 .parent = TYPE_SPAPR_DRC_LOGICAL, 764 .class_init = spapr_drc_lmb_class_init, 765 }; 766 767 static const TypeInfo spapr_drc_phb_info = { 768 .name = TYPE_SPAPR_DRC_PHB, 769 .parent = TYPE_SPAPR_DRC_LOGICAL, 770 .instance_size = sizeof(SpaprDrc), 771 .class_init = spapr_drc_phb_class_init, 772 }; 773 774 static const TypeInfo spapr_drc_pmem_info = { 775 .name = TYPE_SPAPR_DRC_PMEM, 776 .parent = TYPE_SPAPR_DRC_LOGICAL, 777 .class_init = spapr_drc_pmem_class_init, 778 }; 779 780 /* helper functions for external users */ 781 782 SpaprDrc *spapr_drc_by_index(uint32_t index) 783 { 784 Object *obj; 785 gchar *name; 786 787 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 788 obj = object_resolve_path(name, NULL); 789 g_free(name); 790 791 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 792 } 793 794 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 795 { 796 SpaprDrcClass *drck 797 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 798 799 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 800 | (id & DRC_INDEX_ID_MASK)); 801 } 802 803 /** 804 * spapr_dt_drc 805 * 806 * @fdt: libfdt device tree 807 * @path: path in the DT to generate properties 808 * @owner: parent Object/DeviceState for which to generate DRC 809 * descriptions for 810 * @drc_type_mask: mask of SpaprDrcType values corresponding 811 * to the types of DRCs to generate entries for 812 * 813 * generate OF properties to describe DRC topology/indices to guests 814 * 815 * as documented in PAPR+ v2.1, 13.5.2 816 */ 817 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 818 { 819 Object *root_container; 820 ObjectProperty *prop; 821 ObjectPropertyIterator iter; 822 uint32_t drc_count = 0; 823 GArray *drc_indexes, *drc_power_domains; 824 GString *drc_names, *drc_types; 825 int ret; 826 827 /* the first entry of each properties is a 32-bit integer encoding 828 * the number of elements in the array. we won't know this until 829 * we complete the iteration through all the matching DRCs, but 830 * reserve the space now and set the offsets accordingly so we 831 * can fill them in later. 832 */ 833 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 834 drc_indexes = g_array_set_size(drc_indexes, 1); 835 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 836 drc_power_domains = g_array_set_size(drc_power_domains, 1); 837 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 838 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 839 840 /* aliases for all DRConnector objects will be rooted in QOM 841 * composition tree at DRC_CONTAINER_PATH 842 */ 843 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 844 845 object_property_iter_init(&iter, root_container); 846 while ((prop = object_property_iter_next(&iter))) { 847 Object *obj; 848 SpaprDrc *drc; 849 SpaprDrcClass *drck; 850 char *drc_name = NULL; 851 uint32_t drc_index, drc_power_domain; 852 853 if (!strstart(prop->type, "link<", NULL)) { 854 continue; 855 } 856 857 obj = object_property_get_link(root_container, prop->name, NULL); 858 drc = SPAPR_DR_CONNECTOR(obj); 859 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 860 861 if (owner && (drc->owner != owner)) { 862 continue; 863 } 864 865 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 866 continue; 867 } 868 869 drc_count++; 870 871 /* ibm,drc-indexes */ 872 drc_index = cpu_to_be32(spapr_drc_index(drc)); 873 g_array_append_val(drc_indexes, drc_index); 874 875 /* ibm,drc-power-domains */ 876 drc_power_domain = cpu_to_be32(-1); 877 g_array_append_val(drc_power_domains, drc_power_domain); 878 879 /* ibm,drc-names */ 880 drc_name = spapr_drc_name(drc); 881 drc_names = g_string_append(drc_names, drc_name); 882 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 883 g_free(drc_name); 884 885 /* ibm,drc-types */ 886 drc_types = g_string_append(drc_types, drck->typename); 887 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 888 } 889 890 /* now write the drc count into the space we reserved at the 891 * beginning of the arrays previously 892 */ 893 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 894 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 895 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 896 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 897 898 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 899 drc_indexes->data, 900 drc_indexes->len * sizeof(uint32_t)); 901 if (ret) { 902 error_report("Couldn't create ibm,drc-indexes property"); 903 goto out; 904 } 905 906 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 907 drc_power_domains->data, 908 drc_power_domains->len * sizeof(uint32_t)); 909 if (ret) { 910 error_report("Couldn't finalize ibm,drc-power-domains property"); 911 goto out; 912 } 913 914 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 915 drc_names->str, drc_names->len); 916 if (ret) { 917 error_report("Couldn't finalize ibm,drc-names property"); 918 goto out; 919 } 920 921 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 922 drc_types->str, drc_types->len); 923 if (ret) { 924 error_report("Couldn't finalize ibm,drc-types property"); 925 goto out; 926 } 927 928 out: 929 g_array_free(drc_indexes, true); 930 g_array_free(drc_power_domains, true); 931 g_string_free(drc_names, true); 932 g_string_free(drc_types, true); 933 934 return ret; 935 } 936 937 /* 938 * RTAS calls 939 */ 940 941 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 942 { 943 SpaprDrc *drc = spapr_drc_by_index(idx); 944 SpaprDrcClass *drck; 945 946 if (!drc) { 947 return RTAS_OUT_NO_SUCH_INDICATOR; 948 } 949 950 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 951 952 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 953 954 switch (state) { 955 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 956 return drck->isolate(drc); 957 958 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 959 return drck->unisolate(drc); 960 961 default: 962 return RTAS_OUT_PARAM_ERROR; 963 } 964 } 965 966 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 967 { 968 SpaprDrc *drc = spapr_drc_by_index(idx); 969 970 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 971 return RTAS_OUT_NO_SUCH_INDICATOR; 972 } 973 974 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 975 976 switch (state) { 977 case SPAPR_DR_ALLOCATION_STATE_USABLE: 978 return drc_set_usable(drc); 979 980 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 981 return drc_set_unusable(drc); 982 983 default: 984 return RTAS_OUT_PARAM_ERROR; 985 } 986 } 987 988 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 989 { 990 SpaprDrc *drc = spapr_drc_by_index(idx); 991 992 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 993 return RTAS_OUT_NO_SUCH_INDICATOR; 994 } 995 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 996 && (state != SPAPR_DR_INDICATOR_ACTIVE) 997 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 998 && (state != SPAPR_DR_INDICATOR_ACTION)) { 999 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1000 } 1001 1002 trace_spapr_drc_set_dr_indicator(idx, state); 1003 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1004 return RTAS_OUT_SUCCESS; 1005 } 1006 1007 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1008 uint32_t token, 1009 uint32_t nargs, target_ulong args, 1010 uint32_t nret, target_ulong rets) 1011 { 1012 uint32_t type, idx, state; 1013 uint32_t ret = RTAS_OUT_SUCCESS; 1014 1015 if (nargs != 3 || nret != 1) { 1016 ret = RTAS_OUT_PARAM_ERROR; 1017 goto out; 1018 } 1019 1020 type = rtas_ld(args, 0); 1021 idx = rtas_ld(args, 1); 1022 state = rtas_ld(args, 2); 1023 1024 switch (type) { 1025 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1026 ret = rtas_set_isolation_state(idx, state); 1027 break; 1028 case RTAS_SENSOR_TYPE_DR: 1029 ret = rtas_set_dr_indicator(idx, state); 1030 break; 1031 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1032 ret = rtas_set_allocation_state(idx, state); 1033 break; 1034 default: 1035 ret = RTAS_OUT_NOT_SUPPORTED; 1036 } 1037 1038 out: 1039 rtas_st(rets, 0, ret); 1040 } 1041 1042 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1043 uint32_t token, uint32_t nargs, 1044 target_ulong args, uint32_t nret, 1045 target_ulong rets) 1046 { 1047 uint32_t sensor_type; 1048 uint32_t sensor_index; 1049 uint32_t sensor_state = 0; 1050 SpaprDrc *drc; 1051 SpaprDrcClass *drck; 1052 uint32_t ret = RTAS_OUT_SUCCESS; 1053 1054 if (nargs != 2 || nret != 2) { 1055 ret = RTAS_OUT_PARAM_ERROR; 1056 goto out; 1057 } 1058 1059 sensor_type = rtas_ld(args, 0); 1060 sensor_index = rtas_ld(args, 1); 1061 1062 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1063 /* currently only DR-related sensors are implemented */ 1064 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1065 sensor_type); 1066 ret = RTAS_OUT_NOT_SUPPORTED; 1067 goto out; 1068 } 1069 1070 drc = spapr_drc_by_index(sensor_index); 1071 if (!drc) { 1072 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1073 ret = RTAS_OUT_PARAM_ERROR; 1074 goto out; 1075 } 1076 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1077 sensor_state = drck->dr_entity_sense(drc); 1078 1079 out: 1080 rtas_st(rets, 0, ret); 1081 rtas_st(rets, 1, sensor_state); 1082 } 1083 1084 /* configure-connector work area offsets, int32_t units for field 1085 * indexes, bytes for field offset/len values. 1086 * 1087 * as documented by PAPR+ v2.7, 13.5.3.5 1088 */ 1089 #define CC_IDX_NODE_NAME_OFFSET 2 1090 #define CC_IDX_PROP_NAME_OFFSET 2 1091 #define CC_IDX_PROP_LEN 3 1092 #define CC_IDX_PROP_DATA_OFFSET 4 1093 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1094 #define CC_WA_LEN 4096 1095 1096 static void configure_connector_st(target_ulong addr, target_ulong offset, 1097 const void *buf, size_t len) 1098 { 1099 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1100 buf, MIN(len, CC_WA_LEN - offset)); 1101 } 1102 1103 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1104 SpaprMachineState *spapr, 1105 uint32_t token, uint32_t nargs, 1106 target_ulong args, uint32_t nret, 1107 target_ulong rets) 1108 { 1109 uint64_t wa_addr; 1110 uint64_t wa_offset; 1111 uint32_t drc_index; 1112 SpaprDrc *drc; 1113 SpaprDrcClass *drck; 1114 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1115 int rc; 1116 1117 if (nargs != 2 || nret != 1) { 1118 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1119 return; 1120 } 1121 1122 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1123 1124 drc_index = rtas_ld(wa_addr, 0); 1125 drc = spapr_drc_by_index(drc_index); 1126 if (!drc) { 1127 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1128 rc = RTAS_OUT_PARAM_ERROR; 1129 goto out; 1130 } 1131 1132 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1133 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1134 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1135 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1136 /* 1137 * Need to unisolate the device before configuring 1138 * or it should already be in configured state to 1139 * allow configure-connector be called repeatedly. 1140 */ 1141 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1142 goto out; 1143 } 1144 1145 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1146 1147 if (!drc->fdt) { 1148 Error *local_err = NULL; 1149 void *fdt; 1150 int fdt_size; 1151 1152 fdt = create_device_tree(&fdt_size); 1153 1154 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1155 &local_err)) { 1156 g_free(fdt); 1157 error_free(local_err); 1158 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1159 goto out; 1160 } 1161 1162 drc->fdt = fdt; 1163 drc->ccs_offset = drc->fdt_start_offset; 1164 drc->ccs_depth = 0; 1165 } 1166 1167 do { 1168 uint32_t tag; 1169 const char *name; 1170 const struct fdt_property *prop; 1171 int fdt_offset_next, prop_len; 1172 1173 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1174 1175 switch (tag) { 1176 case FDT_BEGIN_NODE: 1177 drc->ccs_depth++; 1178 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1179 1180 /* provide the name of the next OF node */ 1181 wa_offset = CC_VAL_DATA_OFFSET; 1182 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1183 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1184 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1185 break; 1186 case FDT_END_NODE: 1187 drc->ccs_depth--; 1188 if (drc->ccs_depth == 0) { 1189 uint32_t drc_index = spapr_drc_index(drc); 1190 1191 /* done sending the device tree, move to configured state */ 1192 trace_spapr_drc_set_configured(drc_index); 1193 drc->state = drck->ready_state; 1194 /* 1195 * Ensure that we are able to send the FDT fragment 1196 * again via configure-connector call if the guest requests. 1197 */ 1198 drc->ccs_offset = drc->fdt_start_offset; 1199 drc->ccs_depth = 0; 1200 fdt_offset_next = drc->fdt_start_offset; 1201 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1202 } else { 1203 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1204 } 1205 break; 1206 case FDT_PROP: 1207 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1208 &prop_len); 1209 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1210 1211 /* provide the name of the next OF property */ 1212 wa_offset = CC_VAL_DATA_OFFSET; 1213 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1214 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1215 1216 /* provide the length and value of the OF property. data gets 1217 * placed immediately after NULL terminator of the OF property's 1218 * name string 1219 */ 1220 wa_offset += strlen(name) + 1, 1221 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1222 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1223 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1224 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1225 break; 1226 case FDT_END: 1227 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1228 default: 1229 /* keep seeking for an actionable tag */ 1230 break; 1231 } 1232 if (drc->ccs_offset >= 0) { 1233 drc->ccs_offset = fdt_offset_next; 1234 } 1235 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1236 1237 rc = resp; 1238 out: 1239 rtas_st(rets, 0, rc); 1240 } 1241 1242 static void spapr_drc_register_types(void) 1243 { 1244 type_register_static(&spapr_dr_connector_info); 1245 type_register_static(&spapr_drc_physical_info); 1246 type_register_static(&spapr_drc_logical_info); 1247 type_register_static(&spapr_drc_cpu_info); 1248 type_register_static(&spapr_drc_pci_info); 1249 type_register_static(&spapr_drc_lmb_info); 1250 type_register_static(&spapr_drc_phb_info); 1251 type_register_static(&spapr_drc_pmem_info); 1252 1253 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1254 rtas_set_indicator); 1255 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1256 rtas_get_sensor_state); 1257 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1258 rtas_ibm_configure_connector); 1259 } 1260 type_init(spapr_drc_register_types) 1261