xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision eabfeb0c)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29 
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33 
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37 
38     return 1 << drck->typeshift;
39 }
40 
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44 
45     /* no set format for a drc index: it only needs to be globally
46      * unique. this is how we encode the DRC type on bare-metal
47      * however, so might as well do that here
48      */
49     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50         | (drc->id & DRC_INDEX_ID_MASK);
51 }
52 
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
54 {
55     switch (drc->state) {
56     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57         return RTAS_OUT_SUCCESS; /* Nothing to do */
58     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59         break; /* see below */
60     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61         return RTAS_OUT_PARAM_ERROR; /* not allowed */
62     default:
63         g_assert_not_reached();
64     }
65 
66     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
67 
68     if (drc->unplug_requested) {
69         uint32_t drc_index = spapr_drc_index(drc);
70         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71         spapr_drc_detach(drc);
72     }
73 
74     return RTAS_OUT_SUCCESS;
75 }
76 
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
78 {
79     switch (drc->state) {
80     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82         return RTAS_OUT_SUCCESS; /* Nothing to do */
83     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84         break; /* see below */
85     default:
86         g_assert_not_reached();
87     }
88 
89     /* cannot unisolate a non-existent resource, and, or resources
90      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91      * 13.5.3.5)
92      */
93     if (!drc->dev) {
94         return RTAS_OUT_NO_SUCH_INDICATOR;
95     }
96 
97     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98     drc->ccs_offset = drc->fdt_start_offset;
99     drc->ccs_depth = 0;
100 
101     return RTAS_OUT_SUCCESS;
102 }
103 
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
105 {
106     switch (drc->state) {
107     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109         return RTAS_OUT_SUCCESS; /* Nothing to do */
110     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111         break; /* see below */
112     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113         return RTAS_OUT_PARAM_ERROR; /* not allowed */
114     default:
115         g_assert_not_reached();
116     }
117 
118     /*
119      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120      * belong to a DIMM device that is marked for removal.
121      *
122      * Currently the guest userspace tool drmgr that drives the memory
123      * hotplug/unplug will just try to remove a set of 'removable' LMBs
124      * in response to a hot unplug request that is based on drc-count.
125      * If the LMB being removed doesn't belong to a DIMM device that is
126      * actually being unplugged, fail the isolation request here.
127      */
128     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129         && !drc->unplug_requested) {
130         return RTAS_OUT_HW_ERROR;
131     }
132 
133     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
134 
135     /* if we're awaiting release, but still in an unconfigured state,
136      * it's likely the guest is still in the process of configuring
137      * the device and is transitioning the devices to an ISOLATED
138      * state as a part of that process. so we only complete the
139      * removal when this transition happens for a device in a
140      * configured state, as suggested by the state diagram from PAPR+
141      * 2.7, 13.4
142      */
143     if (drc->unplug_requested) {
144         uint32_t drc_index = spapr_drc_index(drc);
145         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146         spapr_drc_detach(drc);
147     }
148     return RTAS_OUT_SUCCESS;
149 }
150 
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153     switch (drc->state) {
154     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156         return RTAS_OUT_SUCCESS; /* Nothing to do */
157     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158         break; /* see below */
159     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161     default:
162         g_assert_not_reached();
163     }
164 
165     /* Move to AVAILABLE state should have ensured device was present */
166     g_assert(drc->dev);
167 
168     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169     drc->ccs_offset = drc->fdt_start_offset;
170     drc->ccs_depth = 0;
171 
172     return RTAS_OUT_SUCCESS;
173 }
174 
175 static uint32_t drc_set_usable(SpaprDrc *drc)
176 {
177     switch (drc->state) {
178     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181         return RTAS_OUT_SUCCESS; /* Nothing to do */
182     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183         break; /* see below */
184     default:
185         g_assert_not_reached();
186     }
187 
188     /* if there's no resource/device associated with the DRC, there's
189      * no way for us to put it in an allocation state consistent with
190      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191      * result in an RTAS return code of -3 / "no such indicator"
192      */
193     if (!drc->dev) {
194         return RTAS_OUT_NO_SUCH_INDICATOR;
195     }
196     if (drc->unplug_requested) {
197         /* Don't allow the guest to move a device away from UNUSABLE
198          * state when we want to unplug it */
199         return RTAS_OUT_NO_SUCH_INDICATOR;
200     }
201 
202     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
203 
204     return RTAS_OUT_SUCCESS;
205 }
206 
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
208 {
209     switch (drc->state) {
210     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211         return RTAS_OUT_SUCCESS; /* Nothing to do */
212     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213         break; /* see below */
214     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217     default:
218         g_assert_not_reached();
219     }
220 
221     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222     if (drc->unplug_requested) {
223         uint32_t drc_index = spapr_drc_index(drc);
224         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225         spapr_drc_detach(drc);
226     }
227 
228     return RTAS_OUT_SUCCESS;
229 }
230 
231 static char *spapr_drc_name(SpaprDrc *drc)
232 {
233     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
234 
235     /* human-readable name for a DRC to encode into the DT
236      * description. this is mainly only used within a guest in place
237      * of the unique DRC index.
238      *
239      * in the case of VIO/PCI devices, it corresponds to a "location
240      * code" that maps a logical device/function (DRC index) to a
241      * physical (or virtual in the case of VIO) location in the system
242      * by chaining together the "location label" for each
243      * encapsulating component.
244      *
245      * since this is more to do with diagnosing physical hardware
246      * issues than guest compatibility, we choose location codes/DRC
247      * names that adhere to the documented format, but avoid encoding
248      * the entire topology information into the label/code, instead
249      * just using the location codes based on the labels for the
250      * endpoints (VIO/PCI adaptor connectors), which is basically just
251      * "C" followed by an integer ID.
252      *
253      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254      * location codes as documented by PAPR+ v2.7, 12.3.1.5
255      */
256     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
257 }
258 
259 /*
260  * dr-entity-sense sensor value
261  * returned via get-sensor-state RTAS calls
262  * as expected by state diagram in PAPR+ 2.7, 13.4
263  * based on the current allocation/indicator/power states
264  * for the DR connector.
265  */
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
267 {
268     /* this assumes all PCI devices are assigned to a 'live insertion'
269      * power domain, where QEMU manages power state automatically as
270      * opposed to the guest. present, non-PCI resources are unaffected
271      * by power state.
272      */
273     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274         : SPAPR_DR_ENTITY_SENSE_EMPTY;
275 }
276 
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
278 {
279     switch (drc->state) {
280     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285         g_assert(drc->dev);
286         return SPAPR_DR_ENTITY_SENSE_PRESENT;
287     default:
288         g_assert_not_reached();
289     }
290 }
291 
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293                            void *opaque, Error **errp)
294 {
295     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296     uint32_t value = spapr_drc_index(drc);
297     visit_type_uint32(v, name, &value, errp);
298 }
299 
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301                          void *opaque, Error **errp)
302 {
303     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304     QNull *null = NULL;
305     Error *err = NULL;
306     int fdt_offset_next, fdt_offset, fdt_depth;
307     void *fdt;
308 
309     if (!drc->fdt) {
310         visit_type_null(v, NULL, &null, errp);
311         qobject_unref(null);
312         return;
313     }
314 
315     fdt = drc->fdt;
316     fdt_offset = drc->fdt_start_offset;
317     fdt_depth = 0;
318 
319     do {
320         const char *name = NULL;
321         const struct fdt_property *prop = NULL;
322         int prop_len = 0, name_len = 0;
323         uint32_t tag;
324 
325         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326         switch (tag) {
327         case FDT_BEGIN_NODE:
328             fdt_depth++;
329             name = fdt_get_name(fdt, fdt_offset, &name_len);
330             if (!visit_start_struct(v, name, NULL, 0, errp)) {
331                 return;
332             }
333             break;
334         case FDT_END_NODE:
335             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
336             g_assert(fdt_depth > 0);
337             visit_check_struct(v, &err);
338             visit_end_struct(v, NULL);
339             if (err) {
340                 error_propagate(errp, err);
341                 return;
342             }
343             fdt_depth--;
344             break;
345         case FDT_PROP: {
346             int i;
347             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
348             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
349             if (!visit_start_list(v, name, NULL, 0, errp)) {
350                 return;
351             }
352             for (i = 0; i < prop_len; i++) {
353                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
354                                       errp)) {
355                     return;
356                 }
357             }
358             visit_check_list(v, &err);
359             visit_end_list(v, NULL);
360             if (err) {
361                 error_propagate(errp, err);
362                 return;
363             }
364             break;
365         }
366         default:
367             error_report("device FDT in unexpected state: %d", tag);
368             abort();
369         }
370         fdt_offset = fdt_offset_next;
371     } while (fdt_depth != 0);
372 }
373 
374 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
375 {
376     trace_spapr_drc_attach(spapr_drc_index(drc));
377 
378     if (drc->dev) {
379         error_setg(errp, "an attached device is still awaiting release");
380         return;
381     }
382     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
383              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
384 
385     drc->dev = d;
386 
387     object_property_add_link(OBJECT(drc), "device",
388                              object_get_typename(OBJECT(drc->dev)),
389                              (Object **)(&drc->dev),
390                              NULL, 0);
391 }
392 
393 static void spapr_drc_release(SpaprDrc *drc)
394 {
395     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
396 
397     drck->release(drc->dev);
398 
399     drc->unplug_requested = false;
400     g_free(drc->fdt);
401     drc->fdt = NULL;
402     drc->fdt_start_offset = 0;
403     object_property_del(OBJECT(drc), "device");
404     drc->dev = NULL;
405 }
406 
407 void spapr_drc_detach(SpaprDrc *drc)
408 {
409     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
410 
411     trace_spapr_drc_detach(spapr_drc_index(drc));
412 
413     g_assert(drc->dev);
414 
415     drc->unplug_requested = true;
416 
417     if (drc->state != drck->empty_state) {
418         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
419         return;
420     }
421 
422     spapr_drc_release(drc);
423 }
424 
425 void spapr_drc_reset(SpaprDrc *drc)
426 {
427     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
428 
429     trace_spapr_drc_reset(spapr_drc_index(drc));
430 
431     /* immediately upon reset we can safely assume DRCs whose devices
432      * are pending removal can be safely removed.
433      */
434     if (drc->unplug_requested) {
435         spapr_drc_release(drc);
436     }
437 
438     if (drc->dev) {
439         /* A device present at reset is ready to go, same as coldplugged */
440         drc->state = drck->ready_state;
441         /*
442          * Ensure that we are able to send the FDT fragment again
443          * via configure-connector call if the guest requests.
444          */
445         drc->ccs_offset = drc->fdt_start_offset;
446         drc->ccs_depth = 0;
447     } else {
448         drc->state = drck->empty_state;
449         drc->ccs_offset = -1;
450         drc->ccs_depth = -1;
451     }
452 }
453 
454 static bool spapr_drc_unplug_requested_needed(void *opaque)
455 {
456     return spapr_drc_unplug_requested(opaque);
457 }
458 
459 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
460     .name = "spapr_drc/unplug_requested",
461     .version_id = 1,
462     .minimum_version_id = 1,
463     .needed = spapr_drc_unplug_requested_needed,
464     .fields  = (VMStateField []) {
465         VMSTATE_BOOL(unplug_requested, SpaprDrc),
466         VMSTATE_END_OF_LIST()
467     }
468 };
469 
470 bool spapr_drc_transient(SpaprDrc *drc)
471 {
472     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
473 
474     /*
475      * If no dev is plugged in there is no need to migrate the DRC state
476      * nor to reset the DRC at CAS.
477      */
478     if (!drc->dev) {
479         return false;
480     }
481 
482     /*
483      * We need to reset the DRC at CAS or to migrate the DRC state if it's
484      * not equal to the expected long-term state, which is the same as the
485      * coldplugged initial state, or if an unplug request is pending.
486      */
487     return drc->state != drck->ready_state ||
488         spapr_drc_unplug_requested(drc);
489 }
490 
491 static bool spapr_drc_needed(void *opaque)
492 {
493     return spapr_drc_transient(opaque);
494 }
495 
496 static const VMStateDescription vmstate_spapr_drc = {
497     .name = "spapr_drc",
498     .version_id = 1,
499     .minimum_version_id = 1,
500     .needed = spapr_drc_needed,
501     .fields  = (VMStateField []) {
502         VMSTATE_UINT32(state, SpaprDrc),
503         VMSTATE_END_OF_LIST()
504     },
505     .subsections = (const VMStateDescription * []) {
506         &vmstate_spapr_drc_unplug_requested,
507         NULL
508     }
509 };
510 
511 static void realize(DeviceState *d, Error **errp)
512 {
513     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
514     Object *root_container;
515     gchar *link_name;
516     const char *child_name;
517 
518     trace_spapr_drc_realize(spapr_drc_index(drc));
519     /* NOTE: we do this as part of realize/unrealize due to the fact
520      * that the guest will communicate with the DRC via RTAS calls
521      * referencing the global DRC index. By unlinking the DRC
522      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
523      * inaccessible by the guest, since lookups rely on this path
524      * existing in the composition tree
525      */
526     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
527     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
528     child_name = object_get_canonical_path_component(OBJECT(drc));
529     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
530     object_property_add_alias(root_container, link_name,
531                               drc->owner, child_name);
532     g_free(link_name);
533     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
534                      drc);
535     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
536 }
537 
538 static void unrealize(DeviceState *d)
539 {
540     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
541     Object *root_container;
542     gchar *name;
543 
544     trace_spapr_drc_unrealize(spapr_drc_index(drc));
545     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
546     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
547     name = g_strdup_printf("%x", spapr_drc_index(drc));
548     object_property_del(root_container, name);
549     g_free(name);
550 }
551 
552 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
553                                          uint32_t id)
554 {
555     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
556     char *prop_name;
557 
558     drc->id = id;
559     drc->owner = owner;
560     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
561                                 spapr_drc_index(drc));
562     object_property_add_child(owner, prop_name, OBJECT(drc));
563     object_unref(OBJECT(drc));
564     qdev_realize(DEVICE(drc), NULL, NULL);
565     g_free(prop_name);
566 
567     return drc;
568 }
569 
570 static void spapr_dr_connector_instance_init(Object *obj)
571 {
572     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
573     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
574 
575     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
576     object_property_add(obj, "index", "uint32", prop_get_index,
577                         NULL, NULL, NULL);
578     object_property_add(obj, "fdt", "struct", prop_get_fdt,
579                         NULL, NULL, NULL);
580     drc->state = drck->empty_state;
581 }
582 
583 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
584 {
585     DeviceClass *dk = DEVICE_CLASS(k);
586 
587     dk->realize = realize;
588     dk->unrealize = unrealize;
589     /*
590      * Reason: it crashes FIXME find and document the real reason
591      */
592     dk->user_creatable = false;
593 }
594 
595 static bool drc_physical_needed(void *opaque)
596 {
597     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
598     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
599 
600     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
601         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
602         return false;
603     }
604     return true;
605 }
606 
607 static const VMStateDescription vmstate_spapr_drc_physical = {
608     .name = "spapr_drc/physical",
609     .version_id = 1,
610     .minimum_version_id = 1,
611     .needed = drc_physical_needed,
612     .fields  = (VMStateField []) {
613         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
614         VMSTATE_END_OF_LIST()
615     }
616 };
617 
618 static void drc_physical_reset(void *opaque)
619 {
620     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
621     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
622 
623     if (drc->dev) {
624         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
625     } else {
626         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
627     }
628 }
629 
630 static void realize_physical(DeviceState *d, Error **errp)
631 {
632     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
633     Error *local_err = NULL;
634 
635     realize(d, &local_err);
636     if (local_err) {
637         error_propagate(errp, local_err);
638         return;
639     }
640 
641     vmstate_register(VMSTATE_IF(drcp),
642                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
643                      &vmstate_spapr_drc_physical, drcp);
644     qemu_register_reset(drc_physical_reset, drcp);
645 }
646 
647 static void unrealize_physical(DeviceState *d)
648 {
649     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
650 
651     unrealize(d);
652     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
653     qemu_unregister_reset(drc_physical_reset, drcp);
654 }
655 
656 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
657 {
658     DeviceClass *dk = DEVICE_CLASS(k);
659     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
660 
661     dk->realize = realize_physical;
662     dk->unrealize = unrealize_physical;
663     drck->dr_entity_sense = physical_entity_sense;
664     drck->isolate = drc_isolate_physical;
665     drck->unisolate = drc_unisolate_physical;
666     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
667     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
668 }
669 
670 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
671 {
672     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
673 
674     drck->dr_entity_sense = logical_entity_sense;
675     drck->isolate = drc_isolate_logical;
676     drck->unisolate = drc_unisolate_logical;
677     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
678     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
679 }
680 
681 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
682 {
683     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
684 
685     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
686     drck->typename = "CPU";
687     drck->drc_name_prefix = "CPU ";
688     drck->release = spapr_core_release;
689     drck->dt_populate = spapr_core_dt_populate;
690 }
691 
692 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
693 {
694     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
695 
696     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
697     drck->typename = "28";
698     drck->drc_name_prefix = "C";
699     drck->release = spapr_phb_remove_pci_device_cb;
700     drck->dt_populate = spapr_pci_dt_populate;
701 }
702 
703 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
704 {
705     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
706 
707     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
708     drck->typename = "MEM";
709     drck->drc_name_prefix = "LMB ";
710     drck->release = spapr_lmb_release;
711     drck->dt_populate = spapr_lmb_dt_populate;
712 }
713 
714 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
715 {
716     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
717 
718     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
719     drck->typename = "PHB";
720     drck->drc_name_prefix = "PHB ";
721     drck->release = spapr_phb_release;
722     drck->dt_populate = spapr_phb_dt_populate;
723 }
724 
725 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
726 {
727     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
728 
729     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
730     drck->typename = "PMEM";
731     drck->drc_name_prefix = "PMEM ";
732     drck->release = NULL;
733     drck->dt_populate = spapr_pmem_dt_populate;
734 }
735 
736 static const TypeInfo spapr_dr_connector_info = {
737     .name          = TYPE_SPAPR_DR_CONNECTOR,
738     .parent        = TYPE_DEVICE,
739     .instance_size = sizeof(SpaprDrc),
740     .instance_init = spapr_dr_connector_instance_init,
741     .class_size    = sizeof(SpaprDrcClass),
742     .class_init    = spapr_dr_connector_class_init,
743     .abstract      = true,
744 };
745 
746 static const TypeInfo spapr_drc_physical_info = {
747     .name          = TYPE_SPAPR_DRC_PHYSICAL,
748     .parent        = TYPE_SPAPR_DR_CONNECTOR,
749     .instance_size = sizeof(SpaprDrcPhysical),
750     .class_init    = spapr_drc_physical_class_init,
751     .abstract      = true,
752 };
753 
754 static const TypeInfo spapr_drc_logical_info = {
755     .name          = TYPE_SPAPR_DRC_LOGICAL,
756     .parent        = TYPE_SPAPR_DR_CONNECTOR,
757     .class_init    = spapr_drc_logical_class_init,
758     .abstract      = true,
759 };
760 
761 static const TypeInfo spapr_drc_cpu_info = {
762     .name          = TYPE_SPAPR_DRC_CPU,
763     .parent        = TYPE_SPAPR_DRC_LOGICAL,
764     .class_init    = spapr_drc_cpu_class_init,
765 };
766 
767 static const TypeInfo spapr_drc_pci_info = {
768     .name          = TYPE_SPAPR_DRC_PCI,
769     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
770     .class_init    = spapr_drc_pci_class_init,
771 };
772 
773 static const TypeInfo spapr_drc_lmb_info = {
774     .name          = TYPE_SPAPR_DRC_LMB,
775     .parent        = TYPE_SPAPR_DRC_LOGICAL,
776     .class_init    = spapr_drc_lmb_class_init,
777 };
778 
779 static const TypeInfo spapr_drc_phb_info = {
780     .name          = TYPE_SPAPR_DRC_PHB,
781     .parent        = TYPE_SPAPR_DRC_LOGICAL,
782     .instance_size = sizeof(SpaprDrc),
783     .class_init    = spapr_drc_phb_class_init,
784 };
785 
786 static const TypeInfo spapr_drc_pmem_info = {
787     .name          = TYPE_SPAPR_DRC_PMEM,
788     .parent        = TYPE_SPAPR_DRC_LOGICAL,
789     .class_init    = spapr_drc_pmem_class_init,
790 };
791 
792 /* helper functions for external users */
793 
794 SpaprDrc *spapr_drc_by_index(uint32_t index)
795 {
796     Object *obj;
797     gchar *name;
798 
799     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
800     obj = object_resolve_path(name, NULL);
801     g_free(name);
802 
803     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
804 }
805 
806 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
807 {
808     SpaprDrcClass *drck
809         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
810 
811     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
812                               | (id & DRC_INDEX_ID_MASK));
813 }
814 
815 /**
816  * spapr_dt_drc
817  *
818  * @fdt: libfdt device tree
819  * @path: path in the DT to generate properties
820  * @owner: parent Object/DeviceState for which to generate DRC
821  *         descriptions for
822  * @drc_type_mask: mask of SpaprDrcType values corresponding
823  *   to the types of DRCs to generate entries for
824  *
825  * generate OF properties to describe DRC topology/indices to guests
826  *
827  * as documented in PAPR+ v2.1, 13.5.2
828  */
829 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
830 {
831     Object *root_container;
832     ObjectProperty *prop;
833     ObjectPropertyIterator iter;
834     uint32_t drc_count = 0;
835     GArray *drc_indexes, *drc_power_domains;
836     GString *drc_names, *drc_types;
837     int ret;
838 
839     /* the first entry of each properties is a 32-bit integer encoding
840      * the number of elements in the array. we won't know this until
841      * we complete the iteration through all the matching DRCs, but
842      * reserve the space now and set the offsets accordingly so we
843      * can fill them in later.
844      */
845     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
846     drc_indexes = g_array_set_size(drc_indexes, 1);
847     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
848     drc_power_domains = g_array_set_size(drc_power_domains, 1);
849     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
850     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
851 
852     /* aliases for all DRConnector objects will be rooted in QOM
853      * composition tree at DRC_CONTAINER_PATH
854      */
855     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
856 
857     object_property_iter_init(&iter, root_container);
858     while ((prop = object_property_iter_next(&iter))) {
859         Object *obj;
860         SpaprDrc *drc;
861         SpaprDrcClass *drck;
862         char *drc_name = NULL;
863         uint32_t drc_index, drc_power_domain;
864 
865         if (!strstart(prop->type, "link<", NULL)) {
866             continue;
867         }
868 
869         obj = object_property_get_link(root_container, prop->name,
870                                        &error_abort);
871         drc = SPAPR_DR_CONNECTOR(obj);
872         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
873 
874         if (owner && (drc->owner != owner)) {
875             continue;
876         }
877 
878         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
879             continue;
880         }
881 
882         drc_count++;
883 
884         /* ibm,drc-indexes */
885         drc_index = cpu_to_be32(spapr_drc_index(drc));
886         g_array_append_val(drc_indexes, drc_index);
887 
888         /* ibm,drc-power-domains */
889         drc_power_domain = cpu_to_be32(-1);
890         g_array_append_val(drc_power_domains, drc_power_domain);
891 
892         /* ibm,drc-names */
893         drc_name = spapr_drc_name(drc);
894         drc_names = g_string_append(drc_names, drc_name);
895         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
896         g_free(drc_name);
897 
898         /* ibm,drc-types */
899         drc_types = g_string_append(drc_types, drck->typename);
900         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
901     }
902 
903     /* now write the drc count into the space we reserved at the
904      * beginning of the arrays previously
905      */
906     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
907     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
908     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
909     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
910 
911     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
912                       drc_indexes->data,
913                       drc_indexes->len * sizeof(uint32_t));
914     if (ret) {
915         error_report("Couldn't create ibm,drc-indexes property");
916         goto out;
917     }
918 
919     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
920                       drc_power_domains->data,
921                       drc_power_domains->len * sizeof(uint32_t));
922     if (ret) {
923         error_report("Couldn't finalize ibm,drc-power-domains property");
924         goto out;
925     }
926 
927     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
928                       drc_names->str, drc_names->len);
929     if (ret) {
930         error_report("Couldn't finalize ibm,drc-names property");
931         goto out;
932     }
933 
934     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
935                       drc_types->str, drc_types->len);
936     if (ret) {
937         error_report("Couldn't finalize ibm,drc-types property");
938         goto out;
939     }
940 
941 out:
942     g_array_free(drc_indexes, true);
943     g_array_free(drc_power_domains, true);
944     g_string_free(drc_names, true);
945     g_string_free(drc_types, true);
946 
947     return ret;
948 }
949 
950 /*
951  * RTAS calls
952  */
953 
954 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
955 {
956     SpaprDrc *drc = spapr_drc_by_index(idx);
957     SpaprDrcClass *drck;
958 
959     if (!drc) {
960         return RTAS_OUT_NO_SUCH_INDICATOR;
961     }
962 
963     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
964 
965     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
966 
967     switch (state) {
968     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
969         return drck->isolate(drc);
970 
971     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
972         return drck->unisolate(drc);
973 
974     default:
975         return RTAS_OUT_PARAM_ERROR;
976     }
977 }
978 
979 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
980 {
981     SpaprDrc *drc = spapr_drc_by_index(idx);
982 
983     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
984         return RTAS_OUT_NO_SUCH_INDICATOR;
985     }
986 
987     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
988 
989     switch (state) {
990     case SPAPR_DR_ALLOCATION_STATE_USABLE:
991         return drc_set_usable(drc);
992 
993     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
994         return drc_set_unusable(drc);
995 
996     default:
997         return RTAS_OUT_PARAM_ERROR;
998     }
999 }
1000 
1001 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1002 {
1003     SpaprDrc *drc = spapr_drc_by_index(idx);
1004 
1005     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1006         return RTAS_OUT_NO_SUCH_INDICATOR;
1007     }
1008     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1009         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1010         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1011         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1012         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1013     }
1014 
1015     trace_spapr_drc_set_dr_indicator(idx, state);
1016     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1017     return RTAS_OUT_SUCCESS;
1018 }
1019 
1020 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1021                                uint32_t token,
1022                                uint32_t nargs, target_ulong args,
1023                                uint32_t nret, target_ulong rets)
1024 {
1025     uint32_t type, idx, state;
1026     uint32_t ret = RTAS_OUT_SUCCESS;
1027 
1028     if (nargs != 3 || nret != 1) {
1029         ret = RTAS_OUT_PARAM_ERROR;
1030         goto out;
1031     }
1032 
1033     type = rtas_ld(args, 0);
1034     idx = rtas_ld(args, 1);
1035     state = rtas_ld(args, 2);
1036 
1037     switch (type) {
1038     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1039         ret = rtas_set_isolation_state(idx, state);
1040         break;
1041     case RTAS_SENSOR_TYPE_DR:
1042         ret = rtas_set_dr_indicator(idx, state);
1043         break;
1044     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1045         ret = rtas_set_allocation_state(idx, state);
1046         break;
1047     default:
1048         ret = RTAS_OUT_NOT_SUPPORTED;
1049     }
1050 
1051 out:
1052     rtas_st(rets, 0, ret);
1053 }
1054 
1055 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1056                                   uint32_t token, uint32_t nargs,
1057                                   target_ulong args, uint32_t nret,
1058                                   target_ulong rets)
1059 {
1060     uint32_t sensor_type;
1061     uint32_t sensor_index;
1062     uint32_t sensor_state = 0;
1063     SpaprDrc *drc;
1064     SpaprDrcClass *drck;
1065     uint32_t ret = RTAS_OUT_SUCCESS;
1066 
1067     if (nargs != 2 || nret != 2) {
1068         ret = RTAS_OUT_PARAM_ERROR;
1069         goto out;
1070     }
1071 
1072     sensor_type = rtas_ld(args, 0);
1073     sensor_index = rtas_ld(args, 1);
1074 
1075     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1076         /* currently only DR-related sensors are implemented */
1077         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1078                                                         sensor_type);
1079         ret = RTAS_OUT_NOT_SUPPORTED;
1080         goto out;
1081     }
1082 
1083     drc = spapr_drc_by_index(sensor_index);
1084     if (!drc) {
1085         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1086         ret = RTAS_OUT_PARAM_ERROR;
1087         goto out;
1088     }
1089     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1090     sensor_state = drck->dr_entity_sense(drc);
1091 
1092 out:
1093     rtas_st(rets, 0, ret);
1094     rtas_st(rets, 1, sensor_state);
1095 }
1096 
1097 /* configure-connector work area offsets, int32_t units for field
1098  * indexes, bytes for field offset/len values.
1099  *
1100  * as documented by PAPR+ v2.7, 13.5.3.5
1101  */
1102 #define CC_IDX_NODE_NAME_OFFSET 2
1103 #define CC_IDX_PROP_NAME_OFFSET 2
1104 #define CC_IDX_PROP_LEN 3
1105 #define CC_IDX_PROP_DATA_OFFSET 4
1106 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1107 #define CC_WA_LEN 4096
1108 
1109 static void configure_connector_st(target_ulong addr, target_ulong offset,
1110                                    const void *buf, size_t len)
1111 {
1112     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1113                               buf, MIN(len, CC_WA_LEN - offset));
1114 }
1115 
1116 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1117                                          SpaprMachineState *spapr,
1118                                          uint32_t token, uint32_t nargs,
1119                                          target_ulong args, uint32_t nret,
1120                                          target_ulong rets)
1121 {
1122     uint64_t wa_addr;
1123     uint64_t wa_offset;
1124     uint32_t drc_index;
1125     SpaprDrc *drc;
1126     SpaprDrcClass *drck;
1127     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1128     int rc;
1129 
1130     if (nargs != 2 || nret != 1) {
1131         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1132         return;
1133     }
1134 
1135     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1136 
1137     drc_index = rtas_ld(wa_addr, 0);
1138     drc = spapr_drc_by_index(drc_index);
1139     if (!drc) {
1140         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1141         rc = RTAS_OUT_PARAM_ERROR;
1142         goto out;
1143     }
1144 
1145     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1146         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1147         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1148         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1149         /*
1150          * Need to unisolate the device before configuring
1151          * or it should already be in configured state to
1152          * allow configure-connector be called repeatedly.
1153          */
1154         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1155         goto out;
1156     }
1157 
1158     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1159 
1160     if (!drc->fdt) {
1161         void *fdt;
1162         int fdt_size;
1163 
1164         fdt = create_device_tree(&fdt_size);
1165 
1166         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1167                               NULL)) {
1168             g_free(fdt);
1169             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1170             goto out;
1171         }
1172 
1173         drc->fdt = fdt;
1174         drc->ccs_offset = drc->fdt_start_offset;
1175         drc->ccs_depth = 0;
1176     }
1177 
1178     do {
1179         uint32_t tag;
1180         const char *name;
1181         const struct fdt_property *prop;
1182         int fdt_offset_next, prop_len;
1183 
1184         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1185 
1186         switch (tag) {
1187         case FDT_BEGIN_NODE:
1188             drc->ccs_depth++;
1189             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1190 
1191             /* provide the name of the next OF node */
1192             wa_offset = CC_VAL_DATA_OFFSET;
1193             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1194             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1195             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1196             break;
1197         case FDT_END_NODE:
1198             drc->ccs_depth--;
1199             if (drc->ccs_depth == 0) {
1200                 uint32_t drc_index = spapr_drc_index(drc);
1201 
1202                 /* done sending the device tree, move to configured state */
1203                 trace_spapr_drc_set_configured(drc_index);
1204                 drc->state = drck->ready_state;
1205                 /*
1206                  * Ensure that we are able to send the FDT fragment
1207                  * again via configure-connector call if the guest requests.
1208                  */
1209                 drc->ccs_offset = drc->fdt_start_offset;
1210                 drc->ccs_depth = 0;
1211                 fdt_offset_next = drc->fdt_start_offset;
1212                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1213             } else {
1214                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1215             }
1216             break;
1217         case FDT_PROP:
1218             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1219                                               &prop_len);
1220             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1221 
1222             /* provide the name of the next OF property */
1223             wa_offset = CC_VAL_DATA_OFFSET;
1224             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1225             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1226 
1227             /* provide the length and value of the OF property. data gets
1228              * placed immediately after NULL terminator of the OF property's
1229              * name string
1230              */
1231             wa_offset += strlen(name) + 1,
1232             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1233             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1234             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1235             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1236             break;
1237         case FDT_END:
1238             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1239         default:
1240             /* keep seeking for an actionable tag */
1241             break;
1242         }
1243         if (drc->ccs_offset >= 0) {
1244             drc->ccs_offset = fdt_offset_next;
1245         }
1246     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1247 
1248     rc = resp;
1249 out:
1250     rtas_st(rets, 0, rc);
1251 }
1252 
1253 static void spapr_drc_register_types(void)
1254 {
1255     type_register_static(&spapr_dr_connector_info);
1256     type_register_static(&spapr_drc_physical_info);
1257     type_register_static(&spapr_drc_logical_info);
1258     type_register_static(&spapr_drc_cpu_info);
1259     type_register_static(&spapr_drc_pci_info);
1260     type_register_static(&spapr_drc_lmb_info);
1261     type_register_static(&spapr_drc_phb_info);
1262     type_register_static(&spapr_drc_pmem_info);
1263 
1264     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1265                         rtas_set_indicator);
1266     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1267                         rtas_get_sensor_state);
1268     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1269                         rtas_ibm_configure_connector);
1270 }
1271 type_init(spapr_drc_register_types)
1272