xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision e3a99063)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29 
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33 
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37 
38     return 1 << drck->typeshift;
39 }
40 
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44 
45     /* no set format for a drc index: it only needs to be globally
46      * unique. this is how we encode the DRC type on bare-metal
47      * however, so might as well do that here
48      */
49     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50         | (drc->id & DRC_INDEX_ID_MASK);
51 }
52 
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
54 {
55     switch (drc->state) {
56     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57         return RTAS_OUT_SUCCESS; /* Nothing to do */
58     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59         break; /* see below */
60     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61         return RTAS_OUT_PARAM_ERROR; /* not allowed */
62     default:
63         g_assert_not_reached();
64     }
65 
66     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
67 
68     if (drc->unplug_requested) {
69         uint32_t drc_index = spapr_drc_index(drc);
70         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71         spapr_drc_detach(drc);
72     }
73 
74     return RTAS_OUT_SUCCESS;
75 }
76 
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
78 {
79     switch (drc->state) {
80     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82         return RTAS_OUT_SUCCESS; /* Nothing to do */
83     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84         break; /* see below */
85     default:
86         g_assert_not_reached();
87     }
88 
89     /* cannot unisolate a non-existent resource, and, or resources
90      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91      * 13.5.3.5)
92      */
93     if (!drc->dev) {
94         return RTAS_OUT_NO_SUCH_INDICATOR;
95     }
96 
97     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98     drc->ccs_offset = drc->fdt_start_offset;
99     drc->ccs_depth = 0;
100 
101     return RTAS_OUT_SUCCESS;
102 }
103 
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
105 {
106     switch (drc->state) {
107     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109         return RTAS_OUT_SUCCESS; /* Nothing to do */
110     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111         break; /* see below */
112     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113         return RTAS_OUT_PARAM_ERROR; /* not allowed */
114     default:
115         g_assert_not_reached();
116     }
117 
118     /*
119      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120      * belong to a DIMM device that is marked for removal.
121      *
122      * Currently the guest userspace tool drmgr that drives the memory
123      * hotplug/unplug will just try to remove a set of 'removable' LMBs
124      * in response to a hot unplug request that is based on drc-count.
125      * If the LMB being removed doesn't belong to a DIMM device that is
126      * actually being unplugged, fail the isolation request here.
127      */
128     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129         && !drc->unplug_requested) {
130         return RTAS_OUT_HW_ERROR;
131     }
132 
133     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
134 
135     /* if we're awaiting release, but still in an unconfigured state,
136      * it's likely the guest is still in the process of configuring
137      * the device and is transitioning the devices to an ISOLATED
138      * state as a part of that process. so we only complete the
139      * removal when this transition happens for a device in a
140      * configured state, as suggested by the state diagram from PAPR+
141      * 2.7, 13.4
142      */
143     if (drc->unplug_requested) {
144         uint32_t drc_index = spapr_drc_index(drc);
145         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146         spapr_drc_detach(drc);
147     }
148     return RTAS_OUT_SUCCESS;
149 }
150 
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153     switch (drc->state) {
154     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156         return RTAS_OUT_SUCCESS; /* Nothing to do */
157     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158         break; /* see below */
159     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161     default:
162         g_assert_not_reached();
163     }
164 
165     /* Move to AVAILABLE state should have ensured device was present */
166     g_assert(drc->dev);
167 
168     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169     drc->ccs_offset = drc->fdt_start_offset;
170     drc->ccs_depth = 0;
171 
172     return RTAS_OUT_SUCCESS;
173 }
174 
175 static uint32_t drc_set_usable(SpaprDrc *drc)
176 {
177     switch (drc->state) {
178     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181         return RTAS_OUT_SUCCESS; /* Nothing to do */
182     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183         break; /* see below */
184     default:
185         g_assert_not_reached();
186     }
187 
188     /* if there's no resource/device associated with the DRC, there's
189      * no way for us to put it in an allocation state consistent with
190      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191      * result in an RTAS return code of -3 / "no such indicator"
192      */
193     if (!drc->dev) {
194         return RTAS_OUT_NO_SUCH_INDICATOR;
195     }
196     if (drc->unplug_requested) {
197         /* Don't allow the guest to move a device away from UNUSABLE
198          * state when we want to unplug it */
199         return RTAS_OUT_NO_SUCH_INDICATOR;
200     }
201 
202     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
203 
204     return RTAS_OUT_SUCCESS;
205 }
206 
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
208 {
209     switch (drc->state) {
210     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211         return RTAS_OUT_SUCCESS; /* Nothing to do */
212     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213         break; /* see below */
214     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217     default:
218         g_assert_not_reached();
219     }
220 
221     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222     if (drc->unplug_requested) {
223         uint32_t drc_index = spapr_drc_index(drc);
224         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225         spapr_drc_detach(drc);
226     }
227 
228     return RTAS_OUT_SUCCESS;
229 }
230 
231 static char *spapr_drc_name(SpaprDrc *drc)
232 {
233     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
234 
235     /* human-readable name for a DRC to encode into the DT
236      * description. this is mainly only used within a guest in place
237      * of the unique DRC index.
238      *
239      * in the case of VIO/PCI devices, it corresponds to a "location
240      * code" that maps a logical device/function (DRC index) to a
241      * physical (or virtual in the case of VIO) location in the system
242      * by chaining together the "location label" for each
243      * encapsulating component.
244      *
245      * since this is more to do with diagnosing physical hardware
246      * issues than guest compatibility, we choose location codes/DRC
247      * names that adhere to the documented format, but avoid encoding
248      * the entire topology information into the label/code, instead
249      * just using the location codes based on the labels for the
250      * endpoints (VIO/PCI adaptor connectors), which is basically just
251      * "C" followed by an integer ID.
252      *
253      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254      * location codes as documented by PAPR+ v2.7, 12.3.1.5
255      */
256     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
257 }
258 
259 /*
260  * dr-entity-sense sensor value
261  * returned via get-sensor-state RTAS calls
262  * as expected by state diagram in PAPR+ 2.7, 13.4
263  * based on the current allocation/indicator/power states
264  * for the DR connector.
265  */
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
267 {
268     /* this assumes all PCI devices are assigned to a 'live insertion'
269      * power domain, where QEMU manages power state automatically as
270      * opposed to the guest. present, non-PCI resources are unaffected
271      * by power state.
272      */
273     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274         : SPAPR_DR_ENTITY_SENSE_EMPTY;
275 }
276 
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
278 {
279     switch (drc->state) {
280     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285         g_assert(drc->dev);
286         return SPAPR_DR_ENTITY_SENSE_PRESENT;
287     default:
288         g_assert_not_reached();
289     }
290 }
291 
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293                            void *opaque, Error **errp)
294 {
295     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296     uint32_t value = spapr_drc_index(drc);
297     visit_type_uint32(v, name, &value, errp);
298 }
299 
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301                          void *opaque, Error **errp)
302 {
303     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304     QNull *null = NULL;
305     Error *err = NULL;
306     int fdt_offset_next, fdt_offset, fdt_depth;
307     void *fdt;
308 
309     if (!drc->fdt) {
310         visit_type_null(v, NULL, &null, errp);
311         qobject_unref(null);
312         return;
313     }
314 
315     fdt = drc->fdt;
316     fdt_offset = drc->fdt_start_offset;
317     fdt_depth = 0;
318 
319     do {
320         const char *name = NULL;
321         const struct fdt_property *prop = NULL;
322         int prop_len = 0, name_len = 0;
323         uint32_t tag;
324 
325         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326         switch (tag) {
327         case FDT_BEGIN_NODE:
328             fdt_depth++;
329             name = fdt_get_name(fdt, fdt_offset, &name_len);
330             visit_start_struct(v, name, NULL, 0, &err);
331             if (err) {
332                 error_propagate(errp, err);
333                 return;
334             }
335             break;
336         case FDT_END_NODE:
337             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
338             g_assert(fdt_depth > 0);
339             visit_check_struct(v, &err);
340             visit_end_struct(v, NULL);
341             if (err) {
342                 error_propagate(errp, err);
343                 return;
344             }
345             fdt_depth--;
346             break;
347         case FDT_PROP: {
348             int i;
349             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
350             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
351             visit_start_list(v, name, NULL, 0, &err);
352             if (err) {
353                 error_propagate(errp, err);
354                 return;
355             }
356             for (i = 0; i < prop_len; i++) {
357                 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
358                 if (err) {
359                     error_propagate(errp, err);
360                     return;
361                 }
362             }
363             visit_check_list(v, &err);
364             visit_end_list(v, NULL);
365             if (err) {
366                 error_propagate(errp, err);
367                 return;
368             }
369             break;
370         }
371         default:
372             error_report("device FDT in unexpected state: %d", tag);
373             abort();
374         }
375         fdt_offset = fdt_offset_next;
376     } while (fdt_depth != 0);
377 }
378 
379 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
380 {
381     trace_spapr_drc_attach(spapr_drc_index(drc));
382 
383     if (drc->dev) {
384         error_setg(errp, "an attached device is still awaiting release");
385         return;
386     }
387     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
388              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
389 
390     drc->dev = d;
391 
392     object_property_add_link(OBJECT(drc), "device",
393                              object_get_typename(OBJECT(drc->dev)),
394                              (Object **)(&drc->dev),
395                              NULL, 0, NULL);
396 }
397 
398 static void spapr_drc_release(SpaprDrc *drc)
399 {
400     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
401 
402     drck->release(drc->dev);
403 
404     drc->unplug_requested = false;
405     g_free(drc->fdt);
406     drc->fdt = NULL;
407     drc->fdt_start_offset = 0;
408     object_property_del(OBJECT(drc), "device", &error_abort);
409     drc->dev = NULL;
410 }
411 
412 void spapr_drc_detach(SpaprDrc *drc)
413 {
414     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
415 
416     trace_spapr_drc_detach(spapr_drc_index(drc));
417 
418     g_assert(drc->dev);
419 
420     drc->unplug_requested = true;
421 
422     if (drc->state != drck->empty_state) {
423         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
424         return;
425     }
426 
427     spapr_drc_release(drc);
428 }
429 
430 void spapr_drc_reset(SpaprDrc *drc)
431 {
432     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
433 
434     trace_spapr_drc_reset(spapr_drc_index(drc));
435 
436     /* immediately upon reset we can safely assume DRCs whose devices
437      * are pending removal can be safely removed.
438      */
439     if (drc->unplug_requested) {
440         spapr_drc_release(drc);
441     }
442 
443     if (drc->dev) {
444         /* A device present at reset is ready to go, same as coldplugged */
445         drc->state = drck->ready_state;
446         /*
447          * Ensure that we are able to send the FDT fragment again
448          * via configure-connector call if the guest requests.
449          */
450         drc->ccs_offset = drc->fdt_start_offset;
451         drc->ccs_depth = 0;
452     } else {
453         drc->state = drck->empty_state;
454         drc->ccs_offset = -1;
455         drc->ccs_depth = -1;
456     }
457 }
458 
459 static bool spapr_drc_unplug_requested_needed(void *opaque)
460 {
461     return spapr_drc_unplug_requested(opaque);
462 }
463 
464 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
465     .name = "spapr_drc/unplug_requested",
466     .version_id = 1,
467     .minimum_version_id = 1,
468     .needed = spapr_drc_unplug_requested_needed,
469     .fields  = (VMStateField []) {
470         VMSTATE_BOOL(unplug_requested, SpaprDrc),
471         VMSTATE_END_OF_LIST()
472     }
473 };
474 
475 bool spapr_drc_transient(SpaprDrc *drc)
476 {
477     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
478 
479     /*
480      * If no dev is plugged in there is no need to migrate the DRC state
481      * nor to reset the DRC at CAS.
482      */
483     if (!drc->dev) {
484         return false;
485     }
486 
487     /*
488      * We need to reset the DRC at CAS or to migrate the DRC state if it's
489      * not equal to the expected long-term state, which is the same as the
490      * coldplugged initial state, or if an unplug request is pending.
491      */
492     return drc->state != drck->ready_state ||
493         spapr_drc_unplug_requested(drc);
494 }
495 
496 static bool spapr_drc_needed(void *opaque)
497 {
498     return spapr_drc_transient(opaque);
499 }
500 
501 static const VMStateDescription vmstate_spapr_drc = {
502     .name = "spapr_drc",
503     .version_id = 1,
504     .minimum_version_id = 1,
505     .needed = spapr_drc_needed,
506     .fields  = (VMStateField []) {
507         VMSTATE_UINT32(state, SpaprDrc),
508         VMSTATE_END_OF_LIST()
509     },
510     .subsections = (const VMStateDescription * []) {
511         &vmstate_spapr_drc_unplug_requested,
512         NULL
513     }
514 };
515 
516 static void realize(DeviceState *d, Error **errp)
517 {
518     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
519     Object *root_container;
520     gchar *link_name;
521     gchar *child_name;
522     Error *err = NULL;
523 
524     trace_spapr_drc_realize(spapr_drc_index(drc));
525     /* NOTE: we do this as part of realize/unrealize due to the fact
526      * that the guest will communicate with the DRC via RTAS calls
527      * referencing the global DRC index. By unlinking the DRC
528      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
529      * inaccessible by the guest, since lookups rely on this path
530      * existing in the composition tree
531      */
532     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
533     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
534     child_name = object_get_canonical_path_component(OBJECT(drc));
535     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
536     object_property_add_alias(root_container, link_name,
537                               drc->owner, child_name, &err);
538     g_free(child_name);
539     g_free(link_name);
540     if (err) {
541         error_propagate(errp, err);
542         return;
543     }
544     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
545                      drc);
546     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
547 }
548 
549 static void unrealize(DeviceState *d, Error **errp)
550 {
551     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
552     Object *root_container;
553     gchar *name;
554 
555     trace_spapr_drc_unrealize(spapr_drc_index(drc));
556     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
557     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
558     name = g_strdup_printf("%x", spapr_drc_index(drc));
559     object_property_del(root_container, name, errp);
560     g_free(name);
561 }
562 
563 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
564                                          uint32_t id)
565 {
566     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
567     char *prop_name;
568 
569     drc->id = id;
570     drc->owner = owner;
571     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
572                                 spapr_drc_index(drc));
573     object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
574     object_unref(OBJECT(drc));
575     object_property_set_bool(OBJECT(drc), true, "realized", NULL);
576     g_free(prop_name);
577 
578     return drc;
579 }
580 
581 static void spapr_dr_connector_instance_init(Object *obj)
582 {
583     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
584     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
585 
586     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ,
587                                    NULL);
588     object_property_add(obj, "index", "uint32", prop_get_index,
589                         NULL, NULL, NULL, NULL);
590     object_property_add(obj, "fdt", "struct", prop_get_fdt,
591                         NULL, NULL, NULL, NULL);
592     drc->state = drck->empty_state;
593 }
594 
595 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
596 {
597     DeviceClass *dk = DEVICE_CLASS(k);
598 
599     dk->realize = realize;
600     dk->unrealize = unrealize;
601     /*
602      * Reason: it crashes FIXME find and document the real reason
603      */
604     dk->user_creatable = false;
605 }
606 
607 static bool drc_physical_needed(void *opaque)
608 {
609     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
610     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
611 
612     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
613         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
614         return false;
615     }
616     return true;
617 }
618 
619 static const VMStateDescription vmstate_spapr_drc_physical = {
620     .name = "spapr_drc/physical",
621     .version_id = 1,
622     .minimum_version_id = 1,
623     .needed = drc_physical_needed,
624     .fields  = (VMStateField []) {
625         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
626         VMSTATE_END_OF_LIST()
627     }
628 };
629 
630 static void drc_physical_reset(void *opaque)
631 {
632     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
633     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
634 
635     if (drc->dev) {
636         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
637     } else {
638         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
639     }
640 }
641 
642 static void realize_physical(DeviceState *d, Error **errp)
643 {
644     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
645     Error *local_err = NULL;
646 
647     realize(d, &local_err);
648     if (local_err) {
649         error_propagate(errp, local_err);
650         return;
651     }
652 
653     vmstate_register(VMSTATE_IF(drcp),
654                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
655                      &vmstate_spapr_drc_physical, drcp);
656     qemu_register_reset(drc_physical_reset, drcp);
657 }
658 
659 static void unrealize_physical(DeviceState *d, Error **errp)
660 {
661     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
662     Error *local_err = NULL;
663 
664     unrealize(d, &local_err);
665     if (local_err) {
666         error_propagate(errp, local_err);
667         return;
668     }
669 
670     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
671     qemu_unregister_reset(drc_physical_reset, drcp);
672 }
673 
674 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
675 {
676     DeviceClass *dk = DEVICE_CLASS(k);
677     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
678 
679     dk->realize = realize_physical;
680     dk->unrealize = unrealize_physical;
681     drck->dr_entity_sense = physical_entity_sense;
682     drck->isolate = drc_isolate_physical;
683     drck->unisolate = drc_unisolate_physical;
684     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
685     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
686 }
687 
688 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
689 {
690     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
691 
692     drck->dr_entity_sense = logical_entity_sense;
693     drck->isolate = drc_isolate_logical;
694     drck->unisolate = drc_unisolate_logical;
695     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
696     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
697 }
698 
699 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
700 {
701     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
702 
703     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
704     drck->typename = "CPU";
705     drck->drc_name_prefix = "CPU ";
706     drck->release = spapr_core_release;
707     drck->dt_populate = spapr_core_dt_populate;
708 }
709 
710 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
711 {
712     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
713 
714     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
715     drck->typename = "28";
716     drck->drc_name_prefix = "C";
717     drck->release = spapr_phb_remove_pci_device_cb;
718     drck->dt_populate = spapr_pci_dt_populate;
719 }
720 
721 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
722 {
723     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
724 
725     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
726     drck->typename = "MEM";
727     drck->drc_name_prefix = "LMB ";
728     drck->release = spapr_lmb_release;
729     drck->dt_populate = spapr_lmb_dt_populate;
730 }
731 
732 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
733 {
734     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
735 
736     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
737     drck->typename = "PHB";
738     drck->drc_name_prefix = "PHB ";
739     drck->release = spapr_phb_release;
740     drck->dt_populate = spapr_phb_dt_populate;
741 }
742 
743 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
744 {
745     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
746 
747     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
748     drck->typename = "PMEM";
749     drck->drc_name_prefix = "PMEM ";
750     drck->release = NULL;
751     drck->dt_populate = spapr_pmem_dt_populate;
752 }
753 
754 static const TypeInfo spapr_dr_connector_info = {
755     .name          = TYPE_SPAPR_DR_CONNECTOR,
756     .parent        = TYPE_DEVICE,
757     .instance_size = sizeof(SpaprDrc),
758     .instance_init = spapr_dr_connector_instance_init,
759     .class_size    = sizeof(SpaprDrcClass),
760     .class_init    = spapr_dr_connector_class_init,
761     .abstract      = true,
762 };
763 
764 static const TypeInfo spapr_drc_physical_info = {
765     .name          = TYPE_SPAPR_DRC_PHYSICAL,
766     .parent        = TYPE_SPAPR_DR_CONNECTOR,
767     .instance_size = sizeof(SpaprDrcPhysical),
768     .class_init    = spapr_drc_physical_class_init,
769     .abstract      = true,
770 };
771 
772 static const TypeInfo spapr_drc_logical_info = {
773     .name          = TYPE_SPAPR_DRC_LOGICAL,
774     .parent        = TYPE_SPAPR_DR_CONNECTOR,
775     .class_init    = spapr_drc_logical_class_init,
776     .abstract      = true,
777 };
778 
779 static const TypeInfo spapr_drc_cpu_info = {
780     .name          = TYPE_SPAPR_DRC_CPU,
781     .parent        = TYPE_SPAPR_DRC_LOGICAL,
782     .class_init    = spapr_drc_cpu_class_init,
783 };
784 
785 static const TypeInfo spapr_drc_pci_info = {
786     .name          = TYPE_SPAPR_DRC_PCI,
787     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
788     .class_init    = spapr_drc_pci_class_init,
789 };
790 
791 static const TypeInfo spapr_drc_lmb_info = {
792     .name          = TYPE_SPAPR_DRC_LMB,
793     .parent        = TYPE_SPAPR_DRC_LOGICAL,
794     .class_init    = spapr_drc_lmb_class_init,
795 };
796 
797 static const TypeInfo spapr_drc_phb_info = {
798     .name          = TYPE_SPAPR_DRC_PHB,
799     .parent        = TYPE_SPAPR_DRC_LOGICAL,
800     .instance_size = sizeof(SpaprDrc),
801     .class_init    = spapr_drc_phb_class_init,
802 };
803 
804 static const TypeInfo spapr_drc_pmem_info = {
805     .name          = TYPE_SPAPR_DRC_PMEM,
806     .parent        = TYPE_SPAPR_DRC_LOGICAL,
807     .class_init    = spapr_drc_pmem_class_init,
808 };
809 
810 /* helper functions for external users */
811 
812 SpaprDrc *spapr_drc_by_index(uint32_t index)
813 {
814     Object *obj;
815     gchar *name;
816 
817     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
818     obj = object_resolve_path(name, NULL);
819     g_free(name);
820 
821     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
822 }
823 
824 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
825 {
826     SpaprDrcClass *drck
827         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
828 
829     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
830                               | (id & DRC_INDEX_ID_MASK));
831 }
832 
833 /**
834  * spapr_dt_drc
835  *
836  * @fdt: libfdt device tree
837  * @path: path in the DT to generate properties
838  * @owner: parent Object/DeviceState for which to generate DRC
839  *         descriptions for
840  * @drc_type_mask: mask of SpaprDrcType values corresponding
841  *   to the types of DRCs to generate entries for
842  *
843  * generate OF properties to describe DRC topology/indices to guests
844  *
845  * as documented in PAPR+ v2.1, 13.5.2
846  */
847 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
848 {
849     Object *root_container;
850     ObjectProperty *prop;
851     ObjectPropertyIterator iter;
852     uint32_t drc_count = 0;
853     GArray *drc_indexes, *drc_power_domains;
854     GString *drc_names, *drc_types;
855     int ret;
856 
857     /* the first entry of each properties is a 32-bit integer encoding
858      * the number of elements in the array. we won't know this until
859      * we complete the iteration through all the matching DRCs, but
860      * reserve the space now and set the offsets accordingly so we
861      * can fill them in later.
862      */
863     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
864     drc_indexes = g_array_set_size(drc_indexes, 1);
865     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
866     drc_power_domains = g_array_set_size(drc_power_domains, 1);
867     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
868     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
869 
870     /* aliases for all DRConnector objects will be rooted in QOM
871      * composition tree at DRC_CONTAINER_PATH
872      */
873     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
874 
875     object_property_iter_init(&iter, root_container);
876     while ((prop = object_property_iter_next(&iter))) {
877         Object *obj;
878         SpaprDrc *drc;
879         SpaprDrcClass *drck;
880         char *drc_name = NULL;
881         uint32_t drc_index, drc_power_domain;
882 
883         if (!strstart(prop->type, "link<", NULL)) {
884             continue;
885         }
886 
887         obj = object_property_get_link(root_container, prop->name, NULL);
888         drc = SPAPR_DR_CONNECTOR(obj);
889         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
890 
891         if (owner && (drc->owner != owner)) {
892             continue;
893         }
894 
895         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
896             continue;
897         }
898 
899         drc_count++;
900 
901         /* ibm,drc-indexes */
902         drc_index = cpu_to_be32(spapr_drc_index(drc));
903         g_array_append_val(drc_indexes, drc_index);
904 
905         /* ibm,drc-power-domains */
906         drc_power_domain = cpu_to_be32(-1);
907         g_array_append_val(drc_power_domains, drc_power_domain);
908 
909         /* ibm,drc-names */
910         drc_name = spapr_drc_name(drc);
911         drc_names = g_string_append(drc_names, drc_name);
912         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
913         g_free(drc_name);
914 
915         /* ibm,drc-types */
916         drc_types = g_string_append(drc_types, drck->typename);
917         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
918     }
919 
920     /* now write the drc count into the space we reserved at the
921      * beginning of the arrays previously
922      */
923     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
924     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
925     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
926     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
927 
928     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
929                       drc_indexes->data,
930                       drc_indexes->len * sizeof(uint32_t));
931     if (ret) {
932         error_report("Couldn't create ibm,drc-indexes property");
933         goto out;
934     }
935 
936     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
937                       drc_power_domains->data,
938                       drc_power_domains->len * sizeof(uint32_t));
939     if (ret) {
940         error_report("Couldn't finalize ibm,drc-power-domains property");
941         goto out;
942     }
943 
944     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
945                       drc_names->str, drc_names->len);
946     if (ret) {
947         error_report("Couldn't finalize ibm,drc-names property");
948         goto out;
949     }
950 
951     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
952                       drc_types->str, drc_types->len);
953     if (ret) {
954         error_report("Couldn't finalize ibm,drc-types property");
955         goto out;
956     }
957 
958 out:
959     g_array_free(drc_indexes, true);
960     g_array_free(drc_power_domains, true);
961     g_string_free(drc_names, true);
962     g_string_free(drc_types, true);
963 
964     return ret;
965 }
966 
967 /*
968  * RTAS calls
969  */
970 
971 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
972 {
973     SpaprDrc *drc = spapr_drc_by_index(idx);
974     SpaprDrcClass *drck;
975 
976     if (!drc) {
977         return RTAS_OUT_NO_SUCH_INDICATOR;
978     }
979 
980     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
981 
982     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
983 
984     switch (state) {
985     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
986         return drck->isolate(drc);
987 
988     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
989         return drck->unisolate(drc);
990 
991     default:
992         return RTAS_OUT_PARAM_ERROR;
993     }
994 }
995 
996 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
997 {
998     SpaprDrc *drc = spapr_drc_by_index(idx);
999 
1000     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
1001         return RTAS_OUT_NO_SUCH_INDICATOR;
1002     }
1003 
1004     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
1005 
1006     switch (state) {
1007     case SPAPR_DR_ALLOCATION_STATE_USABLE:
1008         return drc_set_usable(drc);
1009 
1010     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
1011         return drc_set_unusable(drc);
1012 
1013     default:
1014         return RTAS_OUT_PARAM_ERROR;
1015     }
1016 }
1017 
1018 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1019 {
1020     SpaprDrc *drc = spapr_drc_by_index(idx);
1021 
1022     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1023         return RTAS_OUT_NO_SUCH_INDICATOR;
1024     }
1025     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1026         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1027         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1028         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1029         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1030     }
1031 
1032     trace_spapr_drc_set_dr_indicator(idx, state);
1033     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1034     return RTAS_OUT_SUCCESS;
1035 }
1036 
1037 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1038                                uint32_t token,
1039                                uint32_t nargs, target_ulong args,
1040                                uint32_t nret, target_ulong rets)
1041 {
1042     uint32_t type, idx, state;
1043     uint32_t ret = RTAS_OUT_SUCCESS;
1044 
1045     if (nargs != 3 || nret != 1) {
1046         ret = RTAS_OUT_PARAM_ERROR;
1047         goto out;
1048     }
1049 
1050     type = rtas_ld(args, 0);
1051     idx = rtas_ld(args, 1);
1052     state = rtas_ld(args, 2);
1053 
1054     switch (type) {
1055     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1056         ret = rtas_set_isolation_state(idx, state);
1057         break;
1058     case RTAS_SENSOR_TYPE_DR:
1059         ret = rtas_set_dr_indicator(idx, state);
1060         break;
1061     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1062         ret = rtas_set_allocation_state(idx, state);
1063         break;
1064     default:
1065         ret = RTAS_OUT_NOT_SUPPORTED;
1066     }
1067 
1068 out:
1069     rtas_st(rets, 0, ret);
1070 }
1071 
1072 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1073                                   uint32_t token, uint32_t nargs,
1074                                   target_ulong args, uint32_t nret,
1075                                   target_ulong rets)
1076 {
1077     uint32_t sensor_type;
1078     uint32_t sensor_index;
1079     uint32_t sensor_state = 0;
1080     SpaprDrc *drc;
1081     SpaprDrcClass *drck;
1082     uint32_t ret = RTAS_OUT_SUCCESS;
1083 
1084     if (nargs != 2 || nret != 2) {
1085         ret = RTAS_OUT_PARAM_ERROR;
1086         goto out;
1087     }
1088 
1089     sensor_type = rtas_ld(args, 0);
1090     sensor_index = rtas_ld(args, 1);
1091 
1092     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1093         /* currently only DR-related sensors are implemented */
1094         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1095                                                         sensor_type);
1096         ret = RTAS_OUT_NOT_SUPPORTED;
1097         goto out;
1098     }
1099 
1100     drc = spapr_drc_by_index(sensor_index);
1101     if (!drc) {
1102         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1103         ret = RTAS_OUT_PARAM_ERROR;
1104         goto out;
1105     }
1106     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1107     sensor_state = drck->dr_entity_sense(drc);
1108 
1109 out:
1110     rtas_st(rets, 0, ret);
1111     rtas_st(rets, 1, sensor_state);
1112 }
1113 
1114 /* configure-connector work area offsets, int32_t units for field
1115  * indexes, bytes for field offset/len values.
1116  *
1117  * as documented by PAPR+ v2.7, 13.5.3.5
1118  */
1119 #define CC_IDX_NODE_NAME_OFFSET 2
1120 #define CC_IDX_PROP_NAME_OFFSET 2
1121 #define CC_IDX_PROP_LEN 3
1122 #define CC_IDX_PROP_DATA_OFFSET 4
1123 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1124 #define CC_WA_LEN 4096
1125 
1126 static void configure_connector_st(target_ulong addr, target_ulong offset,
1127                                    const void *buf, size_t len)
1128 {
1129     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1130                               buf, MIN(len, CC_WA_LEN - offset));
1131 }
1132 
1133 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1134                                          SpaprMachineState *spapr,
1135                                          uint32_t token, uint32_t nargs,
1136                                          target_ulong args, uint32_t nret,
1137                                          target_ulong rets)
1138 {
1139     uint64_t wa_addr;
1140     uint64_t wa_offset;
1141     uint32_t drc_index;
1142     SpaprDrc *drc;
1143     SpaprDrcClass *drck;
1144     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1145     int rc;
1146 
1147     if (nargs != 2 || nret != 1) {
1148         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1149         return;
1150     }
1151 
1152     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1153 
1154     drc_index = rtas_ld(wa_addr, 0);
1155     drc = spapr_drc_by_index(drc_index);
1156     if (!drc) {
1157         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1158         rc = RTAS_OUT_PARAM_ERROR;
1159         goto out;
1160     }
1161 
1162     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1163         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1164         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1165         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1166         /*
1167          * Need to unisolate the device before configuring
1168          * or it should already be in configured state to
1169          * allow configure-connector be called repeatedly.
1170          */
1171         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1172         goto out;
1173     }
1174 
1175     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1176 
1177     if (!drc->fdt) {
1178         Error *local_err = NULL;
1179         void *fdt;
1180         int fdt_size;
1181 
1182         fdt = create_device_tree(&fdt_size);
1183 
1184         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1185                               &local_err)) {
1186             g_free(fdt);
1187             error_free(local_err);
1188             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1189             goto out;
1190         }
1191 
1192         drc->fdt = fdt;
1193         drc->ccs_offset = drc->fdt_start_offset;
1194         drc->ccs_depth = 0;
1195     }
1196 
1197     do {
1198         uint32_t tag;
1199         const char *name;
1200         const struct fdt_property *prop;
1201         int fdt_offset_next, prop_len;
1202 
1203         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1204 
1205         switch (tag) {
1206         case FDT_BEGIN_NODE:
1207             drc->ccs_depth++;
1208             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1209 
1210             /* provide the name of the next OF node */
1211             wa_offset = CC_VAL_DATA_OFFSET;
1212             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1213             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1214             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1215             break;
1216         case FDT_END_NODE:
1217             drc->ccs_depth--;
1218             if (drc->ccs_depth == 0) {
1219                 uint32_t drc_index = spapr_drc_index(drc);
1220 
1221                 /* done sending the device tree, move to configured state */
1222                 trace_spapr_drc_set_configured(drc_index);
1223                 drc->state = drck->ready_state;
1224                 /*
1225                  * Ensure that we are able to send the FDT fragment
1226                  * again via configure-connector call if the guest requests.
1227                  */
1228                 drc->ccs_offset = drc->fdt_start_offset;
1229                 drc->ccs_depth = 0;
1230                 fdt_offset_next = drc->fdt_start_offset;
1231                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1232             } else {
1233                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1234             }
1235             break;
1236         case FDT_PROP:
1237             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1238                                               &prop_len);
1239             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1240 
1241             /* provide the name of the next OF property */
1242             wa_offset = CC_VAL_DATA_OFFSET;
1243             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1244             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1245 
1246             /* provide the length and value of the OF property. data gets
1247              * placed immediately after NULL terminator of the OF property's
1248              * name string
1249              */
1250             wa_offset += strlen(name) + 1,
1251             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1252             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1253             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1254             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1255             break;
1256         case FDT_END:
1257             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1258         default:
1259             /* keep seeking for an actionable tag */
1260             break;
1261         }
1262         if (drc->ccs_offset >= 0) {
1263             drc->ccs_offset = fdt_offset_next;
1264         }
1265     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1266 
1267     rc = resp;
1268 out:
1269     rtas_st(rets, 0, rc);
1270 }
1271 
1272 static void spapr_drc_register_types(void)
1273 {
1274     type_register_static(&spapr_dr_connector_info);
1275     type_register_static(&spapr_drc_physical_info);
1276     type_register_static(&spapr_drc_logical_info);
1277     type_register_static(&spapr_drc_cpu_info);
1278     type_register_static(&spapr_drc_pci_info);
1279     type_register_static(&spapr_drc_lmb_info);
1280     type_register_static(&spapr_drc_phb_info);
1281     type_register_static(&spapr_drc_pmem_info);
1282 
1283     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1284                         rtas_set_indicator);
1285     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1286                         rtas_get_sensor_state);
1287     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1288                         rtas_ibm_configure_connector);
1289 }
1290 type_init(spapr_drc_register_types)
1291